Катализатор конверсии углеводородов
Иллюстрации
Показать всеИзобретение относится к катализаторам конверсии углеводородов, содержащим цеолит. Описан катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Nа2O·(0,5-10)Аl2O3·(1,3-10)Р2O5·(0,7-15)MxOy·(64-97)SiO2 (в скобках указаны массовые проценты оксидов), где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Сu, Mn, Zn и Sn, х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М. Технический эффект - повышенная способность к конверсии углеводородов нефти и обеспечение более высокого выхода легких олефинов, в особенности пропилена. 11 з.п. ф-лы, 5 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к катализаторам конверсии углеводородов, содержащим цеолит. Более конкретно, настоящее изобретение относится к катализаторам крекинга, содержащим цеолит, которые обеспечивают каталитический крекинг углеводородов для получения олефинов С2-С4.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Легкие олефины (олефины С2-С4) являются важным исходным сырьем для нефтехимической промышленности. Как правило, легкие олефины получают из углеводородов нефти с использованием термического крекинга паром, при котором в качестве исходного сырья используются газообразные углеводороды, нафта, керосин, легкое дизельное топливо и остатки вакуумной перегонки. Если для получения бензина и легкого дизельного топлива используется традиционный процесс каталитического крекинга, то легкие олефины получают как побочные продукты с выходом, не превышающим 15% от веса исходного сырья.
Использование способа каталитического крекинга для получения легких олефинов из углеводородов нефти описывается во многих патентах. Используются катализаторы на основе металлов, причем в качестве носителей используются SiO2, Al2O3 или другие оксиды, а металлы большей частью выбираются из элементов Групп IIB, VB, VIIB и VIII, которые характеризуются гидрогенизационной или дегидрогенизационной активностью и проявляют дегидрогенизационную активность в условиях крекинга при высокой температуре и низком давлении, в результате чего ускоряется получение легких олефинов (US 3541179, US 3647682, DD 225135 и SU 1214726). При использовании таких катализаторов благодаря дегидрогенизационным свойствам металлов в процессе реакции крекинга, соответственно, ускоряется коксообразование в результате реакции полимеризации и на катализаторе формируются отложения кокса. Поэтому могут использоваться только легкие исходные продукты с диапазоном точки кипения, не превышающим 220°С.
В некоторых других патентах описывается использование композиционных оксидных катализаторов. В примерах таких катализаторов указывается катализатор, содержащий ZrO2, HfO2 в качестве главных компонентов, Al2O3, Сr2O3, МnО, Fе2О3 и оксиды щелочных или щелочноземельных металлов в качестве активирующей добавки (US 3725495, US 3839485); и катализатор SiO2·Аl2О3, содержащий небольшие количества Fе2О3, ТiO2, CaO, МgО, Na2O и К2O (SU 550173, SU 559946).
Широкое применение цеолитов в нефтехимической промышленности и в переработке нефти привело к появлению третьего класса катализаторов, а именно катализаторов, содержащих цеолиты. В последнее время в катализатор добавляется добавка, селективная к форме, для повышения октанового числа бензина, получаемого при каталитической переработке. Например, в патенте США 3758403 описывается катализатор, содержащий цеолит ZSM-5 и цеолит с крупными порами (с отношением от 1:10 до 3:1) в качестве активных компонентов, и кроме повышения октанового числа бензина такой катализатор обеспечивает более высокий выход олефинов С3 и С4, составляющий примерно 10 вес.%.
Если катализатор содержит смесь цеолита с MFI-структурой (высококремнистый цеолит с пятичленными кольцами) и в крекинге углеводородов нефти для получения легких олефинов используется цеолит с размером пор, превышающим 7 ангстрем, то цеолит с крупными порами (в основном Y-цеолит) используется для крекинга исходных продуктов для получения бензина и дизельного топлива, которые затем подвергаются крекингу для получения легких олефинов с использованием цеолита с MFI-структурой (US 3758403, CN 1043520A, US 500649 и CN 1026242С). Для повышения селективности катализаторов в отношении олефинов цеолиты с MFI-структурой модифицируют дополнительно, например, переходными металлами (US 5236880), фосфором (CN 1205307А, US 6566293), редкоземельными элементами (CN 1085825А), фосфором и редкоземельными элементами (CN 1093101A, US 5380690, CN 1114916A, CN 1117518A, CN 1143666A), фосфором и щелочноземельными металлами (CN 1221015А, US 6342153, CN 1222558А, US 6211104) и фосфором и переходными металлами (CN 1504540A).
Бета-цеолит имеет структуру, состоящую из 12-членных колец с пересекающимися пористыми каналами, в которой диаметр пор 12-членного кольца равен 0,75-0,57 нм для одномерного пористого канала, параллельного грани (001) кристалла, и диаметр пор 12-членного кольца равен 0,65-0,56 нм для двухмерного пористого канала, параллельного грани (100) кристалла. Бета-цеолит - это высококремнистый цеолит с большими порами, имеющий трехмерную структуру, единственную, которая найдена до настоящего времени, причем он обладает как свойствами кислотного катализатора, так и структурной селективностью благодаря особенностям своей структуры, и, кроме того этот цеолит обладает очень высокой термостойкостью (температура разрушения кристаллической решетки превышает 1200°С), гидротермальной стойкостью, а также устойчив к истиранию. Благодаря своей уникальной структуре бета-цеолит обладает хорошей термической и гидротермальной стойкостью, кислотостойкостью, устойчивостью к закоксовыванию и каталитической активностью в отношении ряда каталитических реакций, и поэтому в последние годы быстро развивался новый тип каталитических материалов на базе этого цеолита. Имеются публикации о многочисленных применениях бета-цеолита в крекинге углеводородов нефти для получения легких олефинов.
В документе CN 1103105А описывается катализатор крекинга, обеспечивающий высокий выход изобутилена и изоамилена и представляющий собой композицию, состоящую из четырех активных компонентов и носителя, причем активные компоненты состоят из модифицированного цеолита HZSM-5 и высококремнистого цеолита HZSM-5 с различными отношениями кремнезем/глинозем, цеолита USY и бета-цеолита, а носитель состоит из природной глины и неорганического оксида. Активные компоненты и катализатор имеют следующий состав: (1) модифицированный цеолит HZSM-5 с отношением кремнезем/глинозем 20:100 5-25 вес.%; (2) высококремнистый цеолит HZSM-5 с отношением кремнезем/глинозем 250:450 1-5 вес.%; (3) цеолит USY 5-20 вес.%; (4) бета-цеолит 1-5 вес.%; (5) природная глина 30-60 вес.%; (6) неорганический оксид 15-30 вес.%. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1057408А описывается катализатор крекинга, содержащий высококремнистый цеолит, который состоит из 10-30 вес.% модифицированного высококремнистого цеолита и 70-90% носителя, причем модифицированный высококремнистый цеолит содержит (от веса цеолита) 0,01-3,0 вес.% фосфора, 0,01-1,0% железа или 0,01-10 вес.% алюминия (алюминий в структуре цеолита исключен) и выбирается из морденита, бета-цеолита или ZSM-цеолита с отношением кремнезем/глинозем, превышающим 15, а носителем является неорганический оксид или смесь неорганического оксида и каолина. Катализатор используется для получения легких олефинов в процессе каталитического крекинга углеводородов одновременно с выходом бензина и дизельного топлива.
В документе CN 1099788А описывается катализатор крекинга, обеспечивающий более высокий выход олефинов С3-С5, который состоит из 10-50 вес.% Y-цеолита с размером элементарной ячейки, не превышающим 2,450 нм, 2-40 вес.% цеолита, выбранного из цеолита ZSM-5 или бета-цеолита, модифицированного Р, RE, Са, Mg, Н, Al и др., и их смесей, 20-80 вес.% полусинтетического носителя, состоящего из каолина и глиноземного связующего. Используя такой катализатор, можно не только повысить выход олефинов С3-С5, где выход C4 =+iC5 = доходит до 10-13 вес.%, но также поддерживать выход бензина на уровне порядка 35-42 вес.%.
В документе CN 1145396A описывается катализатор крекинга, обеспечивающий более высокий выход изобутилена и изоамилена, который состоит из трех активных цеолитных компонентов и носителя, причем их содержание (от веса катализатора) составляет: 6-30 вес.% высококремнистого цеолита с пятичленными кольцами, содержащего фосфор и редкоземельный элемент, 5-25 вес.% цеолита USY, 1-5 вес.% бета-цеолита, 30-60 вес.% глины и 15-30 вес.% неорганического оксида. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1354224А описывается катализатор каталитического крекинга для получения легких фракций с высоким содержанием изомерного алкана, пропилена и изобутана, причем катализатор содержит (от веса катализатора): 0-70 вес.% глины, 5-90 вес.% неорганического оксида и 1-50 вес.% цеолита. Цеолит представляет собой смесь следующих компонентов (от веса цеолита): (1) 20-75 вес.% высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 5-15 и 8-20 вес.% Fe2O3; (2) 20-75 вес.% высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 16-50 и 2-7 вес.% Fe2O3; и (3) 1-50 вес.% бета-цеолита, или морденита, или ZRP-цеолита. Катализатор может увеличивать содержание изомерного алкана в легких фракциях и одновременно повышать выход пропилена и изобутана, однако выход пропилена улучшается ненамного.
В документе CN 1504541А описывается катализатор каталитического крекинга углеводородов для получения легких олефинов и ароматических углеводородов, причем катализатор содержит молекулярное сито с размером пор 0,45-0,7 нм, аморфный оксид и по меньшей мере два модифицирующих компонента, выбираемых из фосфора, щелочноземельных металлов, лития и редкоземельных элементов. В катализаторе используется кремнезем-глиноземное или кремнезем-фосфор-глиноземное молекулярное сито, причем в качестве кремнезем-глиноземного молекулярного сита используется цеолит ZSM-5, цеолит ZSM-11, морденит или бета-цеолит, а в качестве кремнезем-фосфор-глиноземного молекулярного сита используется SAPO-5, SAPO-11 или SAPO-34. Активные центры катализатора могут быть модифицированы в зависимости от практических требований для получения легких олефинов в качестве основных продуктов и ароматических углеводородов в качестве побочных продуктов.
В документе CN 1566275А описывается катализатор, содержащий молекулярное сито, для крекинга углеводородов и способ его получения, причем молекулярное сито является смесью первого и второго цеолитов, термостойкого неорганического оксида и металла, а также глины (необязательный компонент), причем первый цеолит является Y-цеолитом, молярное отношение кремнезем/глинозем во втором цеолите превышает 20, содержание первого цеолита составляет 1-50 вес.%, содержание второго цеолита составляет 1-60 вес.%, содержание термостойкого неорганического оксида составляет 2-80 вес.%, содержание глины составляет 0-80 вес.%, содержание металла составляет 0,1-30 вес.%, и компоненты металла присутствуют в основном в состоянии валентности восстановления. Катализатор может не только обеспечивать высокий выход олефинов С3-С5, но также имеет повышенную активность в отношении десульфуризации, а также повышенную активность в отношении реакций крекинга. В качестве второго цеолита используется один или несколько цеолитов, выбранных из цеолитов, имеющих MFI-структуру и содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), бета-цеолитов, содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), морденита, содержащего фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент).
В патентах США №5006497 и №5055176 описывается многокомпонентный катализатор и способ каталитического крекинга с его использованием. Катализатор содержит матрицу, молекулярное сито с крупными порами, молекулярное сито для крекинга/изомеризации парафина и молекулярное сито для получения ароматических углеводородов, причем молекулярное сито с крупными порами выбирается из группы, состоящей из цеолита Y, DeAIY, USY, UHPY, VPI-5, колонной глины, SAPO-37, бета-цеолита и их смесей; молекулярное сито для крекинга/изомеризации парафина выбирается из группы, состоящей из цеолитов водородного типа ZSM-5, ZSM-11, ZSM-22, ZSM-35 и ZSM-57; и в качестве молекулярного сита для получения ароматических углеводородов используется GaZSM-5.
В патентной заявке США №20050070422 описывается композиция катализатора, используемого для повышения выхода пропилена с использованием каталитического крекинга, который содержит первое молекулярное сито со средним размером пор, второе молекулярное сито, в котором имеются поры канала по меньшей мере одного размера, который меньше размера пор первого сита, и молекулярное сито (необязательный компонент) с третьим большим размером пор, причем первое молекулярное сито выбирается из группы, состоящей из ZSM-5, ZSM-11, ZSM-12, ZSM-57, ITQ- 13 и МСМ-22; второе молекулярное сито выбирается из группы, состоящей из ECR-42, ZSM-22, ZSM-35, ZSM-23, МСМ-22, МСМ-49, SAPO-11, SAPO-34 и SAPO-41; и третье молекулярное сито выбирается из группы, состоящей из фожазита, L-цеолита, VPI-5, SAPO-37, цеолита X, бета-цеолита, ZSM-3, ZSM-4, ZSM-18, ZSM-20, МСМ-9, МСМ-41, MCM-41S, МСМ-48, Y-цеолита, USY, REY, REUSY и т.п. Этот катализатор пригоден для использования при получении пропилена путем крекинга нафты и исходных тяжелых углеводородных продуктов.
По мере увеличения потребности в легких олефинах существует насущная необходимость в разработке катализатора конверсии углеводородов, который должен обладать повышенной способностью конверсии углеводородов нефти и обеспечивать повышенный выход легких олефинов, в особенности пропилена.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается имеющий улучшенные характеристики катализатор конверсии углеводородов для каталитической конверсии углеводородов нефти с целью получения легких олефинов.
После интенсивных исследований автор обнаружил, что если катализатор конверсии углеводородов содержит в качестве каталитического компонента специальный модифицированный бета-цеолит, его селективность в отношении олефинов С2-С12 может быть существенно улучшена, в результате чего он становится предпочтительным для получения легких олефинов (С2-С4) путем дополнительного крекинга. При этом может быть повышен выход легких олефинов при получении их из углеводородов нефти.
Для достижения указанной цели в настоящем изобретении предлагается катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)P2O5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn; х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
Более конкретно настоящее изобретение относится к следующему катализатору:
1. Катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)P2O5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
2. Катализатор конверсии углеводородов по п.1, отличающийся тем, что он содержит (от общего веса катализатора): 10-50 вес.% смеси цеолитов, 10-70 вес.% термостойкого неорганического оксида и 0-60 вес.% глины.
3. Катализатор конверсии углеводородов по п.1, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2O3·(1,5-7)Р2О5·(0,9-10)МхOу·(75-95)SiO2 (в скобках указаны массовые проценты оксидов).
4. Катализатор конверсии углеводородов по п.3, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2О3·(2-5)Р2O5·(1-3)МхOу·(82-95)SiO2.
5. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni и Сu.
6. Катализатор конверсии углеводородов по п.5, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe и/или Сu.
7. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP.
8. Катализатор конверсии углеводородов по п.7, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы, цеолитов ZRP, содержащих фосфор, цеолитов ZRP, содержащих фосфор и редкоземельные элементы, цеолитов ZRP, содержащих фосфор и щелочноземельные металлы, и цеолитов ZRP, содержащих фосфор и переходные металлы.
9. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из фажозита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18.
10. Катализатор конверсии углеводородов по п.9, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
11. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита.
12. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита.
В предлагаемом в настоящем изобретении катализаторе конверсии углеводородов в качестве активного компонента используется смесь бета-цеолита, модифицированного фосфором и переходным металлом М, и цеолита с MFI-структурой или смесь бета-цеолита, модифицированного фосфором и переходным металлом М, цеолита с MFI-структурой и цеолита с крупными порами. Поскольку бета-цеолит модифицируется одновременно фосфором и переходным металлом М, то в результате не только повышается гидротермальная стойкость бета-цеолита и улучшаются характеристики крекинга дизельного топлива и тяжелого топлива, но и существенно повышается селективность в отношении олефинов С2-С12 при использовании катализатора в процессе каталитического крекинга углеводородов. Кроме того, олефины С5-С12 являются эффективными прекурсорами для получения олефинов С2-С4 при последующем крекинге с использованием цеолита с MFI-структурой. Таким образом, предлагаемые в настоящем изобретении катализаторы имеют повышенную способность по конверсии углеводородов нефти и обеспечивают более высокий выход легких олефинов, в особенности пропилена.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для получения легких олефинов из углеводородов с повышенной селективностью в настоящем изобретении предлагается катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)Р2О5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn; х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
В контексте настоящего изобретения, если не указано иное, термин "легкие олефины" относится к олефинам С2-С4 и термин "углеводород" относится к углеводородам нефти.
Указанный углеводород - это один или несколько углеводородов, выбранных из продуктов перегонки нефти, таких как углеводороды С4, бензин, дизельное топливо, гидрогенизированные остатки и аналогичные продукты или смесь указанных продуктов перегонки нефти. Кроме того, в качестве углеводородов может использоваться непосредственно сырая нефть и нефтяные остатки или один или несколько продуктов, выбранных из группы, состоящей из газойля вакуумной перегонки, сырой нефти и нефтяных остатков.
В одном из предпочтительных вариантов осуществления изобретения катализатор конверсии углеводородов содержит (от общего веса катализатора): 10-50 вес.% упомянутой смеси цеолитов, 10-70% термостойкого неорганического оксида и 0-60% глины.
Ниже описывается сначала модифицированный бета-цеолит, являющийся одним из основных компонентов предлагаемого в настоящем изобретении катализатора конверсии углеводородов.
Если безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, представить в массовых процентах оксидов, то предпочтительные диапазоны содержания компонентов будут следующими: предпочтительно (0-0,2)Na2O·(1-9)Аl2О3·(1,5-7)Р2О5·(0,9-10)МхOу·(75-95)SiO2, более предпочтительно (0-0,2)Na2O·(1-9)Al2O3·(2-5)P2O5·(1-3)МхOу·(82-95)SiO2.
В одном из предпочтительных вариантов осуществления изобретения в качестве переходного металла М используется металл или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni и Сu, более предпочтительно из Fe и/или Сu.
В предлагаемом в настоящем изобретении катализаторе конверсии углеводородов цеолит с MFI-структурой представляет собой высококремнистый цеолит со структурой пентасила, и в качестве него используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP, в частности один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы (см. CN 1052290А, CN 1058382А и US 5232675), цеолитов ZRP, содержащих фосфор (см. CN 1194181 A, US 5951963), цеолитов ZRP, содержащих фосфор и редкоземельные элементы (см. CN 1147420A), цеолитов ZRP, содержащих фосфор и щелочноземельные металлы (см. CN 1211469A, CN 1211470A и US 6080698) и цеолитов ZRP, содержащих фосфор и переходные металлы (см. CN 1465527А и CN 1611299А).
К упомянутым цеолитам с крупными порами относятся цеолиты с пористой структурой, размеры полостей колец которых составляет по меньшей мере 0,7 нм. В качестве такого цеолита может использоваться, например, один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18, в частности одного или нескольких цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
Кроме того, в качестве цеолитов с MFI-структурой и цеолитов с крупными порами могут использоваться цеолиты, предлагаемые на рынке, или же они могут быть также получены с использованием различных известных способов, которые в настоящем описании подробно не рассматриваются.
Бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием различных способов. Например, фосфор и переходный металл М могут быть введены; (1) при синтезе бета-цеолита; или (2) путем выполнения следующих стадий: ионообмена с аммонием, модификации фосфором, модификации переходным металлом М, прокаливания и аналогичных стадий после синтеза бета-цеолита.
Например, бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием нижеописанного способа. А именно, осуществляют взаимодействие натриевого бета-цеолита, полученного путем обычной кристаллизации, с аммонием в весовом отношении бета-цеолит:соль аммония: Н2O = 1:(0,1-1):(5-10) в течение 0,5-2 часов при температуре от комнатной до 100°С с последующей фильтрацией. Такая стадия взаимодействия может выполняться несколько раз (от 1 до 4), так чтобы содержание Na2O в бета-цеолите стало меньше 0,2 вес.%. Затем в полученный таким образом бета-цеолит путем импрегнирования или ионообмена вводят фосфор и один или несколько переходных металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, для его модификации, после чего осуществляют высушивание и прокаливание в течение 0,5-8 часов при температуре 400-800°С, причем прокаливание может осуществляться в атмосфере пара, в результате чего будет получен бета-цеолит, модифицированный фосфором и переходным металлом М.
При получении модифицированного бета-цеолита в соответствии с настоящим изобретением может быть осуществлен процесс модификации для введения в бета-цеолит фосфора и переходного металла М, например, с использованием процессов импрегнирования или ионообмена, которые хорошо известны в данной области техники.
Импрегнирование может быть выполнено, например, с использованием одного из трех способов:
а. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученная твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Мn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем высушивают;
b. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и после этого полученную твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем высушивают, причем последовательность импрегнирования двух вышеуказанных водных растворов может быть также изменена на обратную; и
c. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством перемешанного водного раствора фосфорсодержащего соединения и соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем смесь высушивают.
Указанный ионообмен может быть осуществлен с использованием следующего способа.
Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученная твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, с отношением твердой и жидкой фаз 1:(5-20) до получения однородной массы, при температуре 80-95°С в течение 2-3 часов и затем фильтруют, причем стадию ионообмена можно повторить несколько раз, после чего полученный образец промывают многократно водой и высушивают.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением в качестве соли аммония обычно используется известная неорганическая соль, такая как соль, выбранная из хлорида аммония, сульфата аммония, нитрата аммония или их смеси.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое фосфорсодержащее соединение выбирается из ортофосфорной кислоты, кислого диаммонийфосфата, дигидрофосфата аммония, фосфата аммония или их смесей.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое соединение, содержащее один или несколько переходных металлов, выбираемых из Fe, Со, Ni, Сu, Mn, Zn и Sn, выбирается из соответствующих растворимых в воде солей указанных металлов, таких как их сульфаты, нитраты и хлориды.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением высушивание (сушка) может выполняться с использованием обычных способов и температура высушивания может быть в интервале от комнатной до 350°С, предпочтительно 100-200°С. Кроме того, прокаливание выполняется при обычной температуре прокаливания, в общем случае 400-800°С, предпочтительно 450-700°С.
При получении модифицированного бета-цеолита конкретный тип исходного бета-цеолита не указывается. Это может быть бета-цеолит, обычно используемый в технике или имеющийся на рынке, или же он может быть получен с использованием одного из известных способов. В предпочтительном варианте осуществления изобретения в качестве исходного бета-цеолита может использоваться натриевый бета-цеолит. Если натриевый бета-цеолит содержит органический матричный компонент, то вышеуказанная процедура должна выполняться после удаления этого компонента. Кроме того, содержание натрия в таком натриевом бета-цеолите должно удовлетворять требованиям содержания натрия в безводном химическом составе бета-цеолита, содержащего фосфор и переходный металл М. Если содержание натрия не удовлетворяет указанным требованиям, то может быть использован процесс ионообмена с аммонием для удаления натрия из исходного натриевого бета-цеолита. В этом отношении стадия ионообмена с аммонием не является обязательной для получения модифицированного бета-цеолита.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением используемые устройства и способы регулирования условий конкретно не указываются, и это могут быть обычно используемые в технике устройства и способы регулирования.
Ниже описывается другой важный компонент, термостойкий неорганический оксид, предлагаемого в изобретении катализатора конверсии углеводородов.
Такой термостойкий неорганический оксид не указывается конкретно, однако предпочтительно он выбирается из одного или нескольких термостойких неорганических оксидов, используемых в качестве матрицы, и связующего компонента катализатора крекинга, например глинозема, кремнезема и аморфного алюмосиликата. Такие термостойкие неорганические оксиды и способы их получения хорошо известны специалистам в данной области техники. Указанный термостойкий неорганический оксид может предлагаться на рынке или же он может быть получен из прекурсоров с использованием известных способов.
Кроме того, прекурсоры такого термостойкого неорганического оксида могут быть использованы непосредственно вместо него для получения предлагаемого в настоящем изобретении катализатора углеводородов. Таким образом, термин "термостойкий неорганический оксид" охватывает и сами термостойкие неорганические оксиды, и их прекурсоры.
Под прекурсорами указанного термостойкого неорганического оксида в настоящем описании понимаются вещества, способные формировать термостойкий неорганический оксид при получении предлагаемого в настоящем изобретении катализатора углеводородов. В частности, например, прекурсоры глинозема могут быть выбраны из группы, состоящей из гидратированного глинозема и/или золя оксида алюминия, причем гидратированный глинозем может быть выбран, например, из группы, состоящей из бемита, псевдобемита, тригидрата алюминия и аморфной гидроокиси алюминия. Прекурсоры упомянутого кремнезема могут быть, например, одним или несколькими прекурсорами, выбранными из группы, состоящей из золя кремнистой кислоты, геля кремнистой кислоты и жидкого стекла. Далее, прекурсоры упомянутого аморфного алюмосиликата могут быть одним или несколькими прекурсорами, выбранными из группы, состоящей из золя алюмосиликата, смеси золя кремнистой кислоты и золя оксида алюминия, и геля алюмосиликата. Кроме того, прекурсоры такого термостойкого неорганического оксида и способы их получения также хорошо известны специалистам в данной области техники.
Предлагаемый в настоящем изобретении катализатор углеводородов может содержать глину (необязательный компонент). Такая глина не указывается конкретно, но предпочтительно используется одна или несколько глин, выбранных из группы, состоящей из глин, обычно используемых в качестве активных компонентов катализаторов крекинга. Например, в качестве глины может использоваться одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита, и предпочтительно одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита. Указанные глины и способы их получения хорошо известны специалистам в данной области техники или имеются на рынке.
Приведенные ниже примеры получения предлагаемого в настоящем изобретении катализатора углеводородов являются иллюстрациями изобретения и никоим образом не ограничивают его объем.
Весь или часть термостойкого неорганического оксида и/или его прекурсора смешивают с водой и перемешивают до получения суспензии. В полученную суспензию может быть добавлена глина. На этой стадии в суспензию может быть дополнительно добавлена оставшаяся часть термостойкого неорганического оксида и/или его прекурсора. Затем в суспензию добавляют вышеуказанную смесь цеолитов, перемешивают до получения однородной суспензии, высушивают и прокаливают. Перед добавлением смеси цеолитов, перед добавлением глины или после этого, в полученную суспензию добавляют кислоту для доведения рН суспензии до уровня 1-5. После того как уровень рН окажется в указанном диапазоне, полученную суспензию выдерживают в течение 0,1-10 часов при температуре 30-90°С. После стадии выдерживания в суспензию добавляют оставшуюся часть термостойкого неорганического оксида и/или его прекурсора.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов глина может быть добавлена до стадии выдерживания суспензии или после этой стадии. Последовательность добавления глины не влияет на характеристики предлагаемого в настоящем изобретении катализатора углеводородов.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов весь термостойкий неорганический оксид и/или его прекурсор (или их часть) может быть добавлен до стадии выдерживания. Для того чтобы повысить прочность катализатора к истиранию, часть термос