Способ формирования и наблюдения стереоизображений с максимальным пространственным разрешением и устройство для его реализации (варианты)

Иллюстрации

Показать все

Изобретение относится к стереоскопической видеотехнике и может быть использовано для создания стереоскопических и автостереоскопических (безочковых) телевизоров и мониторов с реализацией максимального пространственного разрешения в каждом ракурсе стереоизображения, равного полному пространственному разрешению оптических структур-формирователей изображения, в том числе для создания плоских автостереоскопических дисплеев на жидкокристаллических матрицах практически любого типа. Техническим результатом является улучшение качества стереоизображения в способе и устройстве за счёт его реализации на оптимизированных оптических структурах независимо от степени сложности их конфигурации при автокомпенсации нелинейности передаточных характеристик оптических структур. Результат достигается тем, что в способе и устройстве использована комбинация суммирующей и делительной модуляции светового потока, линеаризованных по результатам регистрации интенсивности светового потока в левом и правом окнах формирования ракурсов стереоизображения, что позволяет формировать и наблюдать стереоизображение при использовании оптических модуляторов с двумя произвольными взаимно комплементарными оптическими состояниями и произвольной функцией перехода между ними. 3 н. и 16 з.п. ф-лы, 53 ил.

Реферат

Текст описания приведен в факсимильном виде.

1. Способ формирования и наблюдения стереоизображений с максимальным пространственным разрешением, заключающийся в том, что с помощью оптического источника генерируют световую волну, с помощью матрично-адресуемого по М строкам и N столбцам первого оптического модулятора осуществляют суммирующую модуляцию световой волны в mn-м элементе первого оптического модулятора в соответствии с суммой величин и яркости mn-x элементов изображений левого и правого ракурсов, где m=1, 2,…, М, n=1, 2,…, N, с помощью матрично-адресуемого по М строкам и N столбцам второго оптического модулятора осуществляют кодирующую модуляцию световой волны в mn-м элементе второго оптического модулятора в соответствии с нелинейными функциями от алгебраических соотношений между величинами и яркости mn-x элементов изображений левого и правого ракурсов, с помощью первого и второго оптических анализаторов со взаимно комплементарными параметрами оптического декодирования формируют первый и второй световые потоки с величинами интенсивности и , равными величинам и яркости mn-x элементов изображений левого и правого ракурсов в левом и правом окнах формирования, оптически связанных с левым и правым окнами наблюдения, в которых наблюдают левый и правый ракурсы стереоизображения, отличающийся тем, что с помощью матрично-адресуемого по М строкам и N столбцам оптического модулятора однородного действия, вызывающего однородную модуляцию интенсивности световой волны в виде одинаковых по величине и по знаку изменений интенсивности световой волны в левом и правом окнах формирования, осуществляют прямую суммирующую модуляцию за счет модуляции величины интенсивности световой волны либо косвенную суммирующую модуляцию за счет модуляции остальных физических характеристик световой волны - направления распространения, либо величины угла сходимости или расходимости, либо спектральных характеристик, либо состояния поляризации, либо величины фазы, либо за счет модуляции комбинации остальных физических характеристик световой волны в mn-м элементе оптического модулятора однородного действия, подавая на его управляющий вход компенсирующий сигнал суммирования амплитудой, прямо пропорциональной значениям функции линеаризации суммирующей модуляции, с помощью матрично-адресуемого по М строкам и N столбцам оптического модулятора разностного действия, вызывающего разностную модуляцию интенсивности световой волны в виде одинаковых по величине, но разных по знаку изменений интенсивности световой волны в левом и правом окнах формирования, осуществляют прямую делительную модуляцию за счет модуляции интенсивности световой волны либо косвенную делительную модуляцию за счет модуляции остальных физических характеристик световой волны - направления распространения, либо величины угла сходимости или расходимости, либо спектральных характеристик, либо состояния поляризации, либо величины фазы, либо за счет модуляции комбинации остальных физических характеристик световой волны в mn-м элементе оптического модулятора разностного действия, подавая на его управляющий вход компенсирующий сигнал деления с амплитудой, прямо пропорциональной значениям функции линеаризации делительной модуляции, и формируют модулированные по интенсивности световые потоки в левом и правом окнах формирования с помощью соответственно первого и второго оптических конвертеров с взаимно комплементарными параметрами конверсии делительной модуляции, с одинаковыми параметрами конверсии суммирующей модуляции и с одинаковыми параметрами оптического пропускания как прямой делительной составляющей, так и прямой суммирующей составляющей интенсивности светового потока.

2. Способ по п.1, отличающийся тем, что подают компенсирующий сигнал суммирования в его первом частном варианте с амплитудой, прямо пропорциональной функции линеаризации суммирующей модуляции в ее первом частном варианте, взятой от произведения суммы + величин яркостей mn-х элементов изображения левого и правого ракурсов: либо подают компенсирующий сигнал суммирования в его втором частном варианте с амплитудой, прямо пропорциональной произведению суммы + величин яркости mn-х элементов изображения левого и правого ракурсов на функцию линеаризации суммирующей модуляции в ее втором частном варианте: а компенсирующий сигнал деления подают в его первом частном варианте с амплитудой, прямо пропорциональной значениям функции линеаризации делительной модуляции в ее первом частном варианте, взятой от отношения величин / яркости в mn-х элементах изображений левого и правого ракурсов: либо подают компенсирующий сигнал деления в его втором частном варианте с амплитудой, прямо пропорциональной произведению отношения величин яркости в mn-х элементах изображений левого и правого ракурсов на функцию линеаризации делительной модуляции в ее втором частном варианте: где функцию линеаризации суммирующей модуляции в ее первом частном варианте определяют как функцию обратную к калибровочной функции ΦΣ нелинейности суммирующей модуляции в ее первом частном варианте: а функцию линеаризации суммирующей модуляции в ее втором частном варианте определяют как функцию значения которой являются обратными величинами к значениям калибровочной функции ΦΣ нелинейности суммирующей модуляции во втором частном варианте: функцию линеаризации делительной модуляции в ее первом частном варианте определяют как функцию , обратную к калибровочной функции нелинейности делительной модуляции в ее первом частном варианте: а функцию линеаризации делительной модуляции в ее втором частном варианте определяют как функцию значения которой являются обратными величинами к значениям калибровочной функции нелинейности делительной модуляции в ее втором частном варианте: при этом калибровочная функция ΦΣ нелинейности суммирующей модуляции в ее первом частном варианте равна совокупности калибровочных значений однородно-модулированной составляющей интенсивности светового потока на выходе любого из окон формирования: при подаче на управляющий вход оптического модулятора однородного действия линейно-меняющегося калибровочного сигнала суммирующей модуляции, а калибровочная функция нелинейности суммирующей модуляции в ее втором частном варианте равна отношению последовательности калибровочных значений однородно-модулированной составляющей интенсивности светового потока на выходе любого из окон , формирования к последовательности соответствующих значений амплитуды монотонно-меняющегося калибровочного сигнала суммирующей модуляции: калибровочная функция нелинейности делительной модуляции в ее первом частном варианте равна частному от деления совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в левом окне формирования на совокупность калибровочных значений разностно-модулированной составляющей , интенсивности светового потока в правом окне формирования: при подаче на управляющий вход оптического модулятора разностного действия линейно меняющегося калибровочного сигнала делительной модуляции, а калибровочная функция нелинейности делительной модуляции в ее втором частном варианте равна отношению совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в левом окне формирования к совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в правом окне формирования, деленному на совокупность соответствующих значений амплитуды монотонно меняющегося калибровочного сигнала делительной модуляции: .

3. Способ по п.1, отличающийся тем, что подают компенсирующий сигнал суммирования в его первом частном варианте с амплитудой, прямо пропорциональной функции линеаризации суммирующей модуляции в ее первом частном варианте, взятой от произведения суммы + величин яркостей mn-х элементов изображения левого и правого ракурсов: либо подают компенсирующий сигнал суммирования в его втором частном варианте с амплитудой, прямо пропорциональной произведению суммы + величин яркости mn-х элементов изображения левого и правого ракурсов на функцию линеаризации суммирующей модуляции в ее втором частном варианте: а компенсирующий сигнал деления подают в его первом частном варианте с амплитудой, прямо пропорциональной значениям функции линеаризации делительной модуляции в ее первом частном варианте, взятой от отношения величин / яркости в mn-х элементах изображений левого и правого ракурсов: либо подают компенсирующий сигнал деления в его втором частном варианте с амплитудой, прямо пропорциональной произведению отношения величин яркости в mn-х элементах изображений левого и правого ракурсов на функцию линеаризации делительной модуляции в ее втором частном варианте: где функцию линеаризации суммирующей модуляции в ее первом частном варианте определяют как функцию обратную к калибровочной функции ΦΣ нелинейности суммирующей модуляции в ее первом частном варианте: а функцию линеаризации суммирующей модуляции в ее втором частном варианте определяют как функцию значения которой являются обратными величинами к значениям калибровочной функции нелинейности суммирующей модуляции во втором частном варианте: функцию линеаризации делительной модуляции в ее первом частном варианте определяют как функцию , обратную к калибровочной функции нелинейности делительной модуляции в ее первом частном варианте: , а функцию линеаризации делительной модуляции в ее втором частном варианте определяют как функцию значения которой являются обратными величинами к значениям калибровочной функции нелинейности делительной модуляции в ее втором частном варианте: при этом калибровочная функция ΦΣ нелинейности суммирующей модуляции в ее первом частном варианте равна совокупности калибровочных значений однородно-модулированной составляющей интенсивности светового потока на выходе любого из окон формирования: при подаче на управляющий вход оптического модулятора однородного действия линейно меняющегося калибровочного сигнала суммирующей модуляции, а калибровочная функция нелинейности суммирующей модуляции в ее втором частном варианте равна отношению последовательности калибровочных значений однородно-модулированной составляющей интенсивности светового потока на выходе любого из окон , формирования к последовательности соответствующих значений амплитуды монотонно меняющегося калибровочного сигнала суммирующей модуляции: калибровочная функция нелинейности делительной модуляции в ее первом частном варианте равна частному от деления совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в левом окне формирования на совокупность калибровочных значений разностно-модулированной составляющей интенсивности светового потока в правом окне формирования: при подаче на управляющий вход оптического модулятора разностного действия линейно меняющегося калибровочного сигнала делительной модуляции, а калибровочная функция нелинейности делительной модуляции в ее втором частном варианте равна отношению совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в левом окне формирования к совокупности калибровочных значений разностно-модулированной составляющей интенсивности светового потока в правом окне формирования, деленному на совокупность соответствующих значений амплитуды монотонно меняющегося калибровочного сигнала делительной модуляции:

4. Способ по п.1, отличающийся тем, что значения функции линеаризации суммирующей модуляции зависят от значений сигнала деления, и/или значения функции линеаризации делительной модуляции зависят от значений сигнала суммирования.

5. Способ по п.1, отличающийся тем, что суммирующую модуляцию осуществляют за счет модуляции интенсивности светового потока с помощью вещественно-амплитудного оптического модулятора, делительную оптическую модуляцию осуществляют за счет модуляции состояния поляризации светового потока с помощью фазово-поляризационного модулятора с произвольной однозначной характеристикой перехода между двумя взаимно комплементарными фазово-поляризационными оптическими состояниями, и осуществляют конверсию делительной модуляции в делительную составляющую интенсивности светового потока с помощью первого и второго поляризационных конвертеров со взаимно комплементарными поляризационными параметрами.

6. Способ по п.1, отличающийся тем, что с помощью оптического источника генерируют световой поток с первым спектром, с помощью вещественно-амплитудного оптического модулятора осуществляют амплитудную суммирующую модуляцию за счет модуляции интенсивности светового потока, делительную модуляцию осуществляют в форме спектральной делительной модуляции с переходом от первого спектра к второму спектру с помощью частотно-оптического модулятора при изменении напряжения на его управляющем входе от первого до второго значения, с помощью первого и второго частотно-оптических анализаторов осуществляют конверсию спектральной делительной модуляции в делительную составляющую интенсивности светового потока, при этом спектральные характеристики первого и второго частотно-оптических анализаторов соответствуют первому и второму спектрам.

7. Способ по п.1, отличающийся тем, что с помощью оптического источника формируют коллимированный световой поток, с помощью суммирующего дифракционного оптического модулятора осуществляют суммирующую дифракционную модуляцию за счет изменения угла отклонения светового потока в первом поперечном направлении, с помощью делительного дифракционного оптического модулятора осуществляют делительную дифракционную модуляцию за счет изменения угла отклонения светового потока во втором поперечном направлении, и с помощью несимметричного в двух взаимно ортогональных поперечных направлениях жалюзного оптического конвертера осуществляют в первом поперечном направлении выделение составляющей светового потока, соответствующей суммирующей дифракционной модуляции в левом и правом окнах формирования, а во втором поперечном направлении - выделение составляющей светового потока, соответствующей делительной дифракционной модуляции между левым и правым окнами формирования.

8. Способ по п.1, отличающийся тем, что с помощью аналогового вещественно-амплитудного оптического модулятора осуществляют суммирующую модуляцию за счет аналоговой модуляции интенсивности светового потока, с помощью бистабильного поляризационного модулятора осуществляют бистабильную поляризационную делительную модуляцию за счет широтно-импульсной модуляции между двумя взаимно комплементарными состояниями поляризации, с помощью первого и второго поляризационных конвертеров со взаимно комплементарными состояниями поляризации осуществляют аналоговую поляризационную конверсию делительной модуляции в бистабильные вариации делительной составляющей интенсивности светового потока, при этом функцию линеаризации бистабильной поляризационной делительной модуляции определяют в первом варианте как функцию обратную к функции нелинейности бистабильной поляризационной делительной модуляции в ее первом варианте: которую определяют как совокупность результатов частного от деления усредненных во времени калибровочных значений делительной составляющей интенсивности светового потока в левом окне формирования к усредненным во времени калибровочным значениям делительной составляющей интенсивности светового потока в правом окне формирования: где при подаче на управляющий вход бистабильного поляризационного модулятора калибровочного широтно-импульсного сигнала с линейно меняющейся шириной импульсов, а функцию линеаризации бистабильной поляризационной делительной модуляции в ее втором варианте определяют как совокупность величин, каждая из которых является обратной величиной к соответствующему значению функции нелинейности бистабильной поляризационной делительной модуляции в ее втором варианте: которая есть совокупность результатов частного от деления усредненных во времени калибровочных значений делительной составляющей интенсивности светового потока в левом окне формирования к усредненным во времени калибровочным значениям делительной составляющей интенсивности светового потока в правом окне формирования, деленных на усредненные во времени значения калибровочного сигнала с монотонно меняющейся длительностью импульсов: где

9. Способ по п.1, отличающийся тем, что суммирующую и/или делительную модуляцию осуществляют за счет комбинации аналоговой и бистабильной либо многостабильной модуляции характеристик светового потока.

10. Способ формирования и наблюдения стереоизображений с максимальным пространственным разрешением, заключающийся в том, что с помощью оптического источника генерируют световую волну, с помощью матрично-адресуемого по М строкам и N столбцам первого оптического модулятора осуществляют суммирующую модуляцию световой волны в mn-м элементе первого оптического модулятора в соответствии с суммой величин и яркости mn-x элементов изображений левого и правого ракурсов, с помощью матрично-адресуемого по М строкам и N столбцам второго оптического модулятора осуществляют кодирующую модуляцию световой волны в mn-м элементе второго оптического модулятора в соответствии с нелинейными функциями от алгебраических соотношений между величинами и яркости mn-x элементов изображений левого и правого ракурсов, задавая взаимно комплементарные значения начальных оптических параметров модуляции в смежных 2i-x и (2i-1)-x столбцах второго оптического модулятора, где m, n, i=1, 2,…, N, с помощью адресуемого по N столбцам пространственно-периодического оптического анализатора, задавая взаимно комплементарные параметры оптического анализа для смежных 2k-x и (2k-1)-x столбцов пространственно-периодического оптического анализатора, где k=1, 2,…, N, формируют первую и вторую группы световых пучков с величинами общей интенсивности и , равными величинам и яркости mn-x элементов изображений левого и правого ракурсов соответственно в левой и правой зонах формирования, при этом в одну из зон формирования направляют первую группу N световых пучков, первые N/2 которых проходят через N/2 четных 2i-x столбцов второго оптического модулятора и N/2 четных 2k-x столбцов пространственно-периодического оптического анализатора, а остальные N/2 световых пучков проходят через N/2 нечетных (2i-1)-x столбцов второго оптического модулятора и N/2 нечетных (2k-1)-x столбцов пространственно-периодического оптического анализатора, а в другую из зон формирования направляют вторую группу N световых пучков, первые N/2 которых проходят через N/2 нечетных (2i-1)-x столбцов второго оптического модулятора и N/2 четных 2k-x столбцов пространственно-периодического оптического анализатора, а остальные N/2 световых пучков проходят через N/2 четных 2i-x столбцов второго оптического модулятора и N/2 нечетных (2k-1)-x столбцов пространственно-периодического оптического анализатора, и наблюдают левый и правый ракурсы стереоизображения соответственно в левой и правой зонах наблюдения, оптически связанных соответственно с левой и правой зонами формирования, отличающийся тем, что с помощью матрично-адресуемого по М строкам и N столбцам оптического модулятора однородного действия осуществляют прямую суммирующую модуляцию за счет модуляции величины интенсивности световой волны либо косвенную суммирующую модуляцию за счет модуляции остальных физических характеристик световой волны - направления распространения, либо величины угла сходимости или расходимост