Лечение глазных болезней, отличающихся повышенным внутриглазным давлением, с помощью siphk

Иллюстрации

Показать все

Изобретение относится к области биологии и медицины. Предложено применение технологии РНК-интерференции при лечении глазных болезней, предпочтительно глаукомы и увеита. Лекарственное средство составляют для местного нанесения на поверхность роговицы. В качестве мишеней предложено использовать карбоангидразу II, IV и XII, адренергические рецепторы: бета 1 и 2 и альфа 1А, 1В и 1D, ацетилхолинэстеразу, циклооксигеназы 1 и 2, АТФ-азы: альфа-1, альфа-2, альфа-3, бета-1, бета-2, молекулу адгезии лейкоцитов эндотелия (ELAM-1), ангиотензин I превращающие ферменты (АСЕ I и АСЕ II), рецепторы ангиотензина I (ATR1 и ATR2) и ренин; кохлин. 4 н. и 32 з.п. ф-лы, 2 табл., 3 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способам и композициям для лечения глазных болезней; и в частности, но не только, изобретение относится к лечению глаукомы. В предпочтительных вариантах осуществления настоящее изобретение относится к применению технологии РНК-интерференции (РНКi) для подавления экспрессии генов образования водянистой влаги и генов оттока водянистой влаги. Также настоящее изобретение относится к способам и композициям для лечения глазных болезней.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

РНКi как инструмент подавления экспрессии гена

Для определения функции гена у млекопитающих обычно используют направленное воздействие на гены посредством гомологичной рекомбинации, но этот способ является дорогостоящим и отнимает много времени. С другой стороны, функции многих генов можно определить после ингибирования мРНК рибозимами или антисмысловыми технологиями. Несмотря на успешное применение этих технологий в некоторых ситуациях, существуют трудности для их универсального применения. Появление направленного "нокдауна" малыми интерферирующими РНК (siРНК) дало импульс революционным изменениям в генетике соматической клетки, давая возможность осуществлять недорогой и быстрый анализ функции гена у млекопитающих.

Последние 15 лет в молекулярной биологии постоянной темой является создание удобного и надежного способа экспрессии генного нокаута на уровне мРНК. В попытках создать клетки или организмы с потерей функции проводились исследования различных молекул, включая, например, антисмысловые последовательности, рибозимы и химерные олигонуклеотиды, но конструирование таких молекул было основано на методе проб и ошибок в зависимости от свойств гена-мишени. Кроме того, было трудно прогнозировать желаемые эффекты, и часто достигалась всего лишь слабая супрессия (Braasch&Corey, 2002).

Впервые феномен dsРНК (двунитевая РНК) был открыт у растений в начале 1990-ых годов, и позже, в 1998 году, исследователи Andy Fire и Craig Mello в работах с червем Caenorhabditis elegans впервые продемонстрировали, что dsРНК может чрезвычайно эффективным образом специфично и селективно ингибировать экспрессию гена (Fire et al., 1998). В эксперименте последовательность первой нити (так называемая смысловая РНК) совпадает с последовательностью соответствующей области матричной РНК-мишени (мРНК). Вторая нить (антисмысловая РНК) комплементарна этой мРНК. Получаемая dsРНК оказывается гораздо более эффективной (на несколько порядков), чем соответствующие однонитевые молекулы РНК (в частности, антисмысловая РНК). Исследователи Fire et al. в 1998 году назвали этот феномен интерференцией РНКi. Показано, что этот мощный механизм сайленсинга гена действует у нескольких видов большинства филогенетических типов.

РНКi начинается, когда фермент, называемый DICER, встречается с dsРНК и нарезает ее на части, называемые малыми интерферирующими РНК, или siРНК. Этот белок принадлежит семейству РНК-аза III нуклеаз. Комплекс белков собирает эти остатки РНК и использует их код в качестве проводника для поиска и уничтожения в клетке любых РНК с соответствующей последовательностью, таких как мРНК-мишень (для обзора см. Bosher & Labouesse, 2000).

Феномен РНКi (Akashi et al, 2001) в итоге можно суммировать следующим образом.

- Этап 1: процесс распознавания и сканирования dsРНК.

- Этап 2: расщепление dsРНК посредством РНК-азы III и продукция siРНК.

- Этап 3: связывание siРНК и связанных факторов в комплексах RISC.

- Этап 4: распознавание комплементарной мРНК-мишени.

- Этап 5: расщепление мРНК-мишени в центре области, комплементарной siРНК.

- Этап 6: распад мРНК-мишени и рециркуляции RISC-комплекса.

Вскоре в попытке использования феномена РНКi в качестве технологии генного нокдауна было выявлено, что в клетках млекопитающих разработаны различные защитные феномены против вирусных инфекций, которые могут препятствовать применению этого подхода. Действительно, присутствие вирусной dsРНК на чрезвычайно низком уровне запускает ответ интерферона, приводящий к общей неспецифической супрессии трансляции, которая в свою очередь запускает апоптоз (Williams, 1997, Gil & Esteban, 2000).

В 2000 году первая попытка работы с dsРНК привела к специфическому ингибированию в ооцитах и в ранних эмбрионах мышей 3 генов (MmGFP под контролем фактора элонгации 1a, E-кадгерин и c-mos). Не наблюдалось подавления трансляции, и таким образом, ответа РНК-зависимой протеинкиназы PKR, так как эмбрионы продолжали развитие (Wianny & Zernicka-Goetz, 2000). Через год в компании Ribopharma AG (Kulmbach, Германия) впервые были показаны функциональные возможности РНКi в клетках млекопитающих. Использование коротких (20-24 пар оснований) dsРНК, которые назвали SIRPLEX , даже в клетках человека, специфически выключало гены без инициации стадии острого ответа. Сходные эксперименты, выполненные позже другими исследовательскими группами (Elbashir et al., 2001; Caplen et al., 2001), дополнительно подтвердили эти результаты.

Годом позже исследователи Paddison et al. (Paddison et al., 2002) для ингибирования функций специфических генов попробовали использовать уложенные в шпилечные структуры малые РНК. Стимулом для этой работы явились предыдущие исследования, показавшие, что у Caenorhabditis elegans некоторые гены посредством РНКi естественным образом регулируют другие гены путем кодирования РНК со шпилечной структурой. Тестированные в различных нормальных и опухолевых клеточных линиях человека и мыши короткие шпилечные РНК (shРНК) также эффективно, как их копии siРНК, способны к генному сайленсингу. Кроме того, in vivo shРНК обладают лучшей кинетикой реассоциации, чем дуплексные эквиваленты. Еще более важно, что указанные авторы создали трансгенные клеточные линии, сконструированные для синтеза shРНК, которые обладают длительным супрессивным эффектом во время деления клетки (Eurogentec). Недавно было показано, что другая группа малых РНК (также находящаяся в диапазое 21-25 нт) опосредует подавление экспрессии гена. Также РНК, известные как малые временные регулируемые РНК (stРНК), были описаны у Caenorhabditis elegans, где регулируют время экспрессии гена в ходе развития. Необходимо отметить, что stРНК и siРНК, несмотря на очевидные сходства, работают посредством различных механизмов действия (для обзора см. Banerjee&Slack, 2002). В отличие от siРНК, stРНК длиной в 22 нт подавляет экспрессию мРНК-мишени после инициации трансляции без нарушения целостности мРНК. В последних исследованиях указано, что две stРНК, впервые описанные у нематод, являются членами огромного семейства, с сотнями дополнительных микроРНК (miРНК), присутствующих у многоклеточных животных (Grosshans & Slack, 2002).

Ученые сначала использовали РНКi в нескольких системах, включающих в себя Caenorhabditis elegans, дрозофилу, трипаносомы и различные другие беспозвоночные. Более того, используя этот подход, недавно несколько групп исследователей представили специфическую супрессию биосинтеза белка в различных клеточных линиях млекопитающих, а именно в клетках HeLa, что указывает на то, что РНКi является широко применимым способом для сайленсинга гена in vitro. На основании этих результатов РНКi быстро стала широко признанным инструментом для подтверждения (идентификации и определения) функции гена. Интерференция РНК, использующая короткие олигонуклеотиды dsРНК, кроме того, позволит расшифровывать функцию генов, которые секвенированы только частично. Поэтому скоро РНКi станет обязательным в таких исследованиях, как:

- ингибирование экспрессии гена на посттранскрипционном уровне в эукариотических клетках. В этой связи РНКi является прямым инструментом быстрой оценки функции гена и выявления нулевых фенотипов;

- разработка технологии РНКi для применения у эмбрионов после имплантации;

- преимущественное экономическое значение интерференции РНК обусловлено ее применением в качестве терапии. В этой связи РНКi может приводить к созданию лекарственных препаратов на основе РНК для лечения заболеваний человека.

Глаукома

Глаукома является одной из ведущих причин слепоты. Приблизительно 15% случаев слепоты во всем мире является следствием глаукомы. Наиболее часто встречающимся типом глаукомы является первичная открытоугольная глаукома, уровень распространенности которой составляет 1/200 общего населения в возрасте старше 40 лет.

Глаукому определяют как процесс разрушения ткани глаза, вызванный постоянным повышением внутриглазного давления (ВГД) выше его нормальных физиологических границ.

Все более очевидно, что множество форм глаукомы имеют генетическую предрасположенность, и многочисленные современные исследования направлены на идентификацию хромосомных областей и генов, связанных с глаукомой. Вероятно, что этиология открытоугольной глаукомы (ОУГ) является мультифакторной, является результатом комбинации мутаций в более чем в одном гене и пока еще идентифицированных факторов внешней среды. В случае ювенильной ОУГ во взрослом возрасте было идентифицировано несколько локусов. Однако известен только один ген, а именно ген миоциллина/TIGR (трабекулярной сети индуцируемого глюкокортикоидного ответа) в локусе GLC1A на хромосоме 1q21-q31. В этнически различающихся популяциях во всем мире было идентифицировано более тридцати мутаций этого гена. Исследования показали, что этот ген отвечает примерно только за 5% всех случаев ОУГ (см. обзоры работ Wirtz&Samples, 2003, и Khaw et al., 2004a).

Патогенез

Большинство случаев глаукомы характеризуются повышенным ВГД, при этом степень повышения может различаться. В тех случаях, когда повышение давления является изначально невысоким (то есть открытоугольная глаукома, меланоцитарная глаукома), и в некоторых случаях вторичной глаукомы наблюдается медленное прогрессирование повреждения ретинальных ганглиозных клеток и зрительного нерва. При закрытоугольной глаукоме внезапное повышение ВГД часто приводит к слепоте, несомненно прежде всего в силу прекращения аксоплазматического потока на уровне lamina cribrosa.

При исследованиях людей принято считать, что в начале или в прогрессировании повреждения слепого пятна, происходящего при глаукоме, отчасти играет роль тканевая ишемия. Дегенерацией ретинальных ганглиозных клеток может быть некроз, но существует вероятность того, что возможно дегенерация является апоптозом, который вызван повышением ВГД, и соответствующие роли окиси азота и глутамата считаются существенными в ходе прогрессирования болезни (см. последние обзоры по этому предмету в работах Osborne et al, 2003).

Лечение

Притом что в комплекс факторов патогенеза глаукомы вовлечены несколько этиологических причин, абсолютным определением для выбора лечения является количество первичных и/или индуцированных нарушений давления, локализующихся в углу передней камеры.

Современные способы лечения включают в себя лекарственные препараты или хирургические вмешательства, направленные на снижение ВГД, хотя неизвестны патофизиологические механизмы глаукомы, по которым повышенное ВГД приводит к повреждениям нейронов.

Медикаментозное подавление повышенного ВГД может быть достигнуто, используя четыре типа лекарственных средств: средства, подавляющие образование водянистой влаги (среди которых ингибиторы карбоангидразы, бета-адреноблокирующие средства или агонисты альфа2-адренорецепторов), миотики (то есть парасимпатомиметики, представляющие собой холинэргические или антихолинэстеразные ингибиторы); средства, усиливающие увеосклеральный отток; и гиперосмотические средства (которые создают градиент осмотического давления через барьер крови/водянистой влаги внутри ресничного эпителия). При лечении глаукомы применяют все четыре типа средств, первые три типа обычно используют в качестве неотложного лечения и для продолжительного контроля, тогда как гиперосмотические средства неоценимы в качестве неотложного и предоперационного лечения. Появляющиеся в последнее время нейропротективные средства, которые представляют пятый тип лекарственных средств, являются важным возможным дополнением медикаментозной терапии. Действительно, наблюдение, что при глаукоме возрастают уровни NOS и глутамата и что они вовлечены в некроз или апоптоз ретинальных ганглиозных клеток, повышает возможность применения нейропротективных средств и даже нейрорегенерации. Таким образом, ингибиторы NOS, возбуждающие аминокислотные антагонисты, антагонисты глутаматных рецепторов, ингибиторы апоптоза и блокаторы кальциевых каналов, все они являются возможными лекарственными средствами в будущих разработках средств против глаукомы. Блокаторы кальциевых каналов могут уменьшать влияние повреждения капиллярного кровообращения в головке зрительного нерва, наряду с потенциальным повышением возможности оттока на уровне трабекулярных клеток.

Обзоры различных глазных болезней и способы их лечения приведены в ссылках, конкретно в работах Bunce (2005), Costagliola (1995, 2000), Cullinane (2002), Sakaguchi (2002), Shah (2000) и Wang (2005).

На сегодняшний день способы лечения не должны иметь известных и практических трудностей, связанных с оценкой способности оттока, точного мониторинга терапии и сложности хирургических технологий, объединяемых для запутывания прогноза. Важнейшим фактором всех глауком является дегенерация ретинальных ганглиозных клеток, таким образом, нейропротективое действие посредством эффективного снижения глазного давления является существенным требованием для любого применяемого средства (см. последние обзоры по предмету в работе Khaw et al., 2004b).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении описан способ лечения глазных болезней, характеризующихся изменением ВГД, у животных, включая человека. В частности, болезни глаз могут включать в себя глаукому, увеит и воспаление. Способ основан на подавлении экспрессии генов, вовлеченных в образование водянистой влаги или оттока водянистой влаги в глазу. Подавление можно осуществлять при помощи функциональных групп двунитевых нуклеиновых кислот, называемых siНК или малыми интерферирующими НК, которые направлены на интерференцию экспрессии различных возможных генов в мРНК. Предпочтительно siНК представляют собой siРНК, вместе с тем модифицированные нуклеиновые кислоты или сходные химически синтезированные объекты также включены в объем настоящего изобретения.

Предпочтительные варианты осуществления настоящего изобретения относятся к местному применению siНК. Варианты осуществления настоящего изобретения также относятся к фармацевтическим композициям для использования при лечении глазных болезней. Настоящее изобретение можно использовать для препаратов местного лечения глаз, в генах-мишенях, вовлеченных в патогенез глаукомы, а также для применения химически синтезированных объектов для лечения заболеваний у животных (включающих в себя людей).

Кроме лечения глаукомы, способ по настоящему изобретению также может использоваться для лечения других заболеваний передней камеры глаза. В частности, способ можно применять при лечении заболеваний, характеризующихся нарушением образования или оттока водянистой влаги в глазу. Примеры возможных для лечения состояний включают в себя местные состояния, такие как инфекции или воспаления, и общие состояния, такие как увеит или проявление системных заболеваний. Дополнительно, некоторые варианты осуществления настоящего изобретения относятся к лечению диабетической ретинопатии.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Гены-мишени

В соответствии с настоящим изобретением авторы определили список генов-мишеней, уровни экспрессии которых могут влиять на ВГД. Эти гены могут входить в состав групп генов, задействованных в образовании водянистой влаги, или в группу генов, задействованных в оттоке водянистой влаги. Ниже представлен список таких генов-мишеней.

- Карбоангидразы II, IV и XII

- Адренергические рецепторы: бета1 и 2, и альфа 1А, 1B и 1D

- Ацетилхолинэстераза

- Циклооксигеназы 1 и 2

- АТФазы: альфа1, альфа2, альфа3, бета1, бета2

- Молекула адгезии лейкоцитов эндотелия (ELAM-1)

- Система ангиотензина: ангиотензин I, ангиотензин II превращающие ферменты (ACE I и ACE II), рецепторы ангиотензина II (ATR1 и ATR2) и ренин

- Кохлин

Конструирование siНК

Несмотря на то что механизмы для РНКi остаются неизвестными, этапы, необходимые для создания конкретных олигонуклеотидов dsРНК, очевидны. Показано, что для получения РНК-интерференции наиболее эффективно работают сдвоенные нити dsРНК длиной 21-26 нуклеотидов. Также важен выбор правильной гомологичной области в пределах гена. При рассмотрении создания dsРНК для РНКi также важны такие факторы, как расстояние от стартового кодона, содержание G/C и местоположение аденозиновых димеров. Однако одним из последствий этого является возможная необходимость тестирования нескольких различных последовательностей на наиболее эффективную РНКi, и это может стать дорогостоящим тестом.

В 1999 году авторы Tuschl et al. расшифровывали эффект сайленсинга siРНК, показывающий, что его эффективность зависит от длины дуплекса, длины липкого 3-конца и от последовательности в этих липких концах. На основании этих базовых работ Eurogentec рекомендует выбирать области мРНК-мишени и, следовательно, последовательность дуплекса siРНК, руководствуясь следующими принципами.

Поскольку РНКi основана на образовании сложных белковых взаимодействий, очевидно, что мРНК-мишень должна быть свободна от каких-либо чужеродных факторов связывания. В этой связи необходимо избегать 5′ и 3′ нетранслируемых областей (UTR) и областей, близких к стартовому кодону, поскольку они могут иметь больше сайтов связывания регуляторных белков. Следовательно, последовательность siРНК выбирают следующим образом.

- В мРНК последовательности выбирают область, расположенную на расстоянии от 50 до 100 нт в направлении 5′-3′ от стартового кодона AUG, или перед терминирующим кодоном.

- В этой области проводят поиск следующих последовательностей: AA(N19), CA(N19).

- Рассчитывают процент G/C для каждой идентифицированной последовательности. В идеале содержание G/C составляет 50%, но оно должно быть менее 70% и более 30%.

- Предпочтительно избегают последовательностей, содержащих следующие повторения: AAA, CCC, GGG, TTT, AAAA, CCCC, GGGG, TTTT.

- Также проводят прогнозирование доступности на основании вторичной структуры мРНК.

- Также осуществляют анализ BLAST (то есть поиск по базе данных NCBI EST) с нуклеотидной последовательностью, наилучшим образом отвечающей предыдущим критериям для гарантии того, что будет инактивирован только один ген.

Для максимальной интерпретации результата при использовании siРНК необходимо принять следующие меры предосторожности.

- Всегда проводить тестирование смысловых и антисмысловых одиночных нитей в отдельных экспериментах.

- Испытывать рандомизированный дуплекс siРНК. Он должен иметь такую же нуклеотидную композицию, как siРНК, но не иметь существенной гомологии последовательностей с любым другим геном (включая интересующий).

- Если возможно осуществлять нокдаун того же гена с двумя независимым дуплексами siРНК для контроля специфичности процесса сайленсинга.

На практике каждый из выбранных генов вводят в виде нуклеотидной последовательности в программе прогнозирования, которая рассматривает все вышеописанные варианты для конструирования оптимальных олигонуклеотидов. Эта программа просматривает любую нуклеотидную последовательность мРНК на наличие областей, восприимчивых в качестве мишеней для siРНК. Конечным результатом этого анализа является подсчет возможных показателей олигонуклеотидов siРНК. Самые высокие показатели используют для конструирования двунитевых олигонуклеотидов РНК (обычно длиной 21 п.о., хотя также возможны другие значения длины), которые обычно производят химическим синтезом.

Кроме siРНК также можно использовать модифицированные нуклеотиды. Авторы планируют тестирование нескольких химических модификаций, которые широко известны в данной области техники. Эти модификации направлены на повышение стабильности или доступности siНК. Примеры подходящих модификаций описаны в публикациях, упомянутых ниже, каждая из которых включена в настоящее изобретение в качестве ссылки.

Исследования показывают, что замена 3′-концевых нуклеотидных липких сегментов 21-мерного дуплекса siРНК, имеющего два нуклеотидных 3′-липких конца, на дезоксирибонуклеотиды не оказывает отрицательного эффекта на активность РНКi. Сообщалось, что замена до четырех нуклеотидов на каждом конце siРНК на дезоксирибонуклеотиды допустима, тогда как полная замена на дезоксирибонуклеотиды приводила к отсутствию активности РНКi (Elbashir, 2001). Дополнительно, исследователи Elbashir et al. также сообщают, что замена siРНК на 2′-O-метилнуклеотиды приводит к полной потери активности РНКi.

Можно использовать нуклеозиды с модифицированной аффинностью, как описано в патенте WO2005/044976. В этой публикации описаны олигонуклеотиды, содержащие модифицированные нуклеозиды, которые обладают повышенной или пониженной аффинностью к комплементарному им нуклеотиду в мРНК-мишени и/или в комплементарной нити siНК.

В патенте GB2406568 описаны альтернативные модифицированные олигонуклеотиды, химически модифицированные для получения повышенной устойчивости к расщеплению или для обеспечения повышенного поглощения. Примеры таких модификаций включают в себя фосфоротиоатные межнуклеотидные связи, 2′-O-метил-рибонуклеотиды, 2′-дезокси-фтор-рибонуклеотиды, 2′-дезоксирибонуклеотиды, "универсальные базовые" нуклеотиды, 5-C-метилнуклеотиды и включение инвертированного дезоксиабазического остатка.

В патенте WO2004/029212 описаны модифицированные олигонуклеотиды, обладающие повышенной устойчивостью siРНК или повышенной эффективностью направленного транспорта. Модификации включают в себя образование химических перекрестных связей между двумя комплементарными нитями siРНК и химическую модификацию 3′-конца нити siРНК. Предпочтительные модификации представляют собой внутренние модификации, например модификации сахаров, модификации нуклеиновых оснований и/или модификации остова. Описаны 2′-фтор-модифицированные рибонуклеотиды и 2′-дезоксирибонуклеотиды.

В патенте WO2005/040537 дополнительно рассмотрены модифицированные олигонуклеотиды, которые можно использовать в настоящем изобретении.

Наряду с использованием dsНК и модифицированной dsНК, в настоящем изобретении можно использовать короткую шпилечную НК (shНК); две нити молекулы siНК могут быть связаны сшивающей областью, которая может являться нуклеотидным линкером или ненуклеотидным линкером.

Кроме siНК, которая является абсолютно комплементарной области-мишени, можно использовать вырожденные последовательности siНК для направленного транспорта к гомологичным областям. В патенте WO2005/045037 описан дизайн молекул siNA для направленного транспорта к таким гомологичным последовательностям, например, путем включения в них неканонических пар оснований, например несоответствующих и/или неоднозначных пар оснований, которые могут обеспечивать дополнительные последовательности-мишени. В тех случаях, когда несоответствия идентифицированы, можно использовать неканонические пары оснований (например, несоответствующие и/или неоднозначные основания) для создания молекул siНК, которые направлены более чем на одну генную последовательность. В примере, не ограничивающем объем настоящего изобретения, используют неканонические пары оснований, такие как пары оснований UU и CC, для создания молекул siNA, которые способны направлять последовательности на различные мишени с долей гомологии последовательностей. Собственно, одно преимущество использования siНК настоящего изобретения состоит в том, что можно сконструировать единственную siНК для включения в нее последовательности нуклеиновой кислоты, которая комплементарна нуклеотидной последовательности, являющейся консервативной между гомологичными генами. В этом подходе можно использовать единственную siNA для ингибирования экспрессии более чем одного гена, вместо использования более чем одной молекулы siNA для направления к различным генам-мишеням.

Предпочтительные молекулы siNA по настоящему изобретению являются двунитевыми. Молекула siNA по настоящему изобретению может содержать тупые концы, то есть концы, которые не включают в себя какие-либо выступающие нуклеотиды. В одном из вариантов осуществления молекула siNA по настоящему изобретению может содержать один или несколько тупых концов. В предпочтительных вариантах осуществления молекулы siNA имеют 3′-липкий конец. Молекулы siNA по настоящему изобретению могут содержать дуплексные молекулы нуклеиновых кислот из n нуклеотидов (5≥n≥1) с 3′-липкими концами. Исследователем Elbashir (2001) показано, что дуплексы siРНК с 21 нуклеотидами наиболее активны при содержании 3′-концевых динуклеотидных липких концов. Для облегчения перехода от клинических исследований у животных к испытаниям на людях возможные олигонуклеотиды подвергают дополнительному фильтрованию на консервативные межвидовые последовательности. В предпочтительных вариантах осуществления настоящего изобретения используют консервативные олигонуклеотиды, что позволяет использовать единственную олигонуклеотидную последовательность и в животных моделях, и в клинических испытаниях у людей.

На фиг.1 показаны инвентарные номера GenBank, соответствующие выбранным генам-мишеням человека. В некоторых из этих генов альтернативный сплайсинг производит семейство транскриптов, которые отличаются составом экзонов. Настоящее изобретение позволяет индивидуально направлять каждую из форм транскриптов.

На фиг.2 показаны выбранные олигонуклеотидные последовательности, против которых направляют РНКi. Показанные последовательности представляют собой последовательности ДНК, являющиеся мишенями направляемой siНК. Поэтому в настоящем изобретении будут использованы дуплексы НК с последовательностями, комплементарными обозначенным последовательностям ДНК.

Последовательности, показанные на фиг.2, не ограничивают объем настоящего изобретения. На самом деле, не нужно, чтобы ДНК-мишени обязательно предшествовали AA или СА. Дополнительно, ДНК-мишень может состоять из последовательностей, представленных на фиг.2, фланкированных любой смежной последовательностью.

Исследования in vitro и на животных

Получение дуплексов siРНК

Предпочтительно РНК синтезируют химически, используя соответствующим образом защищенные рибонуклеозидные фосфорамидиты и общепринятый синтезатор ДНК/РНК. Замена одной или обеих нитей дуплекса siРНК на 2′-дезокси или 2′-O-метил-олигорибонуклеотиды ликвидирует сайленсинг в экстракте мухи (Elbashir et al., 2001). Вместе с тем, по-видимому, в клетках млекопитающих возможна замена смысловой siРНК на 2′-O-метил-олигорибонуклеотид (Ge et al., 2003).

Наиболее удобно siРНК приобретают от поставщиков промышленного олигосинтеза РНК, которые продают продукты синтеза РНК различного качества и стоимости. В целом получение РНК размером 21 нт не имеет больших трудностей для синтеза, и их легко получить с подходящим для РНКi качеством.

Поставщиками реактивов для синтеза РНК являются компании Prоligo (Hamburg, Германия), Dharmacon Research Lafayette, (CO, США), Glen Research (Sterling, VA, США), ChemGenes (Ashland, MA, США) и Cruachem (Glasgow, Великобритания), Qiagen (Германия), Ambion (США) и Invitrogen (Шотландия). Предыдущие компании, специализирующиеся на синтезе РНК, обладали правом лицензирования siРНК в целях признания направленного транспорта. В частности, поставщиками siРНК являются компании Ambion, Dharmacon и Invitrogen, которые предлагают традиционное специализированное обслуживание химического синтеза для siРНК и обеспечивают получение siРНК очисткой высокоэффективной жидкостной хроматографией ВЭЖХ и поставляют в сухой форме вместе с водой без РНК-азы. На веб-сайтах вышеупомянутых поставщиков можно найти основной Интернет-ресурс для методологий РНКi и siРНК, наряду с выходом на дополнительные продукты и услуги siРНК.

При работе с однонитевыми молекулами РНК необходим этап ренатурации. Крайне важно, что все этапы обработки проводят в стерильных условиях при отсутствии РНК-азы. Для ренатурации РНК вначале необходимо количественное определение олиго- с помощью УФ-поглощения при 260 нанометрах (нм). В этом случае для ренатурирования используют следующий протокол, основанный на исследованиях Elbashir et al. (2001).

- Раздельно берут аликвоты олиго-РНК и растворяют каждую до концентрации 50 мкМ.

- Объединяют 30 мкл раствора каждой олиго-РНК и 15 мкл 5× ренатурирующего буфера. Конечная буферная концентрация составляет: 100 мМ ацетата калия, 30 мМ HEPES-KOH с уровнем pH 7,4, 1 мМ ацетата магния. Конечный объем составляет 75 мкл.

- Раствор инкубируют в течение 1 минуты при 90°C, центрифугируют пробирку в течение 15 секунд, оставляют на 1 час при 37°C и затем используют при температуре окружающей среды. Раствор можно хранить замороженным при -20°C и замораживать-оттаивать до 5 раз. Конечная концентрация дуплекса siРНК обычно составляет 20 мкМ.

В качестве альтернативы у поставщиков можно приобретать уже ренатурированные dsРНК. Также можно использовать химически модифицированные нуклеиновые кислоты. Например, краткий обзор возможных для использования типов модификации приводится в патенте WO03/070744, содержание которого включено в настоящее изобретение в качестве ссылки. Отдельное внимание следует уделить страницам 11-21 указанной публикации. Выше описаны другие возможные модификации. Специалисту в данной области техники известны другие типы химической модификации, которые можно включать в молекулы РНК.

Система in vitro

Для проверки специфичности интерференции siРНК использовали различные клеточные культуры, которые экспрессируют гены-мишени. Для этих экспериментов использовали следующие клетки: непигментированные клетки цилиарного эпителия NPE кролика, человеческие клетки цилиарного эпителия OMDC и человеческие клетки эмбриональной почки HEK293. Клетки инкубировали с соответствующими дуплексами siРНК и проводили анализ подавления экспрессии гена-мишени. Для связывания siРНК с нокдауном со специфическими фенотипами в культивируемых клетках необходимо проявление снижения белка-мишени или по меньшей мере проявление снижения мРНК-мишени.

Количественный анализ уровней мРНК гена-мишени можно осуществить количественной полимеразной цепной реакцией в реальном времени (RT/PCR). Дополнительно, можно определить уровни белка различными путями, хорошо известными в данной области техники, такими как анализом Вестерн-блоттинг со специфическими антителами к различным мишеням, что позволяет проводить прямой контроль снижения белка-мишени.

Трансфекция дуплексов siРНК

Ниже приведены несколько примеров способов, известных в данной области техники. Можно осуществлять единственную трансфекцию дуплекса siРНК, используя катионный липид, такой как реагент трансфекции RNAiFect Transfection Reagent (Qiagen) и реагент Lipofectamine 2000 (Invitrogen), и проводить анализ сайленсинга через 24, 48 и 72 часа после трансфекции.

Обычный протокол трансфекции можно осуществлять следующим образом. В одной лунке 6-луночного планшета проводили трансфекцию с использованием siРНК в конечной концентрации 100 нМ. Следуя протоколу РНКiFect, за один день перед трансфекцией засевали от 2 до 4×105 клеток на лунку в 3 мл подходящей среды для выращивания, содержащей DMEM, 10% сыворотки, антибиотики и глутамин, и инкубировали клетки при нормальных условиях роста (37°C и 5% CO2). В день трансфекции конфлуэнтность клеток должна составлять от 30 до 50%. Растворяли 15 мкл 20 мкМ дуплекса siРНК (соответствующих конечной концентрации в 100 нМ) в 85 мкл буферного раствора ЕС-R, получая конечный объем в 100 мкл, и перемешивали встряхиванием. Для образования комплекса добавляли 19 мкл реагента трансфекции РНКiFect к растворенной siРНК и перемешивали с помощью пипетки или встряхиванием. После инкубирования образцов в течение 10-15 минут при комнатной температуре для возможности образования комплексов трансфекции, по капле добавляли комплексы на клетки с 2,9 мл свежей среды для выращивания с низким содержанием антибиотиков. После вращения планшета для обеспечения однородного распределения комплексов трансфекции клетки инкубировали при нормальных условиях их роста. Через день удаляли комплексы и добавляли свежую и полную среду для выращивания. Для контроля сайленсинга гена клетки собирали через 24, 48 и 72 часа после трансфекции. Протокол реагента липофектамина 2000 является весьма сходным. За один день перед трансфекцией засевали от 2 до 4×105 клеток на лунку в 3 мл подходящей среды для выращивания, содержащей DMEM, 10% сыворотки, антибиотики и глутамин, и инкубировали клетки при нормальных условиях роста (37°C и 5% CO2). В день трансфекции конфлуэнтность клеток должна составлять от 30 до 50%. Растворяли 12,5 мкл 20 мкМ дуплекса siРНК (соответствующих конечной концентрации в 100 нМ) в 250 мкл DMEM для получения конечного объема 262,5 мкл, и перемешивали. Также 6 мкл липофектамина 2000 растворяли в 250 мкл DMEM и смешивали. Для образования комплексов через 5 минут инкубирования при комнатной температуре растворенный олигомер и растворенный липофектамин соединяли в течение 20-минутного инкубирования при комнатной температуре. После этого по капле добавляли комплексы на клетки с 2 мл свежей среды для выращивания с низким содержанием антибиотиков и аккуратно смешивали, покачивая планшет назад и вперед, что гарантировало однородное распределение комплексов трансфекции. Клетки инкубировали при нормальных условиях их роста и через день удаляли комплексы и добавляли свежую и полную среду для выращивания. Для контроля сайленсинга генов клетки собирали через 24, 48 и 72 часа после трансфекции.

Эффективность трансфекции может зависеть от типа клетки, но также и от количества пассирований и конфлуэнтности клеток. Также решающими являются время и способ формирования siРНК-липосомных комплексов (например, переворачивание по сравнению с встряхиванием). Низкая эффективность трансфекции является наиболее частой причиной неудачного сайленсинга. Успешная трансфекция представляет собой нетривиальную задачу и нуждается в тщательном исследовании на каждую новую используемую клеточную линию. Эффективность трансфекции можно тестировать трансформирующими репортерными генами, например cmv-стимулируемой EGFP-экспрессирующей плазмидой (например, от компании Clontech) или B-GaI-экспрессирующей плазмидой, и затем на следующий день оценивать посредством фазово-контрастной и/или флюоресцентной микроскопии.

Исследование дуплексов siРНК

В зависимости от относительного количества и времени жизни (или метаболизма) белка-мишени, фенотип с нокдауном может стать заметным спустя от 1 до 3 дней или даже позже. В случаях, когда не наблюдается какого-либо фенотипа, истощение белка можно выявлять иммунофлуоресценцией или Вестерн-блоттингом.

Экстрагированные из клеток общие фракции РНК после трансфекций предварительно обрабатывали ДНК-азой I и использовали для обратного считывания с применением рандомизированного праймера. ПЦР амплифицировали со специфической праймерной парой, охватывающей по меньшей мере одну точку соединения экзон-экзона для контроля амплификации пред-мРНК. В качестве контроля также необходимо проводить RT/PCR мРНК-немишени. Эффективное истощение мРНК еще неопределяемого снижения белка-мишени может указывать на то, что в клетке возможно существует большой запас устойчивого белка. Альтернативно, можно использовать амплификацию ПЦР в реальном времени для более точного тестирования уменьшения или исчезновения мРНК. Количественный анализ исходного количества матрицы наиболее специфически, точно и воспроизводимо осуществляют путем ПЦР в реальном времени с обратной транскриптазой (РВ). ПЦР в реальном времени мониторирует флюоресценцию, испускаемую во время реакции, как индикатор продукции ампликона в течение каждого цикла ПЦР. Этот сигнал возрастает прямо пропорционально общему продукту ПЦР в реакции. Регистрируя число флюоресцентных эмиссий в каждом цикле, можно контролировать ПЦР реакцию во время экспоненциальной фазы, когда первое значительное повышение количества продукта ПЦР коррелирует с исходным количеством матрицы-мишени.

Чтобы подтвердить свойство интерференци