Система бесконтактной передачи энергии

Иллюстрации

Показать все

Изобретение относится к электротехнике, к системам бесконтактной передачи энергии. Система содержит устройство передачи энергии, включающее в себя катушки, передающие энергию и устройство приема энергии, включающее в себя катушку, принимающую энергию, которая имеет индуктивную связь с катушками, передающими энергию. Устройство включает: область размещения, на которой размещено множество катушек, передающих энергию, которые расположены под областью размещения. Генератор генерирует колебания в соответствующих катушках, передающих энергию, осуществляя их возбуждение по отдельности, Устройство обнаружения обнаруживает индуктивности соответствующих катушек, передающих энергию. Устройство определения определяет то место на области размещения, в которое помещено устройство приема энергии, на основании индуктивностей соответствующих катушек, передающих энергию, которые обнаружены устройством обнаружения. Генератор задает множество катушек, передающих энергию, подлежащих возбуждению, на основании местоположения, определенного устройством определения, и устанавливает параметры токов, втекающих в соответствующие катушки, передающие энергию, таким образом, что обеспечивает взаимный сдвиг формы кривой токов, втекающих во множество заданных катушек, передающих энергию. Технический результат состоит в экономии энергии за счет генерации колебаний только в тех катушках, передающих энергию, которые вносят вклад в бесконтактную зарядку, без использования каких-либо средств связи. 19 з.п. ф-лы, 29 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе бесконтактной передачи энергии, снабженной устройством передачи энергии, включающим в себя катушки, передающие энергию, которые предназначены для передачи энергии, и устройством приема, включающим в себя катушку, принимающую энергию, которая должна иметь индуктивную связь с катушками, передающими энергию.

ОПИСАНИЕ ИЗВЕСТНОГО УРОВНЯ ТЕХНИКИ

В последние годы уже была известна система бесконтактной передачи энергии, которая позволяет увеличить площадь области размещения и заряжать устройство приема энергии вне зависимости от того, в какое место области размещения помещено устройство приема энергии, путем размещения множества катушек под областью размещения, на которую должно быть помещено устройство приема энергии.

Например, в патентной литературе 1 (публикация заявки на патент Японии JP-A 2006-81249) раскрыта система зарядки, в которой множество катушек, передающих энергию, и множество средств связи размещено в настольном коврике, место, в которое помещен портативный персональный компьютер (ПК) обнаруживают по местоположению средства связи, которое может поддерживать связь с портативным ПК, помещенным на настольный коврик, и энергию подают на ту катушку, передающую энергию, которая находится в месте его расположения.

Кроме того, в патентной литературе 2 (публикация заявки на патент Японии JP-A 2004-229406) раскрыта система зарядки, в которой множество катушек расположено под поверхностью вторичного устройства, через которую осуществляют связь, магнитное поле с линиями магнитной индукции, движущимися или вращающимися в поверхности, через которую осуществляют связь, сформировано следующим образом: вызывают протекание токов различных фаз в соответствующих катушках таким образом, что энергия может быть передана во вторичное устройство вне зависимости от того, в какое место на поверхности, через которую осуществляют связь, помещено вторичное устройство.

Однако, поскольку в патентной литературе 1 для обнаружения места, в которое помещен портативный ПК, используют средство связи, то существует проблема, связанная с усложнением системы и увеличением ее стоимости. Несмотря на то, что в патентной литературе 2 магнитное поле сформировано таким образом, что линии магнитной индукции движутся или вращаются в поверхности, через которую осуществляют связь, то также возбуждают катушки, расположенные в тех местах, где не размещено вторичное устройство, поскольку возбуждают все катушки, расположенные под поверхностью, через которую осуществляют связь. В результате существует проблема неспособности обеспечивать экономию энергии.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является создание системы бесконтактной передачи энергии, способной обеспечивать экономию энергии путем генерации колебаний только в тех катушках, передающих энергию, которые вносят вклад в бесконтактную зарядку, без использования каких-либо средств связи.

Один из объектов настоящего изобретения направлен на создание системы бесконтактной передачи энергии, содержащей устройство передачи энергии, включающее в себя катушки, передающие энергию, которые предназначены для передачи энергии, и устройство приема энергии, включающее в себя катушку, принимающую энергию, которая должна иметь индуктивную связь с катушками, передающими энергию, причем устройство передачи энергии включает в себя область размещения, на которую должно быть помещено устройство приема энергии, множество катушек, передающих энергию, которые расположены под областью размещения, генератор, предназначенный для генерации колебаний в соответствующих катушках, передающие энергию, осуществляя их возбуждение по отдельности, устройство обнаружения, предназначенное для обнаружения индуктивностей соответствующих катушек, передающих энергию, и устройство определения, предназначенное для определения того места на области размещения, в которое помещено устройство приема энергии, на основании индуктивностей соответствующих катушек, передающих энергию, обнаруженных устройством обнаружения; а генератор задает множество катушек, передающих энергию, которые подлежат возбуждению, на основании местоположения, определенного устройством определения, и устанавливает параметры токов, втекающих в соответствующие катушки, передающие энергию, таким образом, что обеспечивает взаимный сдвиг формы кривой токов, втекающих во множество заданных катушек, передающих энергию.

Эти и другие задачи, признаки и преимущества настоящего изобретения станут более очевидными по прочтении приведенного ниже подробного описания. Кроме того, преимущества настоящего изобретения станут более очевидными из приведенного ниже описания со ссылкой на сопроводительные чертежи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг. 1A изображена схема расположения катушек, передающих энергию, системы бесконтактной передачи энергии согласно первому варианту осуществления настоящего изобретения, а на Фиг. 1Б на виде сбоку показана система бесконтактной передачи энергии согласно первому варианту осуществления настоящего изобретения,

на Фиг. 2 изображена принципиальная электрическая схема, состоящая из одной цепи подачи тока и микрокомпьютера,

на Фиг. 3 изображена принципиальная электрическая схема устройства приема энергии системы, показанной на Фиг. 1A и Фиг. 1Б,

на Фиг. 4 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера колебаний в том случае, когда катушка А была размещена так, как показано на Фиг. 1A,

на Фиг. 5 изображены временные диаграммы формы сигналов, на которых показаны токи, соответственно втекающие во все катушки, в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 4,

на Фиг. 6 изображены временные диаграммы формы сигналов напряжений на стоках переключающих элементов относительно уровня потенциала заземления в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 4,

на Фиг. 7 изображены диаграммы формы сигналов напряжений на стоках переключающих элементов на полевых транзисторах (FET, далее - ПТ) относительно уровня потенциала заземления в том случае, когда катушка А была размещена так, как показано на Фиг. 1A, и генерация колебаний осуществлялась во всех катушках,

на Фиг. 8 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера колебаний в том случае, когда катушка А была размещена непосредственно над катушками а, b, d, e, что показано на Фиг. 1A,

на Фиг. 9 изображены временные диаграммы формы сигналов, на которых показаны токи, соответственно втекающие во все катушки, в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 8,

на Фиг. 10 изображены временные диаграммы формы сигналов напряжений Vd относительно уровня потенциала заземления в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 8,

на Фиг. 11 изображены временные диаграммы формы сигналов напряжений Vd относительно уровня потенциала заземления в том случае, когда катушка А была размещена так, как показано на Фиг. 1A, и генерация колебаний осуществлялась во всех катушках,

на Фиг. 12 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера колебаний в том случае, когда катушка А была размещена непосредственно над катушками а, b, d, e, что показано на Фиг. 1A,

на Фиг. 13 изображены временные диаграммы формы сигналов, на которых показаны токи, соответственно втекающие во все катушки в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 12,

на Фиг. 14 изображены временные диаграммы формы сигналов напряжений Vd относительно уровня потенциала заземления в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 12,

на Фиг. 15 изображена диаграмма, на которой показаны сгенерированные магнитные потоки в том случае, когда фазы токов, втекающих в катушки а, d, являются одинаковыми,

на Фиг. 16 изображен график, на котором показано содержание в магнитном потоке компонент, направленных по оси z, в каждом положении по оси x в том случае, когда положение P1 было смещено в направлении x, когда в катушки а, d втекали токи с одинаковой фазой,

на Фиг. 17 изображен график, на котором показано содержание в магнитном потоке компонент, направленных по оси z, в каждом положении по оси x в том случае, когда положение P1 было смещено в направлении x, когда в катушки а, d втекали токи, фазы которых были сдвинуты относительно друг друга на 90°,

на Фиг. 18 изображена временная диаграмма формы сигналов напряжений Vd, на которой показана взаимосвязь между напряжениями Vd и значениями весовых коэффициентов,

на Фиг. 19 изображена принципиальная электрическая схема, на которой показана одна цепь подачи тока и микрокомпьютер, согласно четвертому варианту осуществления настоящего изобретения,

на Фиг. 20 изображена схема расположения катушек, передающих энергию, системы бесконтактной передачи энергии согласно пятому варианту осуществления настоящего изобретения,

на Фиг. 21 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера колебаний в том случае, когда катушка А была размещена непосредственно над катушками а, c, d, как показано на Фиг. 20,

на Фиг. 22 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера колебаний в случае использования способа с изменением частоты, когда катушка А была размещена непосредственно над катушками а, c, d, как показано на Фиг. 20,

на Фиг. 23 изображена схема расположения катушек, передающих энергию, согласно шестому варианту осуществления настоящего изобретения,

на Фиг. 24 изображена принципиальная электрическая схема устройства приема энергии согласно девятому варианту осуществления настоящего изобретения,

на Фиг. 25A изображена схема, на которой показаны три соседние катушки, передающие энергию, а на Фиг. 25Б изображен график, на котором показано распределение плотности магнитного потока трех катушек, передающих энергию, показанных на Фиг. 25A,

на Фиг. 26 изображена схема, на которой показаны катушки, передающие энергию, и катушки, принимающие энергию, в том случае, когда над областью размещения помещены два устройства приема энергии,

на Фиг. 27 изображена схема последовательности операций, на которой показано функционирование системы бесконтактной передачи энергии согласно десятому варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ

ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Теперь будет приведено описание изобретения на примерах со ссылкой на сопроводительные чертежи.

(Первый вариант осуществления изобретения)

На Фиг. 1A изображена схема расположения катушек L1, передающих энергию, системы бесконтактной передачи энергии согласно первому варианту осуществления настоящего изобретения. На Фиг. 1Б на виде сбоку показана система бесконтактной передачи энергии согласно первому варианту осуществления настоящего изобретения. Как показано на Фиг. 1Б, система бесконтактной передачи энергии снабжена устройством 1 передачи энергии, включающим в себя катушки L1, передающие энергию, которые предназначены для передачи энергии, и устройством 2 приема энергии, включающим в себя катушку L2, принимающую энергию, которая должна иметь индуктивную связь с катушками L1, передающими энергию.

Устройство 1 передачи энергии включает в себя область размещения (PL), на которую должно быть помещено устройство 2 приема энергии, множество катушек L1, передающих энергию, расположенных под областью размещения (PL), и блок 10 цепи подачи тока, предназначенный для подачи токов в соответствующие катушки L1, передающие энергию. Область размещения (PL), например, образована областью на заданной плоскости на корпусе устройства 1 передачи энергии.

Устройство 2 приема энергии включает в себя выпрямительную схему 21, катушку L2, принимающую энергию, и т.д. В качестве устройства 2 приема энергии может применяться такое электрическое устройство, как, например, электрическая зубная щетка, электроинструмент или электробритва.

Как показано на Фиг. 1A, катушки L1, передающие энергию, расположены в виде матрицы 3×3. В частности, соответствующие катушки L1, передающие энергию, расположены в виде такой квадратной матрицы, что шаг расстановки по вертикали и шаг расстановки по горизонтали равны. Таким образом, могут быть уменьшены зазоры между катушками L1, передающими энергию. Однако такая конфигурация приведена просто в качестве примера, и шаги расстановки катушек L1, передающих энергию, по вертикали и горизонтали могут быть установлены имеющими различные значения.

Здесь, как показано на Фиг. 1A, три катушки L1, передающие энергию, в первом столбце слева именуют катушками а, b, c; три катушки L1, передающие энергию, во втором столбце слева именуют катушками d, e, f; а три катушки L1, передающие энергию, в третьем столбце слева именуют катушками g, h, i. Катушку L2, принимающую энергию, на Фиг. 1A именуют катушкой А.

Несмотря на то, что на Фиг. 1A катушки L1, передающие энергию, расположены в виде матрицы 3×3, такая конфигурация приведена просто в качестве примера, и они могут быть расположены в виде матрицы n (где n - целое число, большее или равное 1)×m (где m-целое число, большее или равное 1). В альтернативном варианте катушки L1, передающие энергию, могут быть расположены произвольно в соответствии с формой внешнего края области размещения (PL).

Блок 10 цепи подачи тока, показанный на Фиг. 1Б, состоит из цепей 11 подачи тока (см. Фиг. 2), которые соответствуют соответствующим катушкам L1, передающим энергию, и микрокомпьютера 100 (см. Фиг. 2). Так как на Фиг. 1A установлено девять катушек с а по i, то блок 10 цепи подачи тока содержит девять цепей 11 подачи тока, которые соответствуют соответствующим катушкам с а по i, и один микрокомпьютер 100, соединенный с этими девятью цепями 11 подачи тока.

На Фиг. 2 изображена принципиальная электрическая схема, состоящая из одной цепи 11 подачи тока и микрокомпьютера 100. Цепь 11 подачи тока, показанная на Фиг. 2, включает в себя генератор 111, устройство 112 обнаружения, микрокомпьютер 100, источник V1 питания и конденсатор C1. Генератор 111 включает в себя резонансный конденсатор C3, переключающий элемент на полевом транзисторе (ПТ), резистор R3, усилительную схему A1 и контроллер 120 колебаний, и осуществляет возбуждение соответствующих катушек L1, передающих энергию, по отдельности. Устройство 112 обнаружения включает в себя диод D1, резисторы R1, R2 и конденсатор C2, и обнаруживает индуктивность соответствующей катушки L1, передающей энергию. Здесь устройство 112 обнаружения обнаруживает индуктивность катушки L1, передающей энергию, на основании напряжения на катушке L1, передающей энергию.

Один конец катушки L1, передающей энергию, соединен с положительным электродом источника V1 питания, а другой ее конец соединен со стоком переключающего элемента на полевом транзисторе (ПТ).

Резонансный конденсатор C3 подключен параллельно катушке L1, передающей энергию, и входит в резонанс с катушкой L1, передающей энергию, когда переключающий элемент на полевом транзисторе (ПТ) выключен. Переключающий элемент на полевом транзисторе (ПТ) реализован, например, посредством n-канального полевого транзистора, сток которого соединен с катушкой L1, передающей энергию, и его исток заземлен, а его затвор соединен с микрокомпьютером 100 через резистор R3 и усилительную схему A1.

Переключающий элемент на полевом транзисторе (ПТ) включается и выключается переключающим напряжением с выхода микрокомпьютера 100. Вместо n-канального полевого транзистора в качестве переключающего элемента на полевом транзисторе (ПТ) может применяться p-канальный полевой транзистор.

Усилительная схема A1 реализована посредством биполярного транзистора с n-p-n-структурой и биполярного транзистора с p-n-p структурой, эмиттеры которых соединены каскадно, и усиливает переключающее напряжение с выхода микрокомпьютера 100. Коллектор биполярного транзистора с n-p-n-структурой усилительной схемы A1 соединен с положительным электродом источника V1 питания. Кроме того, база биполярного транзистора с p-n-p структурой усилительной схемы A1 соединена с базой биполярного транзистора с n-p-n-структурой и с микрокомпьютером 100, а его коллектор заземлен.

Анод диода D1 соединен со стоком переключающего элемента на полевом транзисторе (ПТ), а его катод соединен с резистором R1, и этот диод препятствует прохождение электрического тока из микрокомпьютера 100 в катушку L1, передающую энергию. Резисторы R1, R2 делят напряжение Vd на стоке переключающего элемента на полевом транзисторе (ПТ) и выводят его на микрокомпьютер 100. Один конец резистора R2 соединен с резистором R1, а другой его конец заземлен. Конденсатор C2 подключен параллельно резистору R2.

Созданный таким образом генератор 111 функционирует следующим образом. Во-первых, когда переключающее напряжение на выходе микрокомпьютера 100 становится высокоуровневым, то это переключающее напряжение усиливается усилительной схемой A1 и вводится в переключающий элемент на полевом транзисторе (ПТ), заряжая емкость затвора переключающего элемента на полевом транзисторе (ПТ) для включения переключающего элемента на полевом транзисторе (ПТ). Затем электрический ток течет из резонансного конденсатора C3 к переключающему элементу на полевом транзисторе (ПТ), и электрический ток течет из катушки L1, передающей энергию, к переключающему элементу на полевом транзисторе (ПТ).

После этого, когда переключающее напряжение на выходе микрокомпьютера 100 становится низкоуровневым, переключающий элемент на полевом транзисторе (ПТ) выключается. Таким образом, резонансный конденсатор C3 и катушка L1, передающая энергию, начинают входить в резонанс, и происходит генерация магнитного потока из катушки L1, передающей энергию, и этот магнитный поток является связанным с катушкой А, генерируя напряжение в катушке А за счет электромагнитной индукции. Таким образом, происходит передача энергии в устройство 2 приема энергии.

Микрокомпьютер 100 многократно включает и выключает переключающий элемент на полевом транзисторе (ПТ), посредством чего периодически создает резонанс катушки L1, передающей энергию, и резонансного конденсатора C3, и генерирует колебания в катушке L1, передающей энергию, для передачи энергии в устройство 2 приема энергии.

Микрокомпьютер 100 включает в себя центральный процессор, постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), специализированную аппаратную схему и т.п., и функционирует в качестве устройства 110 определения и контроллера 120 колебаний путем выполнения программы, запомненной в ПЗУ. Несмотря на то, что устройство 110 определения и контроллер 120 колебаний реализованы посредством микрокомпьютера 100, они не ограничены этим вариантом реализации, и могут быть реализованы посредством специализированных аппаратно реализованных схем.

Устройство 110 определения обнаруживает место на области размещения (PL), в которое помещено устройство 2 приема энергии, на основании индуктивностей соответствующих катушек L1, передающих энергию, которые обнаружены устройством 112 обнаружения. В частности, если напряжение Ve, представляющее собой напряжение, деленное посредством резисторов R1, R2, от напряжения Vd на стоке переключающего элемента на полевом транзисторе (ПТ), является большим или равным заданному значению, то устройство 110 определения обнаруживает, что место в области размещения (PL) непосредственно над катушкой L1, передающей энергию, которое соответствует напряжению Ve, не является тем местом, в которое помещено устройство 2 приема энергии, а если напряжение Ve является меньшим, чем заданное значение, то обнаруживают, что местом, в которое помещено устройство 2 приема энергии, является место области размещения (PL) непосредственно над катушкой L1, передающей энергию, которое соответствует напряжению Ve.

И вновь со ссылкой на Фиг. 2, контроллер 120 колебаний задает множество катушек L1, передающих энергию, которые подлежат возбуждению, на основании места размещения, обнаруженного устройством 110 определения, устанавливает параметры токов, которые должны течь во множестве катушек, передающих энергию, таким образом, чтобы формы кривой токов, которые должны течь в соответствующих заданных катушках, передающие энергию, были сдвинуты друг относительно друга, и выводит переключающие напряжения в переключающие элементы на полевом транзисторе (ПТ). В качестве параметров могут использоваться, например, значения фаз, частот или токов.

Согласно системе передачи энергии из этого варианта осуществления изобретения, вне зависимости от того, в какое место области размещения (PL) помещено устройство 2 приема энергии, отсутствует какое-либо место на области размещения (PL) непосредственно над катушками L1, передающими энергию, которые подлежат возбуждению, где происходит взаимная компенсация магнитных потоков, сгенерированных множеством катушек L1, передающих энергию, и где магнитные потоки, связанные с катушкой L2, принимающей энергию, становятся равными 0. Таким образом, может быть обеспечена надежная зарядка устройства 2 приема энергии.

Кроме того, поскольку множество катушек, передающих энергию, которые подлежат возбуждению, задают на основании места, в которое помещено устройство 2 приема энергии, то колебания генерируют только в тех катушках L1, передающих энергию, которые вносят вклад в бесконтактную зарядку, а генерацию колебаний в тех катушках L1, передающих энергию, которые не вносят вклад в бесконтактную зарядку, не осуществляют, в результате чего это может способствовать экономии энергии.

Экономия энергии может быть обеспечена путем простого управления установлением параметров токов, втекающих во множество катушек L1, передающих энергию, которые подлежат возбуждению.

Какое именно место области размещения (PL) является местом, в которое помещено устройство 2 приема энергии, определяют на основании индуктивностей катушек L1, передающих энергию. Таким образом, место размещения может быть определено даже без наличия специально предусмотренных средств связи для определения места размещения, вследствие чего система может быть упрощена, и ее стоимость может быть уменьшена.

(Второй вариант осуществления изобретения)

Система бесконтактной передачи энергии согласно второму варианту осуществления настоящего изобретения отличается тем, что производят взаимный сдвиг фаз токов, втекающих во множество заданных катушек, передающих энергию, в системе бесконтактной передачи энергии из первого варианта осуществления изобретения. В этом варианте осуществления изобретения не приведено описание элементов, которые являются одинаковыми с элементами из первого варианта осуществления изобретения.

На Фиг. 7 изображены диаграммы формы сигналов напряжений Vd относительно уровня потенциала заземления в том случае, когда катушка А была размещена так, как показано на Фиг. 1A, и генерация колебаний осуществлялась во всех катушках с а по i. На фиг. 7 на временных диаграммах формы сигналов в строках с первой по девятую соответственно показаны временные диаграммы формы сигналов для катушек с а по i, при этом вертикальная ось отображает напряжение Vd, а горизонтальная ось отображает время.

На Фиг. 1A количество взаимосвязей магнитного потока между катушкой А и катушками а, d, по существу, является одним и тем же. Количество взаимосвязей магнитного потока между катушкой А и катушками b, e, по существу, является одним и тем же, но меньшим, чем количество взаимосвязей магнитного потока между катушкой А и катушками а, d. Соответственно, в результате размещения устройства 2 приема энергии индуктивности катушек а, d являются большими, чем индуктивности катушек b, e.

Таким образом, как показано на Фиг. 7, в результате размещения устройства 2 приема энергии амплитуды напряжений Vd на катушках а, d становятся меньшими, чем амплитуды напряжений Vd на катушках b, e.

С другой стороны, как показано на Фиг. 1A, магнитные потоки катушек c, f, g, h, i не являются связанными с катушкой А. Таким образом, как показано на Фиг. 7, амплитуды напряжений Vd на катушках c, f, g, h, i становятся большими, чем амплитуды напряжений Vd на катушках а, b, d, e.

Таким образом, может быть определено, что устройство 2 приема энергии не размещено непосредственно над соответствующей катушкой L1, передающей энергию, если напряжение Vd является большим или равным заданному значению, и что устройство 2 приема энергии размещено непосредственно над соответствующей катушкой L1, передающей энергию, если напряжение Vd является меньшим, чем заданное значение.

И вновь со ссылкой на Фиг. 2, контроллер 120 колебаний задает множество катушек L1, передающих энергию, которые подлежат возбуждению, на основании места размещения, определенного устройством 110 определения, и выводит переключающие напряжения в переключающие элементы на полевом транзисторе (ПТ) для взаимного сдвига фаз токов, втекающих во множество заданных катушек L1, передающих энергию.

В частности, если под местом размещения, определенным устройством 110 определения, имеется множество соседних катушек L1, передающих энергию, то контроллер 120 колебаний задает это множество катушек L1, передающих энергию, в качестве катушек, которые подлежат возбуждению. Кроме того, если под местом размещения, определенным устройством 110 определения, имеется только одна катушка L1, передающая энергию, то контроллер 120 колебаний задает эту катушку L1, передающую энергию, и, по меньшей мере, одну из катушек L1, передающих энергию, соседних с этой катушкой L1, передающей энергию, в качестве катушек, которые подлежат возбуждению.

Затем контроллер 120 колебаний выводит такие переключающие напряжения, чтобы в соседние катушки L1, передающие энергию, из множества катушек L1, передающих энергию, которые подлежат возбуждению, втекали токи, фазы которых сдвинуты друг относительно друга на 90°.

На Фиг. 4 изображены временные диаграммы формы сигналов, на которых показаны переключающие напряжения на выходе контроллера 120 колебаний в том случае, когда катушка А была размещена непосредственно над катушками а, b, d, e, как показано на Фиг. 1A. На Фиг. 5 изображены временные диаграммы формы сигналов, на которых показаны токи, соответственно втекающие в катушки с а по i, в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 4. На Фиг. 6 изображены временные диаграммы формы сигналов напряжений Vd относительно уровня потенциала заземления в том случае, когда были выведены переключающие напряжения, показанные на Фиг. 4. На диаграммах, показанных на Фиг. 4, вертикальная ось отображает переключающее напряжение, а горизонтальная ось отображает время. На диаграммах, показанных на Фиг. 5, вертикальная ось отображает ток, а горизонтальная ось отображает время. На диаграммах, показанных на Фиг. 6, вертикальная ось отображает напряжение Vd, а горизонтальная ось отображает время.

В случае, показанном на Фиг. 1A, контроллер 120 колебаний задает катушки а, b, d, e в качестве катушек L1, передающих энергию, которые подлежат возбуждению. Таким образом, контроллер 120 колебаний обеспечивает запаздывание фаз переключающих напряжений для катушки b, которая является соседней с катушкой а и изображена ниже ее, и для катушки d, которая является соседней с катушкой а и изображена справа от нее, на 90° относительно переключающего напряжения для катушки а, как показано на диаграммах из Фиг. 4. Для переключающего напряжения для катушки e, которая является соседней с катушкой а и изображена ниже справа от нее по диагонали, контроллер 120 колебаний устанавливает ту же самую фазу, что и фаза переключающего напряжения для катушки а.

В частности, если предположить, что переключающие напряжения двух фаз, сдвинутых одна относительно другой на 90°, являются первым и вторым переключающими напряжениями, то контроллер 120 колебаний выводит переключающие напряжения таким образом, чтобы из катушек, передающих энергию, которые подлежат возбуждению, те катушки, колебания в которых должны быть сгенерированы первым переключающим напряжением, и те катушки, колебания в которых должны быть сгенерированы вторыми переключающими напряжениями, были расположены в шахматном порядке.

Таким образом, понятно, что фазы токов, втекающих в катушки b, d, имеют запаздывание относительно фаз токов, втекающих в катушки а, e, на 90°, как показано на диаграммах из Фиг. 5. Также понятно, что в катушки c, f, g, h, i не втекают какие-либо токи, поскольку генерация колебаний в этих катушках не должна осуществляться.

Кроме того, понятно, что фазы напряжений Vd для катушек b, d имеют запаздывание относительно фаз напряжений Vd для катушек а, e на 90°, как показано на диаграммах из Фиг. 6. Также понятно, что на катушках c, f, g, h, i не генерируются какие-либо напряжения, поскольку генерация колебаний в этих катушках не должна осуществляться.

На Фиг. 15 изображена диаграмма, на которой показаны сгенерированные магнитные потоки в том случае, когда фазы токов, втекающих в катушки а, d, являются одинаковыми. Следует отметить, что ось x, показанная на Фиг. 15, указывает горизонтальное направление на Фиг. 1A, а ось z указывает направление по высоте (направление, ортогональное к плоскости Фиг. 1A) на Фиг. 1A. Положение P1, показанное на Фиг. 15, представляет собой положение на расстоянии h по высоте в направлении оси z от середины отрезка прямой, соединяющей центр CTa катушки а и центр CTd катушки d. Здесь значение высоты h, по существу, эквивалентно расстоянию от катушек а, d до области размещения (PL). Другими словами, положение P1 указывает положение катушки L2, принимающей энергию тогда, когда устройство 2 приема энергии размещено на области размещения (PL), будучи расположенным посередине между катушками а и d.

На Фиг. 16 показано содержание в магнитном потоке компонент, направленных по оси z, в каждом положении по оси x в том случае, когда положение P1 было смещено в направлении x, когда в катушки а, d втекали токи с одинаковой фазой. На Фиг. 17 показано содержание в магнитном потоке компонент, направленных по оси z, в каждом положении по оси x в том случае, когда положение P1 было смещено в направлении x, когда в катушки а, d втекали токи, фазы которых были сдвинуты относительно друг друга на 90°.

Как показано на Фиг. 15 и Фиг. 16, в положении P1, когда в катушки а, d втекают токи одинаковой фазы, то магнитный поток Ba катушки а направлен под углом вправо вниз, а магнитный поток Bd катушки d направлен под углом влево вверх. Таким образом, компонента Ba1, представляющая собой компоненту магнитного потока Ba в направлении оси z, имеет, по существу, ту же самую величину, что и компонента Bd1, представляющая собой компоненту магнитного потока Bd в направлении оси z, и ориентирована в направлении, прямо противоположном направлению компоненты Bd1. Таким образом, Ba1 и Bd1 компенсируют друг друга, и содержание в магнитном потоке компонент, направленных по оси z, в положении P1 становится, по существу, равным 0. Когда катушка L2, принимающая энергию, размещена в положении P1, то отсутствует магнитный поток, связанный с этой катушкой L2, принимающей энергию, и устройство 1 передачи энергии не может передавать энергию в устройство 2 приема энергии.

В частности, понятно, что содержание в магнитном потоке компонент, направленных по оси z, достигает максимума в положении, когда z=h, x=CTa или когда z=h, x=CTd, уменьшается в соответствии с колоколообразной кривой при приближении x к P1 от CTa и увеличивается в соответствии с колоколообразной кривой при приближении x к CTd от P1, как показано на Фиг. 16.

Из этого понятно, что устройство 1 передачи энергии может производить передачу большого количества энергии в устройство 2 приема энергии, когда устройство 2 приема энергии расположено рядом и непосредственно над центром CTa или центром CTd, но энергия, переданная устройством 1 передачи энергии в устройство 2 приема энергии, уменьшается по мере приближения места, в которое помещено устройство 2 приема энергии, к положению P1. Таким образом, если устройство 2 приема энергии помещено вблизи положения P1 и непосредственно над ним, то устройство 2 приема энергии не может получать энергию от устройства 1 передачи энергии.

С другой стороны, как показано на Фиг. 17, когда фазы токов, втекающие в катушки а, d, имеют сдвиг друг относительно друга на 90°, то содержание в магнитном потоке компонент, направленных по оси z, является, по существу, постоянным в соответствующих положениях x в направлении х, где z=h. Таким образом, вне зависимости от того, в какое место группы катушек L1, передающих энергию, которые подлежат возбуждению, помещено устройство 2 приема энергии, магнитные потоки могут являться связанными с катушкой L2, принимающей энергию, и энергия может быть передана в устройство 2 приема энергии.

И вновь со ссылкой на Фиг. 2, источник V1 питания реализован посредством схемы источника питания, предназначенной для преобразования напряжения промышленной частоты, величиной, например, 100 В, в постоянное напряжение заданного уровня, причем его положительный электрод соединен с катушкой L1, передающей энергию, а его отрицательный электрод заземлен. Конденсатор C1 реализован, например, посредством электролитического конденсатора, подключенного параллельно источнику V1 питания, и он сглаживает напряжение на выходе источника V1 питания.

На Фиг. 3 изображена принципиальная электрическая схема устройства 2 приема энергии, показанного на Фиг. 1. Устройство 2 приема энергии включает в себя выпрямительную схему 21, катушку L2, принимающую энергию, и аккумуляторную батарею АКБ. Катушка L2, принимающая энергию, имеет индуктивную связь с катушками L1, передающими энергию, и принимает энергию, переданную из катушек L1, передающих энергию.

Выпрямительная схема 21 включает в себя диод D2 и конденсатор C4. Конденсатор C4 сглаживает напряжение, сгенерированное в катушке L2, принимающей энергию. Диод D2 выпрямляет напряжение, сгенерированное в катушке L2, принимающей энергию. Таким образом, постоянное напряжение подают на аккумуляторную батарею АКБ, которая заряжается этим постоянным напряжением. Например, в качестве аккумуляторной батареи АКБ может применяться одна из различных аккумуляторных батарей, таких как, например, литий-ионная аккумуляторная батарея, никель-водородная аккумуляторная батарея и свинцово-кислотная аккумуляторная батарея.

Как описано выше, согласно системе передачи энергии из этого варианта осуществления изобретения, вне зависимости от того, в какое место области размещения (PL) помещено устройство 2 приема энергии, отсутствует какое-либо место на области размещения (PL) непосредственно над катушками L1, передающими энергию, которые подлежат возбуждению, где происходит взаимная компенсация магнитных потоков, сгенерированных множеством катушек L1, передающих энергию, и где магнитные потоки, связанные с катушкой L2, принимающей энергию, становятся равными 0. Таким образом, может быть обеспечена надежная зарядка устройства 2 приема энергии.

Кроме того, поскольку, множество катушек, передающих энергию, которые подлежат возбуждению, задано на основании места, в которое помещено устройство 2 приема энергии, то колебания генерируют только в тех катушках L1, передающих энергию, которые вносят вклад в бесконтактную зарядку, а генерацию колебаний в катушках L1, передающих энергию, которые не вносят вклад в бесконтактную зарядку, не осуществляют, в результате чего это может способствовать экономии энергии.

Может быть обеспечена надежная зарядка устройства 2 приема энергии, и может быть обеспечена экономия энергии путем простого управления взаимным сдвигом фаз токов, втекающих во множество катушек L1, передающих энергию которые подлежат возбуждению.

Какое именно место области размещения (PL) является местом, в которое помещено устройство 2 приема энергии, определяют на основании индуктивностей катушек L1, передающих энергию. Таким образом, место размещения может быть определено даже без н