Гидрофильные полимеры с обращенной фазой и их применение в набухающих в воде эластомерных композициях

Изобретение относится к набухающим в воде композициям, а также их получению и применению. Набухающая в воде композиция включает: (а) 5-70 мас.% набухающего в воде материала, являющегося гидрофильными полимерными микрочастицами, (б) 30-95 мас.% не набухающего в воде термопластичного полимера или эластомерного материала. Гидрофильные полимерные микрочастицы имеют среднеобъемный диаметр не больше 2 мкм. Композицию применяют для получения герметиков. Набухающую в воде композицию приготавливают совмещением (а) и (б). Изобретение позволяет получать композиции с улучшенной набухаемостью и улучшенным удерживанием набухающих в воде полимерных частиц. 4 з.п. ф-лы, 1 табл.

Реферат

Настоящее изобретение относится к набухающим в воде композициям, дисперсиям и полимерным микрочастицам для их приготовления.

Из US 6358580, например, известны набухающие в воде герметики, включающие эластомерный компонент и порошкообразный абсорбирующий воду материал, являющийся сочетанием полисахарида и суперабсорбирующего воду полимера, выбранного из полимеров на основе метакрилата, акрилата, полиметакриловой кислоты, полиакриловой кислоты и их солей, полиакриламида и т.д. Эти суперабсорбирующие воду полимеры обладают средним размером частиц в интервале от 5 до 800 мкм. У одного из приемлемых суперабсорбентов только 2,3 мас.% частиц обладают размером меньше 50 мкм.

Водоизоляционные герметики, используемые при приготовлении гидроизоляционных материалов для различных гражданских строительных и конструкционных работ, включающие набухающую в воде часть и ненабухающую в воде часть, описаны, например, в ЕР 588286 А1; в качестве ненабухающей в воде части могут быть выбраны винилхлоридные смолы, этилен-винилацетатные сополимеры, полиэтилен, полипропилен, ТЭПД и силиконовые смолы, а в качестве набухающих в воде материалов - уретановые смолы, карбоксиметилцеллюлоза, поливиниловый спирт, полиакрилат натрия и другие. В случае винилхлоридной смолы предпочтительнее, по-видимому, также использовать пластификатор наподобие фталата, такого как диоктилфталат, дитридецилфталат, тримеллитат, пиромеллитат, адипат и т.п. В примерах описаны только набухающие в воде уретановые смолы из неизвестных источников и размеры частиц.

В US 4532298 описаны набухающие в воде резиновые смеси, включающие хлоропреновый каучук, интенсивно абсорбирующую воду смолу, каучукоподобный полимер и вулканизующее вещество на основе оксида металла. В предпочтительном варианте интенсивно набухающую смолу используют в порошкообразной форме измельчением с тем, чтобы она обладала таким распределением частиц по размерам, благодаря которому они проходили через сито с отверстиями 20 меш, которые соответствуют 840 мкм. Упоминается, что более крупнозернистый порошок может проявлять неровность набухания, когда он набухает от воды, или может утратить гладкость поверхности.

В WO 97/34945 описаны высушенные распылением гранулы, размер по меньшей мере 90 мас.% которых составляет больше 20 мкм и которые получают из первичных частиц, где размер по меньшей мере 90 мас.% первичных частиц составляет меньше 10 мкм и их получают из полимера водорастворимого этиленовоненасыщенного мономера или смеси мономеров и от 5 до 2000 част./млн полиэтиленовоненасыщенного сшивающего агента, гранулы предварительно получают распылительной сушкой эмульсии с обращенной фазой первичных полимерных частиц в неводной жидкости. Так, в частности, описаны первичные частицы, которые проявляют размер 90 мас.% первичных частиц в интервале от 0,5 до 3 мкм, которые получают полимеризацией в эмульсии с обращенной фазой смеси, включающей 80 мас.% диметиламиноэтилакрилата, кватернизованного метилхлоридом, и 20 мас.% акриламида, в присутствии метилен-бисакриламида. Эти гранулы используют при флокуляции или повышении вязкости композиций, например в области очистки илом сточных вод или в процессе изготовления бумаги. Не описаны ни свойства набухания в воде, ни применение для приготовления набухающих в воде композиций.

В US 4585812 А описана композиция, характеризующаяся неводной жидкостью, такой как масло или ксилол, содержащей дисперсию безводных набухающих в воде полимерных частиц, из которых 1 мас. част. обладает размерами меньше 3 мкм и от 1 до 7 мас. част. (см. стр. с 25 по 34 кол. 6.I) приходятся на долю грубых частиц, от 10 до 300 мкм. Пример 1 относится к несшитому сополимеру, размер частиц которого перед полимеризацией, т.е. перед дезоксигенированием и добавлением инициатора, находится в интервале от 1 до 2 мкм. Размер частиц полученного полимеризованного тонкодисперсного материала не указан. В примере 2 получают другой несшитый сополимер, размер частиц которого составляет меньше 3 мкм, однако остается неясным, равен ли размер частиц меньше 2 мкм. Тонкодисперсные частицы не смешивают с нерастворимым в воде термопластичным полимером. Более того, эти частицы не используют для получения герметиков.

В ЕР 0179937 А1 описана набухающая в воде эластомерная трехкомпонентная композиция, состоящая по существу из гомогенной смеси эластомера, абсорбирующей воду смолы и водорастворимой смолы, где водорастворимую смолу выбирают из группы полиэтиленоксида, поливинилпирролидона, гидроксиэтилцеллюлозы, гидроксипропилцеллюлозы и их смеси. Недостаток такого технического решения состоит в том, что для достижения целевых эффектов в дополнение к эластомеру требуются две дополнительные смолы. Другой недостаток заключается в потере водорастворимой смолы, когда эластомер набухает в контакте с водой, поскольку растворенные отдельные молекулы проникают из эластомера в водную фазу. На последующей стадии повторной гидратации эластомер демонстрирует ухудшенные свойства набухания. Абсорбирующая воду смола должна обладать диаметром частиц меньше 400 мкм, предпочтительно меньше 100 мкм. Однако нижний предел диаметра частиц не указан. Только в примере 1 упоминается сшитый продукт полиакрилата натрия, Aquakeep® 4S, который проявляет диаметр частиц 70 мкм. Упомянуты также другие абсорбирующие воду смолы, в частности в примере 3 (Sanwet IM-300) и в примере 9 (Sumikagel S-50), однако диаметр частиц не указан. Более того, хотя в стр.16 на с.5 в ЕР 0179937 говорится, что преимущество размеров частиц более тонкодисперсного материала состоит в том, что образуется более гомогенная композиция, а полученный из нее набухший продукт становится гомогенным, ничего не сказано о связи между размером частиц набухающей в воде смолы и способностью набухать или удерживанием в эластомере.

Следовательно, объектом настоящего изобретения является создание набухающих в воде композиций с улучшенной набухаемостью и улучшенным удерживанием набухающих в воде полимерных частиц. Более того, дополнительными объектами являются дисперсии, а также полимерные микрочастицы, например, в порошкообразной форме, для приготовления таких набухающих в воде композиций. Кроме того, должны быть созданы микрочастица, дисперсия, содержащая микрочастицы, и набухающая в воде композиция, включающая микрочастицы, которая не содержит третьей полимерной смолы.

Следовательно, объектом настоящего изобретения является набухающая в воде композиция, которая может быть приготовлена совмещением не набухающего в воде термопластичного или эластомерного полимера и набухающего в воде материала, которая включает

(а) от 5 до 70, предпочтительно от 10 до 60, наиболее предпочтительно от 15 до 50 мас.%, гидрофильных полимерных микрочастиц,

(б) от 30 до 95, предпочтительно от 40 до 90, наиболее предпочтительно от 50 до 85 мас.%, нерастворимого в воде термопластичного полимера, смолы или эластомерного материала,

где гидрофильные полимерные микрочастицы характеризуются среднеобъемным диаметром не больше 2 мкм (как это определяют по лазерному дифракционному методу с использованием Sympatec Helos HI 539 с линзой R1 и дисперсной системы Quixcel).

Гидрофильные полимерные микрочастицы могут быть получены в соответствии со способами, описанным ниже, т.е. в предпочтительном варианте дисперсию готовят так, как изложено ниже. Обычно эту дисперсию используют для приготовления предлагаемой по изобретению набухающей в воде композиции или гидрофильные полимерные микрочастицы выделяют из дисперсии (как это изложено позднее) и используют для приготовления предлагаемой набухающей в воде композиции.

Более подробно о среднеобъемном диаметре частиц сказано позднее.

Термопластичный полимер, смола или эластомерный материал, который можно использовать, обычно представляет собой материал, который обладает эластомерными или каучукоподобными свойствами, или материал, который при использовании приемлемого пластификатора приобретает эластомерные свойства, такой как этилен-винилацетатный сополимер, поливинилбутиральная смола, ПВХ (поливинилхлорид), полистирол, полиакрилаты, полиамиды, каучуки, такие как натуральный каучук, СКН (бутадиенакрилонитрильный каучук), БСК (бутадиенстирольный каучук), полибутены, полибутадиены, полиизопрены, полиизобутилен-изопреновый, фторкаучук, хлорсульфированный полиэтилен, силиконовый, полихлоропрен, бутилкаучуки, ТЭПД (этилен-пропилен-диеновый каучук), СКЭП (этилен-пропиленовый каучук) и изобутилен-стирольный сополимер, смолы, такие как алкидные смолы, фенольные смолы, аминопластовые смолы, полиуретановые смолы, полисульфидные каучуки и акрилатные смолы. В предпочтительном варианте он представляет собой материал, в случае которого обычно используют существенное количество пластификаторной жидкости для приготовления эластомерной композиции, такой как ПВХ и СКН. Для дисперсий с обращенной фазой наиболее предпочтительные материалы представляют собой ПВХ и СКН, а в случае, когда требуется свободный от носителя порошкообразный продукт, тогда предпочтительны пластифицированные, а также непластифицированные эластомеры, предпочтительнее ПВХ, а более предпочтительны эластомерные каучуки.

Предлагаемые набухающие в воде композиции могут быть приготовлены с применением обычных способов. Так, например, компоненты, включающие нерастворимый в воде термопластичный полимер, полимерный или эластомерный материал, гидрофильный полимер в виде дисперсии или в порошкообразном виде и необязательные добавки, в зависимости от необходимости могут быть предварительно смешаны с использованием высокосдвигового смесителя, такого как смеситель Бенбери. Такое высокосдвиговое смешение обычно генерирует тепло, которое размягчает основной термопластичный полимер, смолу или эластомерный материал и содействует диспергированию микрочастиц гидрофильного полимера по всей смеси. Далее композиции, включающие термопластичные полимеры, такие как ПВХ, в предпочтительном варианте перерабатывают в листовой материал или формованное изделие экструзией, литьем под давлением или по другому термическому методу. Аналогичным образом могут быть переработаны каучуки, которые во время этой второй стадии обычно отверждают или вулканизуют при высокой температуре благодаря действию приемлемого отверждающего или вулканизующего вспомогательного вещества.

Следовательно, другой вариант выполнения настоящего изобретения связан со способом приготовления предлагаемых по изобретению композиций, в котором смешивают от 5 до 70 мас.% гидрофильных микрочастиц и от 30 до 95 мас.% нерастворимого в воде термопластичного полимера, смолы или эластомерного материала.

Предпочтительным вариантом выполнения настоящего изобретения является предлагаемая композиция, которая в качестве дополнительного компонента включает добавку (в). Примеры добавок включают, в частности, смазки, масла для улучшения технологических свойств, антистатики, такие как глицеринмоностеарат и глицеринмоноолеат, оксиэтилированный спирт в качестве антистатика и/или сжижающего агента для ПВХ пластизолей, антипирен, ускорители вулканизации, содействующие вулканизации добавки, ингибиторы старения, красители, такие как пигменты и окрашивающие вещества, смачивающие агенты, нейтрализаторы кислот, термостабилизаторы, пеногасители, газообразующие средства, наполнители, такие как карбонат кальция, углеродная сажа, глина, диоксид кремния, и дополнительные пластификаторы, в дополнение к пластификатору, введенному благодаря его наличию в качестве текучей среды как носителя гидрофильной полимерной микрочастицы.

Такие добавки (в) можно вводить в количествах, которые зависят от целевого эффекта и которые могут быть легко определены специалистом в данной области техники. Обычно добавки вводят в количествах в интервале от 1 до 50 мас.% в пересчете на общее количество композиции.

Следовательно, предпочтительным вариантом является предлагаемая композиция, дополнительно включающая добавку (в), которая представляет собой смазку, технологическое масло, антистатик, оксиэтилированный спирт, антипирен, ускоритель вулканизации, содействующую вулканизации добавку, ингибитор старения, краситель, такой как пигмент или окрашивающее вещество, смачивающий агент, нейтрализатор кислоты, термостабилизатор, пеногаситель, газообразующее средство, наполнитель, такой как карбонат кальция, углеродная сажа, глина, диоксид кремния, или дополнительный пластификатор в дополнение к пластификатору, введенному благодаря его присутствию в качестве текучей среды как носителя гидрофильной полимерной микрочастицы.

В другом предпочтительном варианте в предлагаемую композицию либо совместно с добавкой (в), либо без нее добавляют дополнительный компонент (г) в количествах в интервале от 0 до 20 мас.% в пересчете на общее количество композиции. Компонент (г) обычно выполняет функцию второго гидрофильного материала, такого как тонко измельченный натриевый или кальциевый бентонит и диоксид кремния. Такие материалы можно использовать для содействия непосредственно набуханию эластомерной композиции или для помощи в продвижении воды к микрочастицам гидрофильного полимера. Применение таких материалов может оказаться благотворным при изготовлении водоизоляционной полосы, оптимизированной в отношении, например, набухающей способности, скорости набухания и стоимости (благодаря низкой стоимости гидрофильных минералов).

По еще одному предпочтительному варианту выполнения настоящего изобретения его объектом является применение предлагаемых по изобретению набухающих в воде композиций в качестве уплотнительных материалов, например в качестве гидроизоляций для неподвижных конструкционных соединений. Обычно гидроизоляции в предпочтительном варианте находятся в форме гибкой полосы и обычно содержат от 10 до 60, предпочтительно 15 до 50 мас.%, гидрофильных полимерных микрочастиц (на сухую основу) и от 20 до 70, предпочтительно от 30 до 60 мас.%, нерастворимого в воде термопластичного полимера, смолы или эластомерного материала, тогда как остальное, количество которого достаточно до 100 мас.%, обычно состоит из веществ для улучшения технологических свойств и добавок, которые в ПВХ могут содержаться в большой пропорции, до 50 мас.%, один или несколько пластификаторов.

Более того, предлагаемые набухающие в воде композиции могут быть в форме материалов покрытий, пленок, волокон, пряжи, тканей, вспененных материалов, полос, шнуров и других гибких формованных изделий, а также менее гибких формованных изделий.

Следовательно, другим вариантом выполнения настоящего изобретения являются гибкие формованные изделия, такие как покрытия, пленки, волокна, пряжа, ткани, вспененные материалы, полосы и шнуры.

Кроме того, предлагаемые набухающие в воде композиции можно использовать для изготовления, например,

изделий для абсорбции свободной нежелательной воды или жидкостей на водной основе, таких как салфетки для уборки пролитых жидкостей или просыпанных порошков;

абсорбирующих воду волокон, пряж или тканей или текстильных материалов для вытирания воды или жидкостей на водной основе, например, для применения в бытовых целях и таких целях применения, как поясные изоляции жгутов кабелей для защиты против проникновения воды;

таких изделий, как абсорбентные волокна, ткани, пленки и мембраны для применения в качестве компонентов повязок на раны с целью придания большей абсорбционной способности и/или воздухопроницаемости, и/или влагопроницаемости, а также прилипаемости повязок, которые обладали бы способностью удалять с кожи воду или влагу;

изделий для удаления влаги из воздуха с целью регулирования влажности во влажных условиях;

набухающих в воде герметиков, например гидроизоляций для конструкционных соединений, а также каучуковых набухающих в воде уплотнителей для бурения нефтяных скважин; набухающих в воде замазок, уплотняющих композиций или герметиков;

набухающих в воде материалов покрытий или слоев, закрепленных на водостойких мембранах или используемых в сочетании с ними, слоев или покрывных материалов и т.д.; такие системы можно было бы использовать, например, при обеспечении защиты от проникновения воды на случай повреждения мембраны или покрытия, т.е. такая система является "самовосстанавливающейся";

проницаемых для паров влаги пленок, мембран и покрывных материалов, например мембран диффузионного испарения, покрытых пластизолями настенных покрывных материалов, например виниловых настенных покрывных материалов, включая настенные покрывные материалы, получаемые послойным нанесением покрытия, или пленки на бумажной основе, например проведением процесса каландрирования;

клеев, покрывных материалов, замазок, уплотняющих композиций, герметиков или пленок, которые обладают способностью пропускать воду или водяной пар;

печатных валиков с более гидрофильными свойствами, благодаря чему полярные увлажняющие растворы приобретают большее сродство к таким валикам.

Кроме того, объектом настоящего изобретения является также дисперсия, включающая

(а) от 30 до 75, предпочтительно от 40 до 75 мас.%, гидрофильных полимерных микрочастиц, которые могут быть получены полимеризацией с обращенной фазой мономеров, выбранных из группы, включающей

(аа) водорастворимые этиленовомононенасыщенные полярные неионогенные мономеры,

(аб) водорастворимые этиленовомононенасыщенные анионогенные мономеры и

(ав) водорастворимые этиленовомононенасыщенные катионогенные мономеры,

в присутствии образователя поперечных связей, где гидрофильные полимерные микрочастицы характеризуются среднеобъемным диаметром меньше 2 мкм (как это определяют по лазерному дифракционному методу с использованием Sympatec Helos H1539 с линзой R1 и дисперсной системы Quixcel),

(б) от 25 до 70, предпочтительно от 25 до 60 мас.%, не смешивающейся с водой текучей среды как носителя.

Предпочтительная дисперсия включает

(а) от 30 до 75, предпочтительнее от 40 до 75 мас.%, гидрофильных полимерных микрочастиц, которые могут быть получены полимеризацией с обращенной фазой мономеров, выбранных из группы, включающей

(аа) водорастворимые этиленовомононенасыщенные полярные неионогенные мономеры,

(аб) водорастворимые этиленовомононенасыщенные анионогенные мономеры и

(ав) водорастворимые этиленовомононенасыщенные катионогенные мономеры,

в присутствии образователя поперечных связей, где гидрофильные полимерные микрочастицы характеризуются среднеобъемным диаметром меньше 2 мкм (как это определяют по лазерному дифракционному методу с использованием Sympatec Helos H1539 с линзой R1 и дисперсной системы Quixcel),

(б) от 25 до 69,5, предпочтительно от 25 до 58,5 мас.%, не смешивающейся с водой текучей среды как носителя,

(в) от 0,5 до 25%, предпочтительно от 1,5 до 15 мас.%, других компонентов по потребности, таких как первичный эмульгатор, стабилизирующий полимер и активатор, где общее количество компонентов (а), (б) и (в) доводят 100 мас.%.

В качестве водорастворимых этиленовомононенасыщенных полярных неионогенных мономеров могут быть выбраны следующие мономеры: акриламид, метакриламид, N,N-ди(С18алкил)акриламид, такой как N,N-диметилакриламид, виниловый спирт, винилацетат, аллиловый спирт, гидроксиэтилметакрилат и акрилонитрил.

В качестве водорастворимых этиленовомононенасыщенных анионогенных мономеров могут быть выбраны следующие мономеры: водорастворимые этиленовомононенасыщенные анионогенные мономеры, содержащие кислотные группы, выбранные из карбоксильной группы, сульфоновой группы, фосфоновой группы, и соответствующие соли, в предпочтительном варианте могут быть выбраны такие мономеры, как акриловая кислота, метакриловая кислота, малеиновая кислота, малеиновый ангидрид, фумаровая кислота, итаконовая кислота, 2-акриламидо-2-метилпропансульфоновая кислота, аллилсульфоновая кислота, винилсульфоновая кислота, аллилфосфоновая кислота и винилфосфоновая кислота.

В качестве водорастворимых этиленовомононенасыщенных катионогенных мономеров могут быть выбраны следующие мономеры: N,N-ди-C18алкиламино-С18алкилакрилат, такой как N,N-диметиламиноэтилакрилат, N,N-ди-С18алкиламино-С18алкилметакрилат, такой как N,N-диметиламиноэтилметакрилат, включая кватернизованные формы, например метилхлоридные кватернизованные формы, диаллилдиметиламмонийхлорид, N,N-ди-С18алкиламино-С18алкилакриламид и кватернизованные эквиваленты, такие как акриламидопропилтриметиламмонийхлорид.

С18алкил обычно представляет собой метил, этил, н-, изопропил, н-, изо-, втор- или трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, или 2-этилгексил.

Обычно количества мономеров выбирают в следующих интервалах:

(аа) от 0 до 80 мас.% (полярный и неионогенный),

(аб) от 20 до 100 мас.% (анионогенный),

(ав) от 20 до 100 мас.% (катионогенный), где общее количество доводят до 100 мас.%.

В предпочтительном варианте выполнения настоящего изобретения общее количество водорастворимых анионогенных и катионогенных мономеров выбирают в интервале от 40 до 100, предпочтительно от 50 до 100 мас.%, а количество водорастворимых полярных неионогенных мономеров выбирают в интервале от 60 до 0, предпочтительно от 50 до 0 мас.%, более предпочтительный полимер не является амфотерным, т.е. выбирают либо анионогенные, либо анионогенные и полярные неионогенные мономеры, либо катионогенные, либо катионогенные и полярные неионогенные мономеры, либо, если выбирают анионогенные и катионогенные мономеры (совместно либо без полярных неионогенных мономеров), тогда обычно любой из них находится в избытке относительно другого.

В другом предпочтительном варианте количество анионогенных мономеров выбирают в интервале от 40 до 100%, предпочтительно от 50 до 100 мас.%, а количество неионогенных полярных мономеров выбирают от 60 до 0, предпочтительно от 50 до 0 мас.%. В наиболее предпочтительном варианте анионогенный мономер представляет собой акриловую кислоту или ее водорастворимую соль.

В случае когда сополимеры содержат как анионогенные, так и катионогенные группы совместно или без полярных групп, тогда предпочтительное молярное отношение анионогенных мономеров к катионогенным мономерам выбирают в интервале от 3:1 до 20:1 или молярное отношение катионогенных мономеров к анионогенным мономерам выбирают в интервале от 3,1 до 20:1.

В предпочтительном варианте выполнения настоящего изобретения, относящемся к гидрофильным полимерным микрочастицам, которые получают из вышеупомянутых мономеров, где количество анионогенных мономеров не равно нулю, кислотные группы частично или полностью нейтрализуют. В предпочтительном варианте степень нейтрализации выбирают в интервале от 50 до 100%, более предпочтительно от 75 до 100% (на молярной основе). Нейтрализацию можно проводить по известным методам, таким как обработка соответствующих кислотных групп, которые несут гидрофильные полимерные микрочастицы, основаниями. Обычно наиболее удобной практикой является нейтрализация мономеров перед проведением реакции полимеризации. Такими основаниями, приемлемыми для нейтрализации кислых мономеров, могут быть, например, гидроксиды щелочных металлов, такие как NaOH и КОН, а также аммиак или амины, такие как моно-, диили триэтаноламин, а в наиболее предпочтительном варианте выбирают NaOH. В некоторых случаях в качестве средства регулирования степени и/или скорости набухания может оказаться целесообразной нейтрализация до 50% кислотных групп (на молярной основе) в форме ди-, три- или поливалентных катионогенных солей, таких как полиаминовая соль, или соли щелочно-земельного металла, в частности Mg(OH)2, Са(ОН)2 и Ва(ОН)2.

В предпочтительном варианте гидрофильные полимерные микрочастицы сшивают. Сшивка может быть достигнута рядом путей, которые обычно известны специалистам в данной области техники. Так, например, для придания некоторой степени сшивки полимерам, содержащим кислотные группы, в частности карбоксильные группы, можно использовать ди- или поливалентные ионы металлов. Аналогичным образом можно использовать другие соединения, такие как ди- и полиамины. Более того можно также использовать водорастворимые органические вещества, которые способны взаимодействовать с группами на гидрофильных полимерных микрочастицах, такие как поливалентные эпоксисоединения. В предпочтительном варианте сшивки добиваются с использованием приемлемого водорастворимого (или растворимого в мономерной фазе) ди-, три- или полиненасыщенного способного полимеризоваться мономера, который обычно содержится в водном растворе мономера. Приемлемые сшивающие мономеры включают, например, метиленбисакриламид, диакриламидоуксусную кислоту, полиол(мет)акрилаты, такие как пентаэритриттри(мет)акрилат и этиленгликольди(мет)акрилат, и тетрааллиламмонийхлорид. В предпочтительном варианте количество сшивающего мономера выбирают таким образом, чтобы получить полимер, который нерастворим в воде и набухает в воде и/или способен пропускать воду или влагу, одновременно с тем избегая избыточного структурирования, которое ограничивало бы способность гидрофильной полимерной микрочастицы и предлагаемой композиции, включающей такие полимерные микрочастицы или их дисперсии, абсорбировать воду или способность пропускать воду/влагу.

Целевая концентрация сшивающего мономера обычно зависит от длины цепи (или молекулярной массы) сегментов полимерной цепи сшитого полимера. Так, например, существует возможность регулирования длины цепи гидрофильной полимерной микрочастицы с использованием регулятора степени полимеризации, который обуславливает образование более коротких цепей. К более коротким цепям может также приводить применение некоторых мономеров с низкой реакционной способностью. Длину цепи в определенной степени можно также регулировать выбором и количеством используемого для полимеризации инициатора. Когда используют условия, от которых ожидают образования цепей уменьшенных длин, для достижения соответствующей степени структурирования сшитой гидрофильной микрочастицы можно использовать более высокие концентрации сшивающего мономера. Обычно приемлемая концентрация сшивающего мономера может быть выбрана в интервале от 5 до 2000 част./млн, предпочтительно от 5 до 500 част./млн, а наиболее предпочтительно от 5 до 100 част./млн, в пересчете на массу выбранных мононенасыщенных мономеров.

В предпочтительном варианте предлагаемые дисперсии могут быть приготовлены полимеризацией с обращенной фазой, т.е. по методу, который хорошо известен как зарекомендовавший себя в данной области техники, описанный и обсуждаемый например, в WO 97/34945. При выполнении настоящего изобретения обычно готовят водную мономерную фазу, включающую выбранные мономеры и воду. При необходимости для устранения всех свободных ионов металлов, которые в противном случае могут оказывать нежелательное влияние на реакцию полимеризации, используют, что необязательно, небольшое количество комплексообразователя, такого как ЭДТК. Кроме того, готовят носитель или масляную фазу, содержащую пластификатор, например диизодецилфталат, летучее масло, такое как смесь углеводородов, первичный эмульгатор и необязательно полимерный стабилизатор. Мономер и масляные фазы смешивают между собой с использованием приемлемого гомогенизатора, такого как гомогенизатор Silverson и гомогенизатор высокого давления, с получением тонкодисперсной и стабильной эмульсии водного мономера в фазе носителя. Затем в предпочтительном варианте подходящим инициатором, таким как окислительно-восстановительная пара и/или термический, и/или фотоинициатор, инициируют полимеризацию этой гомогенизированной неполимеризованной эмульсии. Далее, после стадии полимеризации из эмульсии/дисперсии удаляют, например, перегонкой, воду и летучее масло.

Другими комплексообразователями могут быть гомологи ЭДТК, такие как диэтилентриаминпентауксусная кислота, или метиленфосфонатные комплексообразователи, такие как диэтилентриаминпентаметиленфосфонат.

Комплексообразователь обычно используют в интервале от 0,01 до 0,5 мас.% в пересчете на массу мономеров.

Следовательно, другим вариантом выполнения настоящего изобретения является способ приготовления предлагаемых дисперсий, который включает

(I) смешение мономеров, выбранных из группы, включающей

(аа) водорастворимые этиленовомононенасыщенные полярные неионогенные мономеры

(аб) водорастворимые этиленовомононенасыщенные анионогенные мономеры и

(ав) водорастворимые этиленовомононенасыщенные катионогенные мономеры,

образователя поперечных связей, воды, инициатора, не смешивающейся с водой текучей среды как носителя, летучего масла, эмульгатора и необязательно дополнительных добавок, таких как комплексообразователь и полимерный стабилизатор,

(II) проведение полимеризации с обращенной фазой,

(III) удаление воды и летучего масла,

где полученные таким образом гидрофильные полимерные микрочастицы характеризуются среднеобъемным диаметром не больше 2 мкм (как это определяют по лазерному дифракционному методу с использованием Sympatec Helos H1539 с линзой R1 и дисперсной системы Quixcel).

Обычно гидрофильные полимерные микрочастицы характеризуются среднеобъемным диаметром (СОД) не больше 2 мкм, предпочтительно не больше 1 мкм, более предпочтительно не больше 0,8 мкм, наиболее предпочтительно в интервале от 0,3 до 0,8 мкм, где СОД определяют по лазерному дифракционному методу с использованием Sympatec Helos H1539 с линзой R1 и дисперсной системы Quixcel.

Специалист в данной области техники обычно знает несколько путей регулирования размера частиц. Один путь пролегает, например, через выбор и количество первичного эмульгатора для водной эмульсии мономера в масле. Обычно первичный эмульгатор обладает ГЛБ в интервале от 1 до 5. Примером первичного эмульгатора является сорбитанмоноолеат (например, продукт SPAN 80®, CAS 1338-43-8, ГЛБ: 4,3). Количество первичного эмульгатора, требующегося для достижения целевого размера частиц, обычно находится в интервале от 0,5 до 15 мас.% от массы водной мономерной фазы, но зависит от ряда факторов, таких как гомогенизационное оборудование и условия, природа водной фазы и масляной фазы, а также собственно эмульгатор, поскольку для выбора имеется множество эмульгаторов. Обычно количество первичного эмульгатора находится в интервале от 1 до 10%, наиболее предпочтительно от 2 до 5%.

Как правило, не смешивающаяся с водой текучая среда как носитель ("носитель") включает пластификатор, который представляет собой низковязкую маслянистую текучую среду, обычно используемую в качестве добавки в пластмассы, каучуки и в общем при получении эластомерных материалов. В предпочтительном варианте носитель представляет собой пластификатор, который можно использовать в сочетании с другой совместимой маслянистой текучей средой, которая представляет собой добавку в эластомерные композиции, такую как технологическое масло и смазка.

Обычно с целью упростить приготовление дисперсий с обращенной фазой, содержащих в максимальной концентрации гидрофильный полимер, носитель выбирают с тем, чтобы он обладал низкой вязкостью. В предпочтительном варианте носитель нетоксичен и не загрязняет окружающей среды. Приемлемые носители обычно инертны и как таковые не оказывают негативного влияния на реакцию полимеризации во время получения гидрофильных полимерных микрочастиц. Предпочтительные носители включают, хотя ими их список никак не ограничен, алифатические эфиры алифатических дикарбоновых кислот, такие как алифатические C110 эфиры адипиновой кислоты, включающие диэтиладипат, дибутиладипат, дипропиладипат, дигексиладипат, диоктиладипат и диизонониладипат, эфиры пимелиновой кислоты, эфиры субериновой кислоты, эфиры азелаиновой кислоты, эфиры себациновой кислоты и эфиры более высокомолекулярных алифатических дикарбоновых кислот, алифатические эфиры алифатических трикарбоновых кислот, такие как эфиры лимонной кислоты, включающие трибутилцитрат, ацетилтрибутилцитрат, ацетилтриэтилцитрат, ацетилтригексилцитрат и бутирилтригексилцитрат, и эфиры тримеллитовой кислоты, такие как триоктилтримеллитат, алифатические С820 эфиры фталевой кислоты, включающие диизононилфталат, диизодецилфталат и диундецилфталат, жидкие сложнополиэфирные пластификаторы и их смеси. Наиболее предпочтительны эфиры алифатических дикарбоновых кислот, в частности алифатические C110 эфиры алифатических С210алкилди- и трикарбоновых кислот и алифатические С820 эфиры фталевой кислоты.

При этом С820алкил представляет собой, например, н-октил, 2-этилгексил, н-нонил, н-децил, н-ундецил, н-додецил, н-тридецил, н-тетрадецил, н-пентадецил, н-гексадецил, н-гептадецил, н-октадецил, н-нонадецил, н-эйкозил.

C110алкил представляет собой, например, метил, этил, н-, изопропил, н-, изо-, втор- или трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, 2-этилгексил, н-нонил, н-децил.

С210алкил представляет собой, например, этил, н-, изопропил, н-, изо-, втор- или трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, 2-этилгексил, н-нонил, н-децил.

По другому предпочтительному варианту выполнения настоящего изобретения его объектом являются предлагаемые дисперсии, которые включают дополнительный компонент (в), т.е. стабилизирующий амфифильный сополимер, который приводит к повышенным термической и/или сдвиговой стойкости. В предпочтительном варианте приготовление дисперсий гидрофильных полимерных микрочастиц с обращенной фазой по настоящему изобретению включает стадию, благодаря которой содержащий воду предшественник конечного дисперсного продукта подвергают обработке удалением воды или азеотропа воды/растворителя вакуумной дистилляцией или однократным равновесным испарением, или по другим термическим методам. Невозможно исключить дестабилизацию дисперсии вследствие этой стадии удаления, в особенности когда целью является достижение высокой концентрации частиц дисперсной фазы в конечном дисперсном продукте и когда стадия удаления включает однократное равновесное испарение, такое как тонкопленочное выпаривание. По этой причине целесообразно добавлять стабилизирующий амфифильный сополимер. Кроме того, было установлено также, что стабилизирующий амфифильный сополимер тоже позволяет добиться более высокой концентрации дисперсной фазы в конечном продукте, чем была бы возможна в противном случае.

Приемлемые стабилизирующие амфифильные сополимеры обычно содержат в одном и том же сополимере как гидрофобные, так и гидрофильные группы. Предпочтительные амфифильные стабилизирующие сополимеры могут быть получены полимеризацией от 50 до 90 мас.% одного или нескольких не смешивающихся с водой алкил(мет)акрилатных мономеров и от 10 до 50 мас.% одного или нескольких кислых, основных или четвертичных аминовых мономеров.

Предпочтительные алкил(мет)акрилаты представляют собой алифатические С120 эфиры акриловой кислоты или метакриловой кислоты, предпочтительно их смесей, содержащих по меньшей мере 20 мас.% (от общей массы мономеров) одного или нескольких алифатических С1220 эфиров акриловой кислоты или метакриловой кислоты.

С120алкил представляет собой, например, метил, этил, н-, изопропил, н-, изо-, втор- или трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, 2-этилгексил, н-нонил, н-децил, н-ундецил, н-додецил, н-тридецил, н-тетрадецил, н-пентадецил, н-гексадецил, н-гептадецил, н-октадецил, н-нонадецил, н-эйкозил.

С1220алкил представляет собой, например, н-додецил, н-тридецил, н-тетрадецил, н-пентадецил, н-гексадецил, н-гептадецил, н-октадецил, н-нонадецил, н-эйкозил.

Предпочтительные кислые мономеры представляют собой акриловую кислоту и метакриловую кислоту.

Примерами основных мономеров являются N,N-ди-С18алкиламино-С18алкилакрилат, такой как N,N-диметиламиноэтилакрилат, N,N-ди-C18алкиламино-С18алкилметакрилат, такой как N,N-диметиламиноэтилметакрил