Способ нанесения покрытия на металлическую подложку и подложка с нанесенным покрытием
Изобретение относится к способам нанесения иттрийсодержащего покрытия на металлическую подложку, включая железосодержащие подложки, такие как холоднокатаная сталь и сталь, подвергнутая электролитическому цинкованию в расплаве. Задачей изобретения является создание способа получения иттрийсодержащего покрытия на подложке, в котором используется состав для предварительной обработки, основанный на соединении металлов IIIВ или IVB групп. Для этого способ нанесения покрытия на металлическую подложку включает контактирование по меньшей мере части металлической подложки с составом для предварительной обработки. Этот состав включает источник металла IIIВ группы и/или металла IVB группы и источник меди. Затем осуществляют контактирование по меньшей мере части металлической подложки с составом, содержащим смолу, образующую пленку, и источник иттрия. Также раскрыты подложки с покрытием, полученные таким образом. Техническим результатом изобретения является повышение качества покрытия за счет улучшений свойств адгезии между составом для предварительной обработки и содержащим иттрий покрытием. 2 н. и 18 з.п. ф-лы, 3 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к способам нанесения иттрийсодержащего покрытия на металлическую подложку, включая железосодержащие подложки, такие как холоднокатаная сталь и сталь, подвергнутая электролитическому цинкованию в расплаве. Настоящее изобретение относится также к подложкам с нанесенным покрытием, полученным такими способами.
Уровень техники
Предварительная обработка металлических подложек с помощью фосфатных конверсионных покрытий и хромсодержащих промываний долго являлась обычной для промотирования коррозионной стойкости. Чтобы максимизировать коррозионную стойкость стальных подложек, часто составляют составы для катионного электроосаждения со свинцом либо как пигментом, либо с растворимой солью свинца и наносят на предварительно обработанные (фосфатированные и промытые хромсодержащей жидкостью) подложки. Недостатки, связанные с фосфатированием, включают объем заводского пространства, необходимого для обработки, вследствие множественности стадий (обычно от одиннадцати до двадцати пяти); высокую капитальную стоимость и образование потоков отходов, содержащих тяжелые металлы, требующих дорогостоящей переработки и захоронения. Кроме того, свинец и хром, используемые в электроосаждаемых покрытиях, могут вызывать экологические проблемы. Свинец может присутствовать в исходящих потоках от процессов электроосаждения, а хром может присутствовать в исходящих потоках от процессов предварительной обработки, и эти металлы необходимо удалять и безопасно размещать, что снова требует дорогостоящих процессов обработки отходов.
Чтобы уменьшить, по меньшей мере, некоторые из предшествующих недостатков, были разработаны альтернативные, основанные не на фосфатах, составы для предварительной обработки. Например, недавно стали более распространенными составы для предварительной обработки, основанные на соединениях металлов IIIВ и/или IVB групп. Кроме того, были разработаны не содержащие свинца электроосаждаемые составы, содержащие иттрий, которые улучшают коррозионную стойкость металлической подложки, подвергнутой нанесению покрытия методом электроосаждения, особенно, когда металлическая подложка является необработанной. Полагают, однако, что составы для предварительной обработки, основанные на соединениях металлов IIIB и/или IVB групп, и не содержащие свинца электроосаждаемые составы, содержащие иттрий, в комбинации использованы не были.
В результате было бы желательным предложить способ получения иттрийсодержащего покрытия на подложке, в котором используется состав для предварительной обработки, основанный на соединении металлов IIIB или IVB групп. Более подробно, было бы желательным предложить такой способ, в котором получающаяся покрывающая система, по меньшей мере, в некоторых случаях, демонстрирует превосходные свойства адгезии между составом для предварительной обработки и иттрийсодержащим покрытием.
Краткое раскрытие изобретения
В определенных отношениях, настоящее изобретение направлено на способы нанесения покрытия на металлическую подложку. Данные способы включают (a) контактирование, по меньшей мере, части металлической подложки с составом для предварительной обработки, включающим (i) источник металла IIIB группы и/или металла IVB группы и (ii) источник меди; и, затем, (b) контактирование, по меньшей мере, части металлической подложки с составом, включающим (i) образующую пленку смолу и (ii) источник иттрия.
В других отношениях, настоящее изобретение направлено на способы покрывания металлической подложки, которые включают (a) контактирование, по меньшей мере, части металлической подложки с составом для предварительной обработки, включающим (i) источник металла IIIB группы и/или металла IVB группы и (ii) источник меди; и, затем, (b) нанесение методом электроосаждения, по меньшей мере, на часть металлической подложки отверждаемого электроосаждаемого покрывающего состава, включающего (i) образующую пленку смолу и (ii) источник иттрия.
Настоящее изобретение относится также к покрытым металлическим подложкам. Данные подложки включают (a) покрытие предварительной обработки, сформированное из состава для предварительной обработки, включающего (i) источник металла IIIB группы и/или металла IVB группы и (ii) источник меди; и (b) покрытие, осажденное, по меньшей мере, на части покрытия предварительной обработки, которое сформировано из состава, включающего (i) образующую пленку смолу и (ii) источник иттрия.
Осуществление изобретения
В целях следующего подробного описания следует понимать, что настоящее изобретение может предполагать различные альтернативные изменения и последовательности стадий, за исключением тех, о которых явно оговорено обратное. Более того, за исключением любых рабочих примеров или тех случаев, когда указано иначе, все числа, выражающие, например, количества ингредиентов, использованных в описании и формуле изобретения, следует понимать как измененные во всех случаях термином «приблизительно». Соответственно, если не указано обратное, числовые параметры, сформулированные в следующем описании и приложенной формуле изобретения, являются приближениями, которые могут изменяться в зависимости от желательных свойств, которые должны быть получены при помощи настоящего изобретения. По самой меньшей мере и не в качестве попытки ограничить применение доктрины эквивалентов к объему формулы изобретения, каждый числовой параметр должен быть рассмотрен, по меньшей мере, в свете количества сообщаемых значащих цифр и применяя обычные способы округления.
Несмотря на то что числовые диапазоны и параметры, формулирующие расширенный объем настоящего изобретения, являются приближениями, числовые величины, сформулированные в специфических примерах, приведены настолько точно, насколько это возможно. Любые числовые величины, однако, неизбежно содержат определенные ошибки, обязательно следующие из стандартных отклонений, найденных из соответствующих измерений при испытаниях.
Следует также понимать, что любой числовой диапазон, приведенный здесь, предназначен, чтобы включать все поддиапазоны, входящие в него. Например, диапазон «от 1 до 10» предназначен, чтобы включать все поддиапазоны между (и включая) приведенным минимальным значением 1 и приведенным максимальным значением 10, т.е. имеющие минимальное значение, равное или большее 1, и максимальное значение, равное или меньшее 10.
В данной заявке использование единственного включает множественное, а множественное охватывает единственное, если особо не оговорено иначе. Кроме того, в данной заявке использование «или» означает «и/или», если особо не оговорено иначе, даже притом, что в некоторых случаях «и/или» может использоваться явным образом.
Как упомянуто ранее, некоторые варианты воплощения настоящего изобретения направлены к способам покрывания металлической подложки. Подходящие металлические подложки для использования в настоящем изобретении включают те, которые часто используются для сборки автомобильных кузовов, автомобильных деталей и других изделий, таких как небольшие металлические детали, включая крепеж (соединительные детали), т.е. гайки, болты, винты, штифты, гвозди, зажимы, кнопки и т.п. Специфические примеры подходящих металлических подложек включают холоднокатаную сталь, горячекатаную сталь, сталь, покрытую металлическим цинком, соединениями цинка или цинковыми сплавами, такую как сталь, подвергнутую электролитическому цинкованию в расплаве, сталь, подвергнутую горячему цинкованию, сталь, подвергнутую цинкованию методом окрашивания (galvanealed steel), и сталь, покрытую цинковыми сплавами, но не ограничиваются ими. Также могут использоваться алюминиевые сплавы, сталь, покрытая алюминием, и стальные подложки, покрытые сплавами алюминия. Другие подходящие не содержащие железа металлы включают медь и магний, так же как и сплавы этих материалов. Более того, оголенная металлическая подложка, покрываемая при помощи способов по настоящему изобретению, может быть гранью разреза подложки, которая на остальной части ее поверхности обработана и/или покрыта иначе. Металлическая подложка, покрытая согласно способам по настоящему изобретению, может быть в форме, например, металлических листов или изготовленных деталей.
Подложка, которая должна быть покрыта согласно способам по настоящему изобретению, сначала может быть очищена, чтобы удалить жир, грязь или другие посторонние вещества. Часто это делают, применяя мягкие или сильные щелочные очистители типа коммерчески доступных и обычно используемых в способах предварительной обработки металлов. Примеры щелочных очистителей, подходящих для использования в настоящем изобретении, включают Chemkleen 163 и Chemkleen 177, оба из которых являются коммерчески доступными от PPG Industries, Inc. После использования таких очистителей и/или перед их использованием часто осуществляют промывание водой.
В некоторых вариантах воплощения после очистки щелочным очистителем и до контакта с составом для предварительной обработки металлическую подложку промывают водным раствором кислоты. Примеры растворов для промывки включают мягкие или сильные кислотные очистители, такие как растворы разбавленной азотной кислоты, коммерчески доступные и используемые обычно в способах предварительной обработки металлов.
В способах по настоящему изобретению металлическая подложка подвергается контактированию с составом для предварительной обработки, включающим (i) источник металла IIIB группы и/или металла IVB группы и (ii) источник меди. Термин «состав для предварительной обработки», как он используется здесь, относится к составу, который химически изменяет поверхность оголенной металлической подложки до покрывания подложки составом, включающим образующую пленку смолу и источник иттрия. Такие составы для предварительной обработки обычно включают носитель, часто водную среду, так, чтобы данный состав находился в форме раствора или дисперсии источника металла IIIB группы и/или металла IVB группы и источника меди в носителе. Данный раствор или дисперсия могут быть приведены в контакт с подложкой любым из множества известных способов, таких как окунание или погружение, опрыскивание, прерываемое опрыскивание, окунание с последующим опрыскиванием, опрыскивание с последующим окунанием, нанесение кистью или покрывание валиком. В некоторых вариантах воплощения раствор или дисперсия при нанесении на металлическую подложку находятся при температуре в пределах от 60 до 150°F (от 15 до 65°C). Время контакта составляет часто от 10 секунд до пяти минут, типично от 30 секунд до 2 минут.
Термины «металл IIIB группы» и «металл IVB группы», как они используются здесь, относятся к элементам, которые находятся в IIIB группе и IVB группе Периодической Таблицы Элементов CAS, как показано, например, в «Handbook of Chemistry and Physics», 63-е издание (1983). В некоторых вариантах воплощения источником металла IIIB группы и/или металла IVB группы в составе для предварительной обработки является сам металл. В некоторых вариантах воплощения в качестве источника металла IIIB и/или IVB группы используется соединение металла IIIB группы и/или IVB группы. Термин «соединение металла IIIB группы и/или IVB группы», как он используется здесь, относится к соединениям, которые включают, по меньшей мере, один элемент, который находится в IIIB группе или IVB группе Периодической Таблицы Элементов СAS.
В некоторых вариантах воплощения соединение металла IIIB группы и/или IVB группы, используемое в составе для предварительной обработки, представляет собой соединение циркония, титана, гафния, иттрия, церия или их смесь. Подходящие соединения циркония включают гексафторциркониевую кислоту, ее соли щелочных металлов и аммония, карбонат циркония-аммония, нитрат цирконила, карбоксилаты циркония и гидроксикарбоксилаты циркония, такие как гидрофторциркониевая кислота, ацетат циркония, оксалат циркония, гликолят циркония-аммония, лактат циркония-аммония, цитрат циркония-аммония и их смеси, но не ограничиваются ими. Подходящие соединения титана включают фтортитановую кислоту и ее соли, но не ограничиваются ими. Подходящее соединение гафния включает нитрат гафния, но не ограничено им. Подходящее соединение иттрия включает нитрат иттрия, но не ограничено им. Подходящее соединение церия включает нитрат церия (III), но не ограничено им.
В некоторых вариантах воплощения соединение металла IIIB группы и/или IVB группы присутствует в составе для предварительной обработки в количестве от 10 до 5000 частей металла на миллион (ppm, ч./млн), например от 100 до 300 ч./млн металла по отношению к совокупной массе ингредиентов в составе. pH состава для предварительной обработки часто находится в диапазоне от 2,0 до 7,0, например от 3,5 до 5,5. pH состава для предварительной обработки может быть откорректирован, используя минеральные кислоты, такие как фтористоводородная кислота, борофтористоводородная кислота, фосфорная кислота и т.п., включая их смеси; органические кислоты, такие как молочная кислота, уксусная кислота, лимонная кислота или их смеси; и водорастворимые или диспергируемые в воде основания, такие как гидроксид натрия, гидроксид аммония, аммиак или амины, такие как триэтиламин, метилэтиламин, диизопропаноламин или их смеси.
Как указано ранее, в способах по настоящему изобретению состав для предварительной обработки включает также источник меди. Более того, в то время как включение меди в составы для предварительной обработки, содержащие металл IIIB группы и/или металл IVB группы, как известно, по меньшей мере, незначительно улучшает свойства сопротивления коррозии таких составов и, возможно, незначительно улучшает способность таких составов сцепляться с металлической подложкой, удивительным открытием настоящего изобретения является то, что включение меди в составы для предварительной обработки, описанные здесь, при использовании в комбинации с покрывающими составами, включающими иттрий, как описано ниже, приводит к покрывающим системам, демонстрирующим, по меньшей мере, в некоторых случаях далеко превосходящие свойства адгезии между составом для предварительной обработки и содержащим иттрий покрытием по сравнению с подобной покрывающей системой, в которой в составе для предварительной обработки медь не присутствует.
В качестве источника меди в составах для предварительной обработки, используемых в настоящем изобретении, могут служить как растворимые, так и нерастворимые соединения. Например, в некоторых вариантах воплощения источник, предоставляющий ионы меди в состав для предварительной обработки, представляет собой водорастворимое соединение меди. Специфические примеры таких материалов включают цианид меди, цианид меди-калия, сульфат меди, нитрат меди, пирофосфат меди, тиоцианат меди, тетрагидрат этилендиаминтетраацетата меди-динатрия, бромид меди, оксид меди, гидроксид меди, хлорид меди, фторид меди, глюконат меди, цитрат меди, лауроилсаркозинат меди, формиат меди, ацетат меди, пропионат меди, бутират меди, лактат меди, оксалат меди, фитат меди, тартрат меди, малат меди, сукцинат меди, малонат меди, малеат меди, бензоат меди, салицилат меди, аспартат меди, глутамат меди, фумарат меди, глицерофосфат меди, хлорофиллин меди-натрия, фторосиликат меди, фторборат меди и иодат меди, а также медные соли карбоновых кислот в гомологической серии от муравьиной кислоты до декановой кислоты, медные соли многоосновных кислот в серии от щавелевой до субериновой (пробковой) кислоты и медные соли гидроксикарбоновых кислот, включая гликолевую, молочную, винную, яблочную и лимонную кислоты, но не ограничиваются ими.
Когда ионы меди, предоставленные из таких водорастворимых соединений меди, осаждаются, как загрязнители, в форме сульфата меди, оксида меди и т.д., может быть желательным добавлять комплексообразующий агент, который подавляет осаждение ионов меди, таким образом, стабилизируя их в виде медного комплекса в растворе.
В некоторых вариантах воплощения соединение меди добавляют в виде комплексной соли меди, такой как K3Cu(CN)4 или Cu-EDTA, которая может сама по себе стабильно присутствовать в составе для предварительной обработки, но также является возможным формировать комплекс меди, который может стабильно присутствовать в составе для предварительной обработки за счет комбинации комплексообразующего агента с соединением, которое, само по себе, является труднорастворимым. Примеры этого включают комплексное соединение цианида меди, образованное комбинацией CuCN и KCN или комбинацией CuSCN и KSCN или KCN, и комплексное соединение Cu-EDTA, образованное комбинацией CuSO4 и EDTA·2Na.
Относительно комплексообразующего агента может быть использовано соединение, которое может образовывать с ионами меди комплексное соединение; примеры этого включают неорганические соединения, такие как цианидные соединения и тиоцианатные соединения и поликарбоновые кислоты, а их специфические примеры включают этилендиаминтетрауксусную кислоту, соли этилендиаминтетрауксусной кислоты, такие как дигидрат дигидроэтилендиаминтетраацетата динатрия, аминокарбоновые кислоты, такие как нитрилотриуксусная кислота и иминодиуксусная кислота, оксикарбоновые кислоты, такие как лимонная кислота и винная кислота, янтарную кислоту, щавелевую кислоту, этилендиаминтетраметиленфосфоновую кислоту и глицин.
В некоторых вариантах воплощения в такие составы для предварительной обработки медь включают в количестве от 1 до 1500, таком как от 1 до 500 или, в некоторых случаях, от 1 до 50 ч./млн совокупного количества меди (измеренного в пересчете на элементарную медь) по отношению к совокупной массе ингредиентов в данном составе.
В некоторых вариантах воплощения состав для предварительной обработки включает также смолистое связующее. Подходящие смолы включают продукты реакции одного или более алканоламинов и материала с эпокси-функциями, содержащего, по меньшей мере, две эпокси-группы, такие как те, которые описаны в Патенте США №5653823. В некоторых случаях такие смолы содержат бета-гидроксисложноэфирные, имидные или сульфидные функциональные группы, включенные при использовании диметилолпропионовой кислоты, фталимида или меркаптоглицерина как дополнительных реагентов при приготовлении смолы. В качестве альтернативы продукт реакции представляет собой продукт реакции диглицидилового эфира бисфенола A (Bisphenol А) (коммерчески доступного от Shell Chemical Company как EPON 880), диметилолпропионовой кислоты и диэтаноламина в молярном соотношении (от 0,6 до 5,0):(от 0,05 до 5,5):1. Другие смолистые связующие включают водорастворимые и диспергируемые в воде полиакриловые кислоты, как раскрыто в Патентах США №3912548 и 5328525; фенолоформальдегидные смолы, как описано в Патенте США №5662746; водорастворимые полиамиды, такие как те, которые раскрыты в WO 95/33869; сополимеры малеиновой или акриловой кислоты с простым аллиловым эфиром, как описано в заявке на патент Канады 2087352; и водорастворимые и диспергируемые смолы, включающие эпоксидные смолы, аминопласты, фенолоформальдегидные смолы, танины и поливинилфенолы, как обсуждалось в Патенте США №5449415.
В этих вариантах воплощения настоящего изобретения смолистое связующее часто присутствует в составе для предварительной обработки в количестве от 0,005 до 30 мас.%, например от 0,5 до 3 мас.% по отношению к совокупной массе ингредиентов в составе.
В других вариантах воплощения, однако, состав для предварительной обработки является, по существу, свободным или, в некоторых случаях, полностью свободным от любого смолистого связующего. Термин «по существу, свободный», как он используется здесь, когда используется по отношению к отсутствию смолистого связующего в составе для предварительной обработки, означает, что любое смолистое связующее присутствует в составе для предварительной обработки в количестве менее чем 0,005 мас.%. Термин «полностью свободный», как он используется здесь, означает, что в составе для предварительной обработки смолистого связующего нет совсем.
Состав для предварительной обработки может необязательно содержать другие материалы, такие как неионогенные поверхностно-активные агенты и вспомогательные средства, обычно используемые в практике предварительной обработки. В водной среде могут присутствовать диспергируемые в воде органические растворители, например спирты, имеющие, приблизительно, до 8 атомов углерода, такие как метанол, изопропанол и т.п.; или простые гликолевые эфиры, такие как простые моноалкиловые эфиры этиленгликоля, диэтиленгликоля или пропиленгликоля и т.п. Диспергируемые в воде органические растворители, когда они присутствуют, обычно используются в количествах, приблизительно, до 10 об.% по отношению к совокупному объему водной среды.
Другие необязательные материалы включают поверхностно-активные агенты, которые функционируют как пеногасители или смачивающие субстрат агенты. Могут использоваться анионогенные, катионогенные, амфотерные и/или неионогенные поверхностно-активные агенты. Погашающие пену поверхностно-активные агенты часто присутствуют при уровнях до 1%, таких как до 0,1 об.%, а смачивающие агенты обычно присутствуют при уровнях до 2%, таких как до 0,5 об.% по отношению к совокупному объему среды.
В некоторых вариантах воплощения состав для предварительной обработки включает, также, силан, такой как, например, содержащий аминогруппу силановый связующий агент, его гидролизат или его полимер, как описано в публикации заявки на Патент США №2004/0163736 A1 на [0025] до [0031], процитированная часть которой включена в настоящее описание посредством ссылки. В других вариантах воплощения настоящего изобретения, однако, состав для предварительной обработки является, по существу, свободным или, в некоторых случаях, полностью свободным от любого такого содержащего аминогруппу силанового связующего агента. Термин «по существу, свободный», как он используется здесь, когда используется по отношению к отсутствию содержащего аминогруппу силанового связующего агента в составе для предварительной обработки, означает, что любой содержащий аминогруппу силановый связующий агент, его гидролизат или его полимер, который присутствует в составе для предварительной обработки, присутствует в количестве менее чем 5 ч./млн. Термин «полностью свободный», как он используется здесь, означает, что в составе для предварительной обработки содержащего аминогруппу силанового связующего агента, его гидролизата или его полимера нет совсем.
В некоторых вариантах воплощения состав для предварительной обработки включает, также, ускоритель реакции, такой как нитрит-ионы, содержащие нитрогруппу соединения, сульфат гидроксиламина, персульфат-ионы, сульфит-ионы, гипосульфит-ионы, пероксиды, ионы железа (III), железистые соединения лимонной кислоты, бромат-ионы, перхлорат-ионы, хлорат-ионы, хлорит-ионы, а также аскорбиновую кислоту, лимонную кислоту, винную кислоту, малоновую кислоту, янтарную кислоту и их соли. Специфические примеры подходящих материалов и их количества описаны в публикации заявки на Патент США №2004/0163736 A1 на [0032] до [0041], процитированная часть которой включена в настоящее описание посредством ссылки.
В некоторых вариантах воплощения состав для предварительной обработки включает, также, источник фосфат-ионов. В других вариантах воплощения, однако, состав для предварительной обработки является, по существу, или, в некоторых случаях, полностью свободным от фосфат-ионов. Термин «по существу, свободный», как он используется здесь, когда используется по отношению к отсутствию фосфат-ионов в составе для предварительной обработки, означает, что фосфат-ионы не присутствуют в составе до такой степени, что фосфат-ионы не оказывают нагрузку на окружающую среду. Т.е. фосфат-ионы, по существу, не используются, и образование шлама, такого как фосфат железа и фосфат цинка, формирующегося в случае использования агента для обработки, основанного на фосфате цинка, исключается.
В некоторых вариантах воплощения плотность пленки остатка состава покрытия предварительной обработки, в общем, находится в диапазоне от 1 до 1000 миллиграммов на квадратный метр (мг/м2), таком как от 10 до 400 мг/м2. Толщина покрытия предварительной обработки может варьироваться, но, в общем, составляет менее чем 1 мкм, в некоторых случаях она составляет от 1 до 500 нм, и, в других случаях, она составляет от 10 до 300 нм.
После контакта с составом для предварительной обработки подложка может быть промыта водой и непосредственно покрыта, т.е. без стадии фосфатирования, как имеет место обычно в данной области техники. Такое покрытие может быть сделано немедленно или после периода высушивания в условиях обычной или повышенной температуры.
Как указано, в способах по настоящему изобретению после того, как подложка подвергнута контактированию с составом для предварительной обработки, она затем подвергается контактированию с составом, включающим (i) образующую пленку смолу и (ii) источник иттрия. В некоторых вариантах воплощения такое контактирование включает стадию нанесения покрытия методом электроосаждения, в которой электроосаждаемый состав осаждается на металлическую подложку при помощи электроосаждения.
В процессе электроосаждения металлическую подложку, подвергающуюся обработке, служащую в качестве электрода, и электропроводящий противоэлектрод вводят в контакт с ионным электроосаждаемым составом. При пропускании электрического тока между электродом и противоэлектродом, в то время как они находятся в контакте с электроосаждаемым составом, на металлической подложке, по существу, непрерывно, осаждается прилегающая пленка электроосаждаемого состава.
Электроосаждение обычно выполняют при постоянном напряжении в диапазоне от 1 вольта до нескольких тысяч вольт, обычно между 50 и 500 В. Плотность тока составляет обычно от 1,0 до 15 ампер на квадратный фут (от 10,8 до 161,5 А/м2) и имеет тенденцию быстро понижаться во время процесса электроосаждения, указывая на формирование непрерывной самоизолирующей пленки.
Электроосаждаемый состав, используемый в некоторых вариантах воплощения настоящего изобретения, часто включает смолистую фазу, диспергированную в водной среде, где смолистая фаза включает: (a) содержащую активные водородные группы ионогенную электроосаждаемую смолу и (b) отверждающий агент, имеющий функциональные группы, реакционно-способные по отношению к активным водородным группам (a).
В некоторых вариантах воплощения электроосаждаемые составы, используемые в некоторых вариантах воплощения настоящего изобретения, содержат в качестве основного образующего пленку полимера ионогенную, часто катионогенную, электроосаждаемую смолу, содержащую активный водород. Известно и может использоваться в настоящем изобретении широкое разнообразие электроосаждаемых образующих пленку смол, если данные полимеры являются «диспергируемыми в воде», т.е. адаптированными к тому, чтобы быть солюбилизированными, диспергированными или эмульгированными в воде. Диспергируемый в воде полимер, по природе, является ионогенным, т.е. данный полимер содержит анионогенные функциональные группы, чтобы обеспечивать отрицательный заряд, или, как часто имеет место, катионогенные функциональные группы, чтобы обеспечивать положительный заряд.
Примерами образующих пленки смол, подходящих для использования в анионогенных электроосаждаемых составах, являются растворимые в основаниях, содержащие карбоновые кислоты полимеры, такие как продукты реакции или аддукты высыхающих масел или полувысыхающих сложных эфиров жирных кислот с дикарбоновыми кислотами или ангидридами; и продукты реакции сложных эфиров жирных кислот, ненасыщенных кислот или ангидридов и любых дополнительных ненасыщенных модифицирующих материалов, которые реагируют, кроме того, с полиолами. Подходящими также являются, по меньшей мере, частично нейтрализованные сополимеры гидроксиалкиловых сложных эфиров ненасыщенных карбоновых кислот, ненасыщенной карбоновой кислоты и, по меньшей мере, одного другого ненасыщенного по этиленовому типу мономера. Еще одна подходящая электроосаждаемая образующая пленку смола включает алкид-аминопластовое связующее, т.е. связующее, содержащее алкидную смолу и амино-альдегидную смолу. Еще один состав анионогенной электроосаждаемой смолы включает смешанные эфиры смолообразных полиолов. Данные составы подробно описаны в Патенте США №3749657 в колонке 9, строки с 1 по 75, и в колонке 10, строки с 1 по 13, процитированная часть которого включена в данное описание посредством ссылки. Также могут быть использованы другие полимеры с кислотными функциями, такие как фосфатированные полиэпоксиды или фосфатированные акриловые полимеры, как это хорошо известно специалистам в данной области.
Как упомянуто выше, часто является желательным, чтобы содержащая активный водород ионогенная электроосаждаемая смола являлась катионогенной и способной к осаждению на катоде. Примеры таких катионогенных образующих пленку смол включают содержащие солевую аминогруппу смолы, такие как растворимые в кислотах продукты реакции полиэпоксидов и первичных или вторичных аминов, такие как те, которые описаны в Патентах США №3663389, 3984299, 3947338 и 3947339. Часто данные содержащие солевую аминогруппу смолы используют в сочетании с отверждающими агентами, содержащими блокированные изоцианатные группы. Изоцианат может быть блокирован полностью, как описано в Патенте США №3984299, или изоцианат может быть частично блокированным и прореагировавшим с основой смолы, как описано в Патенте США №3947338. Также в качестве образующей пленку смолы могут использоваться однокомпонентные составы, как описано в Патенте США №4134866 и DE-OS №2707405. Помимо продуктов реакции эпоксисоединений с аминами образующие пленку смолы также могут быть выбраны из катионогенных акриловых смол, таких как те, которые описаны в Патентах США №3455806 и 3928157.
Помимо содержащих солевую аминогруппу смол также могут использоваться смолы, содержащие четвертичную аммониевую солевую группу. Примерами таких смол являются те, которые образуются при реагировании органических полиэпоксидов с солями третичных аминов. Такие смолы описаны в Патентах США №3962165, 3975346 и 4001101. Примерами других катионогенных смол являются содержащие третичную сульфониевую солевую группу смолы и содержащие четвертичную фосфониевую солевую группу смолы, такие как те, которые описаны в Патентах США №3793278 и 3984922 соответственно. Также могут использоваться образующие пленку смолы, которые отверждаются посредством переэтерификации, такие как описаны в Европейской заявке №12463. Кроме того, могут использоваться катионогенные составы, приготовленные из оснований Манниха, такие как описаны в Патенте США №4134932.
В некоторых вариантах воплощения смолы, присутствующие в электроосаждаемом составе, являются положительно заряженными смолами, которые содержат первичные и/или вторичные аминогруппы. Такие смолы описаны в Патентах США №3663389, 3947339 и 4116900. В Патенте США №3947339 поликетиминовое производное полиамина, такого как диэтилентриамин или триэтилентетраамин, реагирует с полиэпоксидом. Когда продукт реакции нейтрализуют кислотой и диспергируют в воде, генерируются свободные первичные аминогруппы. Эквивалентные продукты также образуются, когда полиэпоксиды реагируют с избытком полиаминов, таких как диэтилентриамин и триэтилентетраамин, и избыток полиамина удаляют в вакууме из реакционной смеси. Такие продукты описаны в Патентах США №3663389 и 4116900.
В некоторых вариантах воплощения содержащая активный водород ионогенная электроосаждаемая смола, описанная выше, присутствует в электроосаждаемом составе в количестве от 1 до 60 мас.%, таком как от 5 до 25 мас.% по отношению к совокупной массе раствора для электроосаждения.
Как было указано, смолистая фаза электроосаждаемого состава часто включает, кроме того, отверждающий агент, адаптированный к тому, чтобы реагировать с активными водородными группами ионогенных электроосаждаемых смол, описанных непосредственно выше. Например, отверждающие агенты на основе как блокированных органических полиизоцианатов, так и аминопластов являются подходящими для использования в настоящем изобретении, хотя блокированные изоцианаты часто являются здесь предпочтительными для катодного электроосаждения.
Аминопластовые смолы, которые часто являются предпочтительными отверждающими агентами для анионного электроосаждения, представляют собой продукты конденсации аминов или амидов с альдегидами. Примерами подходящих аминов или амидов являются меламин, бензогуанамин, мочевина и подобные соединения. Вообще, применяемый альдегид представляет собой формальдегид, хотя продукты могут быть получены из других альдегидов, таких как ацетальдегид или фурфурол. Продукты конденсации содержат метилольные группы или подобные алкилольные группы в зависимости от конкретного использованного альдегида. Данные метилольные группы часто этерифицируют реакцией со спиртом. Различные используемые спирты включают одноатомные спирты, содержащие от 1 до 4 атомов углерода, такие как метанол, этанол, изопропанол и н-бутанол, причем метанол является предпочтительным.
Аминопластовые отверждающие агенты часто используются в сочетании с содержащей активный водород анионогенной электроосаждаемой смолой в количествах, находящихся в диапазоне от 5 до 60 мас.%, таких как от 20 до 40 мас.%, причем процентное содержание относится к совокупной массе твердых частиц смолы электроосаждаемого состава.
Как было указано, отверждающие агенты, используемые при катодном электроосаждении, часто являются блокированными органическими полиизоцианатами. Полиизоцианаты могут быть полностью блокированными, как описано в Патенте США №3984299 в колонке 1, строки с 1 по 68, колонке 2 и колонке 3, строки с 1 по 15, или частично блокированными и прореагировавшими с полимерной основой, как описано в Патенте США №3947338 в колонке 2, строки с 65 по 68, колонке 3 и колонке 4, строки с 1 по 30, процитированные части обоих из них включены в описание посредством ссылки. Под «блокированными» подразумевается, что изоцианатные группы прореагировали с соединением таким образом, что блокированные изоцианатные группы продукта являются стабильными по отношению к активному водороду при обычной температуре, но реакционно-способными по отношению к активному водороду в образующем пленку полимере при повышенных температурах, обычно между 90°C и 200°C.
Подходящие полиизоцианаты включают ароматические и алифатические полиизоцианаты, включая циклоалифатические полиизоцианаты, а репрезентативные примеры включают дифенилметан-4,4'-диизоцианат (MDI), 2,4- или 2,6-толуолдиизоцианат (TDI), включая их смеси, п-фенилендиизоцианат, тетраметилен- и гексаметилендиизоцианаты, дициклогексилметан-4,4'-диизоцианат, изофорондиизоцианат, смеси фенилметан-4,4'-диизоцианата и полиметиленполифенилизоцианата. Могут использоваться более высокие полиизоцианаты, такие как триизоцианаты. Пример мог бы включать трифенилметан-4,4',4''-триизоцианат. Могут также использоваться изоцианатные форполимеры с полиолами, такими как неопентилгликолем и триметилолпропаном, и с полимерными полиолами, такими как поликапролактондиолы и -триолы (эквивалентное отношение NCO/OH более чем 1).
Полиизоцианатные отверждающие агенты часто используются в сочетании с содержащей активный водород катионогенной электроосаждаемой смолой в количествах, находящихся в диапазоне от 5 до 60 мас.%, таких как от 20 до 50 мас.%, причем процентное содержание относится к совокупной массе твердых частиц смолы электроосаждаемого состава.
Как было указано ранее, в способах по настоящему изобретению покрывающий состав, такой как электроосаждаемый состав, включает также источник иттрия. В некоторых вариантах воплощения иттрий присутствует в таких составах в количестве от 10 до 10000 ч./млн, таких как не более чем 5000 ч./млн и, в некоторых случаях, не более чем 1000 ч./млн совокупного количества иттрия (измеренного как элементарный иттрий) по отношению к совокупной массе ингредиентов в составе.
В качестве источника иттрия могут служить как раствори