Композиция на основе нанометрического оксида церия на носителе с повышенной восстановительной способностью, способ ее получения и применение в качестве катализатора

Изобретение относится к композиции катализатора или носителя катализатора для обработки выхлопных газов двигателей внутреннего сгорания на основе нанометрического оксида церия на носителе, к способу ее получения и к применению ее в качестве катализатора или носителя. Описана композиция, содержащая нанесенный оксид на основе церия на носителе на основе диоксида кремния, оксида алюминия, оксида титана или диоксида циркония, при этом она включает частицы указанного нанесенного оксида на указанном носителе в форме отдельных частиц или в форме агрегатов, имеющих размер не выше 500 нм, и после прокаливания в течение 6 часов при температуре не ниже 800°С она имеет восстановительную способность, измеренную в интервале от 30°С до 900°С, по меньшей мере, равную 80%. Описан способ получения композиции, в котором осуществляют контактирование коллоидной дисперсии нанесенного оксида с суспензией носителя, сушку путем распыления полученной смеси и прокаливание полученного высушенного продукта. Описана каталитическая система для обработки выхлопных газов двигателей внутреннего сгорания, включающая описанную выше композицию, и способ обработки выхлопных газов с ее использованием. Технический эффект - получение композиции с повышенной восстановительной способностью в зоне низких температур - от 200°С до 400°С. 8 н. и 15 з.п. ф-лы, 4 табл.

Реферат

Настоящее изобретение относится к композиции на основе нанометрического оксида церия на носителе с повышенной восстановительной способностью, к способу ее получения и к применению ее в качестве катализатора.

Для обработки выхлопных газов двигателей внутреннего сгорания (каталитическое дожигание автомобильных газов) в настоящее время используются так называемые многофункциональные катализаторы. Под многофункциональными катализаторами понимают катализаторы, способные осуществлять не только окисление, в частности, монооксида углерода и углеводородов, находящихся в выхлопных газах, но также и восстановление, в частности, оксидов азота, также находящихся в этих газах («трехфункциональные» катализаторы). Оксид циркония и оксид церия являются на сегодняшний день двумя особенно важными компонентами, представляющими интерес для этого типа катализаторов.

Для эффективной работы этих катализаторов они должны обладать хорошей восстановительной способностью. Под восстановительной способностью понимают в данном описании способность катализатора восстанавливаться в восстановительной атмосфере и окисляться в окислительной атмосфере. Эта восстановительная способность может быть определена, например, измерением потребления количества водорода в заданном диапазоне температур. Эта способность обусловлена церием, находящимся в композициях типа композиций согласно изобретению, поскольку церий имеет свойство восстанавливаться или окисляться.

Следовательно, для эффективности данных катализаторов необходимо создать материалы с более высокой восстановительной способностью. Таким образом, первой целью изобретения является разработка таких материалов.

Кроме того, необходимо создать также материалы, восстановительная способность которых была бы высокой даже в менее высоком диапазоне температур, т.е. не выше 600°С.

Таким образом, второй целью изобретения является создание материалов, которые удовлетворяли бы этому требованию.

Для достижения этих целей композиция согласно изобретению содержит нанесенный оксид на основе оксида церия на носителе на основе диоксида кремния, оксида алюминия, оксида титана или диоксида циркония и отличается тем, что она содержит частицы указанного нанесенного оксида, осажденные на указанный носитель, в форме отдельных частиц или в форме агрегатов, имеющих размер не более 500 нм, и после прокаливания в течение 6 часов при температуре не ниже 800°С она обладает восстановительной способностью, измеренной между 30°С и 900°С, по меньшей мере, равной 80%.

Согласно конкретному варианту осуществления изобретения композиция содержит нанесенный оксид на основе оксида церия на носителе на основе оксида алюминия и отличается тем, что она содержит частицы указанного нанесенного оксида, осажденные на указанный носитель, в форме отдельных частиц или в форме агрегатов, имеющих размер не более 500 нм, и после прокаливания в течение 6 часов при температуре не ниже 800°С она обладает восстановительной способностью, измеренной между 30 и 900°С, по меньшей мере, равной 80%, исключая композиции, в которых носитель из оксида алюминия содержит дополнительно, по меньшей мере, один элемент из группы, состоящей из бария и стронция.

Другие характеристики, детали и преимущества изобретения станут более понятными при чтении нижеследующего описания и различных конкретных, но неограничивающих примеров, предназначенных для иллюстрации.

Под редкоземельными элементами понимают элементы группы, состоящей из иттрия и элементов периодической системы с атомными номерами 57-71 включительно.

Под удельной поверхностью понимают удельную поверхность БЕТ, определяемую путем адсорбции азота согласно стандарту ASTM D 3663-78, установленному на основе способа BRUNAUER-EMMETT-TELLER, описанного в периодическом журнале “The Journal of the American Chemical Society, 60, 309 (1938)”.

Композиция согласно изобретению содержит нанесенный оксид в виде частиц нанометрических размеров, причем эти частицы осаждены на носитель.

Этот нанесенный оксид может представлять собой прежде всего один простой оксид церия, обычно в форме цериевого оксида СеО2. Это может быть также смесь оксида церия и, по меньшей мере, одного оксида другого элемента М, который выбирают из циркония и редкоземельных элементов, отличающихся от церия. Согласно конкретным вариантам осуществления изобретения эта смесь оксидов может соответствовать формуле (1) Се1-хZrxO2, в которой х меньше 1 или же формуле (2) Ce1-y-zZryLnzO2, в которой y+z < 1, а Ln обозначает, по меньшей мере, один редкоземельный элемент. Атомное отношение Ce/Zr может варьировать в широких пределах, например от 0,1 до 0,9. Однако, более конкретно, значение х или сумма y+z может быть не выше 0,5.

Согласно конкретному варианту осуществления нанесенный оксид находится в кристаллической форме.

Согласно другому конкретному варианту осуществления смесь оксидов находится в форме твердого раствора элемента М в церии или в форме твердого раствора (смешанный оксид) церия и, необязательно, редкоземельного элемента в цирконии, это зависит от относительных количеств церия и циркония. В первом случае нанесенный оксид имеет единственную фазу, которая соответствует фактически кристаллической структуре флюоритового типа, наподобие кристаллического цериевого оксида СеО2, параметры ячеек которой более или менее смещены по сравнению с чистым цериевым оксидом, что таким образом отражает включение элемента М в кристаллическую решетку оксида церия. Во втором случае нанесенный оксид имеет единственную фазу, соответствующую фазе кристаллического оксида циркония, в частности, в тетрагональной системе, что отражает таким образом включение церия и, необязательно, другого элемента в кристаллическую решетку оксида циркония.

Нанесенный оксид находится в композиции согласно изобретению в виде частиц нанометрических размеров. Под ними понимают частицы, имеющие размер не более 500 нм. Следует отметить, что эти частицы могут находиться либо в форме отдельных частиц, либо в форме агрегатов. Величина 500 нм относится либо к размеру частиц, если это отдельные частицы, либо к размеру агрегата, если частицы агрегированы. Кроме того, указанный размер, более конкретно, может быть не более 50 нм, еще более конкретно, не более 10 нм. Наиболее высокие значения, указанные выше, относятся к случаям, когда частицы чаще всего находятся в агрегированной форме, а наиболее низкие значения относятся к случаям, когда частицы находятся в форме отдельных частиц. Более конкретно, частицы находятся в форме отдельных частиц с размером около 50 нм не более, еще более конкретно, с размером не более 10 нм, или, еще более конкретно, в интервале от 10 до 5 нм, и если оксид является кристаллическим, то частицы соответствуют кристаллам этого оксида. В соответствии с конкретным вариантом осуществления частицы находятся в форме отдельных частиц с размером не более 5 нм, этот вариант осуществления соответствует случаю, когда содержание нанесенного оксида в композиции относительно низкое, это низкое значение будет уточнено ниже. Указанные в настоящем описании значения были определены либо методом трансмиссионной электронной микроскопии (МЕТ), либо путем дифракции рентгеновских лучей (DRX), в частности, если оксид является кристаллическим.

Указанные размеры частиц нанесенного оксида приведены для композиции, прошедшей стадию прокаливания в течение 6 часов при температуре не ниже 500°С, более конкретно, не ниже 800°С.

Как указывалось выше, частицы осаждены на носитель. Под этим подразумевается, что частицы большей частью расположены на поверхности этого носителя, разумеется, частицы могут находиться внутри пор носителя, но остаются при этом на поверхности этих пор.

Используют носитель на основе диоксида кремния, оксида алюминия, оксида титана или диоксида циркония. Предпочтительно, этот носитель должен иметь высокоразвитую и стабильную удельную поверхность, т.е. величина ее должна оставаться на приемлемом уровне даже после обработки при высокой температуре.

Оксиды, составляющие носитель и перечисленные выше, хорошо известны и используются в области катализа. Дальнейшее описание, относящееся к этим носителям, приведено лишь в качестве иллюстрации и не имеет ограничивающего характера.

В случае носителя на основе диоксида кремния этот диоксид кремния может быть осажденным диоксидом кремния или пирогенным диоксидом кремния. Диоксид кремния необязательно может быть стабилизирован с помощью стабилизирующего элемента, такого как алюминий.

В случае носителя на основе оксида алюминия можно использовать любой тип оксида алюминия, имеющий удельную поверхность, достаточную для использования в катализе. Можно назвать оксиды алюминия, полученные быстрой дегидратацией, по меньшей мере, одного гидроксида алюминия, такого как байерит, гидраргиллит или гиббсит, нордстрандит и/или, по меньшей мере, одного оксигидроксида алюминия, такого как бемит, псевдобемит и диаспор.

Согласно конкретному варианту осуществления изобретения используют стабилизированный оксид алюминия. В качестве стабилизирующего элемента можно назвать редкоземельные элементы, барий, стронций, кремний и цирконий. В качестве редкоземельного элемента можно назвать, в частности, церий, лантан или смесь лантан-неодим. Эти элементы могут быть использованы индивидуально или в комбинации. В качестве преимущественных комбинаций можно назвать La-Ba, Ba-Pr, La-Pr-Ba и La-Pr.

Получение стабилизированного оксида алюминия осуществляется известным способом, в частности пропиткой оксида алюминия растворами солей, таких как нитраты, стабилизирующими элементами, указанными выше, или же совместной сушкой предшественника оксида алюминия и солей указанных элементов с последующим прокаливанием.

Кроме того, можно сослаться на другой способ получения стабилизированного оксида алюминия, согласно которому порошок оксида алюминия, полученный быстрой дегидратацией гидроксида или оксигидроксида алюминия, подвергают операции созревания в присутствии стабилизирующего агента, представляющего собой соединение лантана и, необязательно, соединение неодима, в более конкретном случае это соединение может быть солью. Созревание можно осуществить путем суспендирования оксида алюминия в воде и последующей сушки при температуре, например, в диапазоне от 70°С до 110°С. После созревания оксид алюминия подвергают термической обработке.

Другой способ получения заключается в аналогичной обработке, но осуществляемой с использованием бария или стронция.

Содержание стабилизатора, в расчете на массу оксида стабилизатора, составляет, как правило, 1,5-35% или 1,5-25%, в частности 1,5-15%, по отношению к стабилизированному оксиду алюминия. Более конкретно, это содержание может составлять 2,5-20%, более конкретно 2,5-11% или же 5-20%.

Согласно конкретному варианту осуществления изобретения стабилизатором является барий и/или стронций, содержание которого, в расчете на массу оксида стабилизатора, менее 10% по отношению к стабилизированному оксиду алюминия.

В соответствии с двумя другими конкретными вариантами осуществления носитель выполнен на основе оксида алюминия, стабилизированного стабилизирующим элементом группы, состоящей из бария, стронция и лантана, а нанесенным оксидом в первом случае является смесь оксида церия, оксида циркония и оксида редкоземельного элемента, отличающегося от церия, которым может быть, в частности, празеодим или лантан. Во втором случае нанесенный оксид представляет собой смесь оксида церия, оксида празеодима и оксида редкоземельного элемента, отличающегося от церия и празеодима, которым может быть, в частности, лантан. В этих двух вариантах осуществления содержание стабилизирующего элемента, в расчете на оксид, может быть равно, по меньше мере, 10 мас.% по отношению к стабилизированному оксиду алюминия, более конкретно, оно может находиться между 10% и 30%, в частности между 10 и 25%.

В соответствии с другими конкретными вариантами осуществления носитель состоит главным образом из оксида алюминия (первый вариант) или состоит, главным образом, из оксида алюминия, стабилизированного, по меньшей мере, одним элементом, выбранным из редкоземельных элементов, кремния и циркония (второй вариант). Под термином «состоит, главным образом, из» подразумевается в случае первого варианта носитель, содержащий только оксид алюминия и не содержащий никакого другого элемента, способного стабилизировать оксид алюминия, причем оксид алюминия необязательно может содержать обычные примеси. В случае второго варианта подразумевается носитель, содержащий только оксид алюминия, а в качестве стабилизатора только один или несколько элементов в виде комбинации, выбранный (ных) из единственной группы, состоящей из редкоземельных элементов, кремния и циркония, также с возможным присутствием примесей, обычно присущих оксиду алюминия и названному элементу.

В случае носителя на основе оксида алюминия, стабилизированного одним стабилизирующим элементом, выбранным из редкоземельных элементов, бария и стронция, или состоящего, главным образом, из оксида алюминия, стабилизированного тем же самым стабилизирующим элементом, можно отметить, что получение стабилизированного оксида алюминия может осуществляться в процессе получения самой композиции согласно изобретению. Этот способ получения описан ниже.

Носитель может быть также выполнен из оксида титана, более конкретно, из оксида титана в форме анатаза. Такой оксид может быть получен, например, согласно способам, описанным в документах ЕР-А-319365 или ЕР-А-351270 и может также включать стабилизатор типа редкоземельного или щелочно-земельного элемента.

Наконец, носитель может быть выполнен из тетрагонального или моноклинного диоксида циркония, необязательно стабилизированного, например, редкоземельным элементом.

Следует отметить также, что носитель может состоять из комбинации указанных выше оксидов либо в форме смесей этих оксидов, либо в форме смешанных оксидов (твердые растворы), таких как смешанные оксиды диоксида кремния/оксида алюминия, оксида титана/диоксида кремния или диоксида циркония/диоксида кремния.

Следует отметить, что можно также вводить стабилизирующие элементы различных носителей, названных выше, после получения композиции (оксид, нанесенный на носитель без стабилизатора), например, методом пропитки.

Содержание нанесенного оксида, например оксида церия, в композиции согласно изобретению, как правило, не выше 75 мас.% от всей композиции. Его содержание может, в частности, составлять не более 60%, более конкретно, не более 50% и, еще более конкретно, не выше 30%. В конкретном случае, если носитель выполнен из диоксида циркония, то содержание нанесенного оксида может соответствовать вышеуказанным значениям, а в более конкретном случае может тоже составлять не более 55%.

Минимальное содержание нанесенного оксида устанавливается в зависимости от рабочих характеристик композиции. Исключительно в качестве примера можно сказать, что это минимальное значение составляет, как правило, не менее 3%, более конкретно, не менее 4 мас.%.

Как указано выше, частицы нанесенного оксида могут находиться в форме отдельных частиц с размером не более 5 нм. Этот вариант осуществления предпочтительно соответствует композициям, в которых содержание нанесенного оксида не выше 20 мас.%, более конкретно, не выше 15%, еще более конкретно, не выше 10%.

В конкретных вариантах осуществления, описанных выше, в которых носитель выполнен на основе оксида алюминия, стабилизированного барием, а нанесенными оксидами являются смеси оксида церия, оксида циркония и оксида редкоземельного элемента, отличающегося от церия, или оксида церия, оксида празеодима и оксида редкоземельного элемента, отличающегося от празеодима, содержание нанесенных оксидов может быть, более конкретно, выше или равно 15%, более конкретно - между 15 и 30%.

Особенной характеристикой композиций согласно изобретению является их восстановительная способность.

Восстановительная способность композиций определяется путем измерения потребления ими водорода в интервале температур от 30°С до 600°С или до 900°С. Это измерение осуществляют путем восстановления, программируемого температурой, с использованием водорода, разбавленного аргоном. Сигнал обнаруживают с помощью датчика теплопроводности. Потребление водорода рассчитывается, начиная с поверхности, на которой отсутствует сигнал водорода, с нулевой линии при 30°С до нулевой линии при 600°С или при 900°С. Величина восстановительной способности представляет собой процентное содержание восстановленного церия при условии, что 1/2 моля потребленного Н2 и измеренного описанным выше способом, соответствует 1 молю восстановленного Се IV.

В соответствии с настоящим изобретением у композиций, содержащих только церий в качестве восстанавливаемого элемента, восстановительная способность, измеренная между 30°С и 900°С, соответствует процентному содержанию общего церия, присутствующего в нанесенном оксиде, который был восстановлен, причем это процентное содержание измерено описанным выше способом в интервале температур от 30°С до 900°С. Восстановительная способность, измеренная между 30°С и 600°С, измеряется таким же образом, но измерение осуществляют в интервале температур от 30°С до 600°С.

В случае композиций, содержащих, кроме церия, другой восстанавливаемый элемент, такой как празеодим, рассчитывают суммарную восстановительную способность церия и празеодима. Суммарную восстановительную способность церия и празеодима рассчитывают с помощью отношения экспериментально потребленного композицией количества водорода к суммарному количеству теоретически потребленного водорода, соответствующего полному восстановлению церия и полному восстановлению празеодима. Экспериментально потребленное количество водорода рассчитывают, начиная с поверхности, на которой отсутствует сигнал водорода, с нулевой линии при 30°С до нулевой линии при 900°С, если измеряют восстановление между 30°С и 900°С. Теоретически потребленное количество водорода при полном восстановлении церия рассчитывается, как указано выше, с учетом того, что весь церий первоначально находился при степени окисления +IV и потреблялось 1/2 моля Н2 для восстановления 1 моля Се IV. Теоретически потребленное количество водорода при полном восстановлении празеодима рассчитывается аналогичным образом с учетом того, что 2/3 празеодима находилось при степени окисления +IV в оксиде Pr6O11 и поглощалось 1/2 моля Н2 для восстановления 1 моля Pr IV.

Кроме того, в рамках всего описания величины, которые даны для оценки восстановительной способности, получены в результате измерений, проводимых на композициях, которые предварительно подвергались прокаливанию в течение 6 часов при температуре не менее 800°С в атмосфере воздуха.

Как указано выше, композиции согласно изобретению обладают восстановительной способностью, измеренной между 30°С и 900°С, по меньшей мере, равной 80%. Эта восстановительная способность, измеренная указанным способом, может составлять, более конкретно, не менее 85%, еще более конкретно, не менее 90%.

В более конкретном варианте осуществления изобретения получают композиции, восстановительная способность которых высока даже при менее высоком диапазоне температур, т.е. не выше 600˚С. Этот вариант осуществления соответствует случаю, когда нанесенным оксидом является один оксид церия или смесь оксида церия и оксида циркония с необязательным присутствием оксида редкоземельного элемента, отличающегося от церия, и при таком содержании циркония, чтобы атомное отношение Ce/Zr было не менее 1. В этом случае такие композиции могут обладать восстановительной способностью, измеренной между 30°С и 600°С (тоже после прокаливания в течение 6 часов при температуре не менее 800°С), по меньшей мере, равной 35%, более конкретно, по меньшей мере, равной 40%. Разумеется, эти композиции имеют такие же величины восстановительной способности, измеренные между 30°С и 900°С, как и композиции, которые указаны выше.

И, наконец, композиции согласно изобретению могут иметь более высокое значение удельной поверхности БЕТ, которая после прокаливания в течение 6 часов при 800°С составляет не менее 95 м2/г, более конкретно, не менее 110 м2/г, причем эта поверхность зависит от природы используемого носителя.

Способы получения композиций согласно изобретению описаны ниже.

Продолжение текста включает описание первого способа получения (А) композиций, описание специальной коллоидной дисперсии (В), которую можно использовать, в частности, в настоящем изобретении, и описание трех других способов получения (C), (D) и (Е) композиций согласно изобретению.

А. Первый способ получения композиций согласно изобретению

Указанный первый способ включает следующие стадии:

- контактирование коллоидной дисперсии наносимого оксида и, при желании, оксида элемента М с коллоидной суспензией носителя;

- сушку полученной смеси путем распыления;

- прокаливание полученного высушенного продукта.

Итак, первая стадия этого способа состоит в получении смеси на основе коллоидной дисперсии наносимого оксида, например оксида церия. В случае получения композиции, в которой нанесенным оксидом является смесь оксида церия и, по меньшей мере, одного оксида другого элемента М, то указанная смесь включает дополнительно коллоидную дисперсию оксида этого элемента. Можно использовать также одну единственную коллоидную дисперсию, в которой находятся коллоиды на основе смешанного оксида церия и элемента М.

Под коллоидной дисперсией подразумевается любая система, состоящая из мелких твердых частиц коллоидных размеров, т.е. размеров в интервале от около 1 нм до приблизительно 500 нм, на основе соединения церия и/или элемента М, причем этим соединением, как правило, является оксид и/или гидроксид в виде стабильной суспензии в жидкой водной фазе, при этом указанные частицы могут, кроме того, необязательно содержать остаточные количества связанных или адсорбированных ионов, таких как, например, ионы нитратов, ацетатов, хлоридов или ионы аммония. Следует отметить, что в такой коллоидной дисперсии церий или элемент М может находиться либо полностью в форме коллоидов, либо одновременно в ионной форме и в форме коллоидов.

Так, в качестве приемлемых дисперсий оксида церия можно назвать дисперсии, описанные или полученные в способах, раскрытых в заявках на патент ЕР-А-206906, ЕР-А-208580, ЕР-А-208581, ЕР-А-239477 и ЕР-А-700870. В случае дисперсий смешанных оксидов можно использовать дисперсии, описанные в заявке на патент ЕР-А-1246777.

Можно использовать, в частности, коллоидную дисперсию оксида церия, простого или смешанного, которая содержит аминокислоту. Более конкретно, этой кислотой может быть алифатическая аминокислота. Речь может идти, в частности, о кислоте С410, предпочтительно, о кислоте С48. Такая дисперсия описана в заявке на патент ЕР-А-1301435.

Готовят смесь дисперсии с суспензией носителя. Эта суспензия, как правило, является суспензией на основе носителя или предшественника носителя, т.е. соединения, которое после прокаливания может привести к образованию оксида алюминия, диоксида кремния, диоксида циркония или оксида титана. Это могут быть высушенные предшественники, т.е. имеющие потери при сгорании не более 50%, более конкретно, не более 25%. Это могут быть, в частности, гидроксиды или оксигидроксиды. Суспензия, как правило, является водной суспензией.

Смесь готовят в водной среде, используя для этого, как правило, воду, например дистиллированную или деионизированную воду.

Второй стадией способа является стадия сушки.

Сушку осуществляют путем распыления.

Под сушкой путем распыления подразумевают сушку путем разбрызгивания смеси в горячей атмосфере (spray-dryng). Распыление можно проводить при помощи любого известного разбрызгивающего устройства, например форсунки типа оросительной форсунки или другого устройства. Можно также использовать так называемые турбинные распылители. Относительно различных методов разбрызгивания, которые можно использовать в рамках настоящего изобретения, можно сослаться, в частности, на основную работу MASTERS под названием “SPRAY-DRYNG” (второе издание, 1976, Editions George Godwin, Лондон).

Последней стадией способа является стадия прокаливания.

Эта стадия прокаливания позволяет развить кристаллическую структуру образовавшегося продукта, и она может быть также выполнена и/или выбрана в зависимости от температуры дальнейшего использования, предусмотренного для композиции согласно изобретению, учитывая при этом тот факт, что удельная поверхность продукта будет тем меньше, чем выше используемая температура прокаливания. Такое прокаливание проводят, как правило, в атмосфере воздуха, но не исключена возможность проведения прокаливания, например, в атмосфере инертного газа или в контролируемой атмосфере (окислительной или восстановительной).

Практически температуру прокаливания ограничивают, как правило, интервалом значений от 500°С до 1000°С, предпочтительно, от 600°С до 800°С.

Согласно первому варианту этого способа можно осуществлять обычное прокаливание в атмосфере водорода Н2 при температуре в интервале от 800°С до 1000°С в течение не менее 2 часов, более конкретно, не менее 4 часов, еще более конкретно, не менее 6 часов.

Согласно другому варианту этого способа можно осуществить двойное прокаливание. Так, можно осуществить первое прокаливание в атмосфере инертного газа или в вакууме. Инертным газом может быть гелий, аргон или азот. Вакуум представляет собой, как правило, первичный вакуум с парциальным давлением кислорода ниже 10-1 мбар. Температура прокаливания не менее 900°С и, как правило, не превышает 1000°С. Продолжительность первого прокаливания, как правило, составляет не менее 2 часов, предпочтительно, не менее 4 часов, в частности, не менее 6 часов. Увеличение этого времени прокаливания обычно влечет за собой увеличение восстановительной способности в процентном выражении. Понятно, что продолжительность операции может быть установлена в зависимости от температуры, причем непродолжительное прокаливание требует более высокой температуры его осуществления.

Затем осуществляют второе прокаливание в окислительной атмосфере, например в атмосфере воздуха. В этом случае прокаливание проводят, как правило, при температуре не ниже 600°С в течение времени, которое, как правило, составляет не менее 30 минут. Предпочтительно не превышать температуру прокаливания 900°С.

В. Специальная коллоидная дисперсия

Ниже более подробно описана дисперсия, которая может быть использована в рамках данного изобретения для совершенно конкретного случая, когда надо приготовить композицию, в которой нанесенным оксидом является смешанный оксид или твердый раствор.

Эта дисперсия является коллоидной дисперсией в непрерывной фазе соединения церия и, по меньшей мере, одного другого элемента М, выбранного из циркония и редкоземельных элементов (Ln), отличающихся от церия, и характеризуется тем, что соединение находится в форме смешанного оксида, в котором церий и элемент М образуют твердый чистый раствор, и соединение содержит церий в форме церия III в количестве, выраженном атомным отношением церий III/общий церий, находящимся в интервале от 0,005 до 0,06.

Описанную дисперсию можно получить согласно способу, который включает следующие стадии:

- получение жидкой среды, содержащей соли церия и, по меньшей мере, одного элемента М, причем солями церия являются соли церия IV и церия III;

- контактирование среды с основанием до получения значения рН не ниже 9, при котором образуется осадок;

- выделение из среды образовавшегося осадка;

- промывку осадка;

- пептизацию осадка путем обработки кислотой с получением дисперсии; причем способ включает дополнительно, по меньшей мере, одну операцию промывки, осуществляемую либо после стадии выделения осадка, либо после стадии пептизации.

Непрерывной жидкой фазой дисперсии, описанной в данном случае, является, главным образом, водная фаза, более конкретно, вода.

Одной из особенных характеристик описанной выше дисперсии является тот факт, что в коллоидных частицах указанное выше соединение, составляющее эти частицы, находится в форме смешанного оксида (Се,М)О2, в котором церий и элемент М образуют твердый раствор. Это означает, что один из элементов, обычно элемент М, полностью включен в кристаллическую решетку оксида другого элемента, образующего матрицу, например, церия. Это включение может быть обнаружено с помощью рентгеноструктурного анализа коллоидов после промывки, осуществляемой, в частности, путем ультрафильтрации или ультрацентрифугирования и сушки при температуре 60°С. Рентгенограммы RX показывают наличие кристаллической структуры, соответствующей оксиду элемента, образующего матрицу (обычно оксид церия), но параметры ячеек которой смещены в большей или меньшей степени по сравнению с чистым оксидом упомянутого первого элемента, образующего матрицу, что подтверждает включение другого элемента в кристаллическую решетку оксида первого элемента. Например, в случае твердого раствора элемента М в оксиде церия рентгенограммы RX обнаруживают кристаллическую структуру типа флуорита, как у кристаллического цериевого оксида СеО2, но параметры ячеек которой смещены в большей или меньшей степени по отношению к чистому цериевому оксиду, отражая таким образом включение элемента М в кристаллическую решетку оксида церия.

Твердый раствор является чистым, это значит, что для коллоидных частиц все количество одного элемента растворено в другом с образованием твердого раствора, например, все количество элемента М растворено в оксиде церия с образованием твердого раствора. В этом случае рентгенограммы RX показывают только на наличие твердого раствора и не содержат полос, соответствующих оксиду, типа оксида элемента, отличающегося от элемента, образующего матрицу, например оксида элемента М. Не исключено при этом, что непрерывная жидкая фаза может включать некоторое количество элемента М в ионной форме, которое образуется из части общего количества элемента М, введенного в процессе получения дисперсии.

Как указано выше, элемент М выбирают из группы, включающей цирконий и редкоземельные элементы (Ln), отличающиеся от церия, причем эти элементы могут присутствовать в виде смеси, как это будет показано далее в описании.

Другая характеристика описанной дисперсии заключается в присутствии церия в форме церия III. Количество церия III, выраженное в виде атомного отношения церий III/общий церий, находится в интервале от 0,005 до 0,06. Более конкретно, это количество может составлять интервал от 0,005 до 0,05, еще более конкретно, от 0,005 до 0,03.

Следует отметить, что церий III может находиться в соединении в качестве катиона либо в форме, адсорбированной на поверхности частиц соединения церия, либо в кристаллической ячейке соединения. Понятно, что могут сосуществовать обе эти формы.

Присутствие растворенного церия III может подтвердить количественный химический анализ. Для этой цели можно использовать метод анализа путем потенциометрического титрования с окислением церия III до церия IV при помощи ферроцианида калия в среде карбоната калия. Присутствие церия III на поверхности частиц дисперсии может быть выявлено путем определения изоэлектрической точки коллоидных дисперсий. Этот анализ осуществляют известным способом, в котором отмечается изменение значения зета-потенциала дисперсий. Когда изменение этого потенциала происходит в результате изменения значения рН дисперсии от кислого значения до щелочного, то этот потенциал переходит от положительного значения к отрицательному значению и момент перехода потенциала через нулевое значение означает изоэлектрическую точку. Присутствие церия III на поверхности увеличивает значение изоэлектрической точки по сравнению с соединением, содержащим только церий IV.

Различные варианты дисперсии, описанной в данном примере, которые зависят от природы соединения церия и, более конкретно, от природы элемента М, будут описаны более подробно далее. Следует отметить, что формулы, приведенные ниже при описании этих вариантов, соответствуют составам, которые получены в результате химических анализов, проведеных на коллоидах, рекуперированных либо ультрацентрифугированием при скорости 50000 об/мин в течение 6 часов, либо после промывки дисперсий, причем эту промывку осуществляют путем ультрафильтрации или диализа с не менее 10 эквивалентными объемами воды (1 объем дисперсии: 10 объемов воды).

Согласно первому варианту элементом М является цирконий. Более конкретно, в этом случае соединение может иметь формулу (3) Ce1-xZrxO2, в которой х менее 1 и, по меньшей мере, равен 0,01, предпочтительно, по меньшей мере, равен 0,02.

Согласно второму варианту, элемент М является комбинацией циркония и, по меньшей мере, одного редкоземельного элемента Ln. Этот вариант особенно интересен в случае, когда редкоземельным элементом является трехвалентный редкоземельный металл. Редкоземельным металлом может быть, в частности, лантан, гадолиний, тербий, празеодим или неодим. Более конкретно, в случае указанного второго варианта соединение может иметь формулу (4) Ce1-x-yZrxLnyO2, в которой x + y<1, х отвечает условию 0,05≤х≤0,95 и y, по меньшей мере, равен 0,01, причем высокое значение y выбирают таким образом, чтобы был получен твердый раствор. Предпочтительно, х отвечает условию 0,20≤х≤0,8 и, более предпочтительно, условию 0,40≤х≤0,60. Также предпочтительно, y, по меньшей мере, равен 0,02, еще более предпочтительно, y, по меньшей мере, равен 0,03. Предпочтительно, y равен не более 0,05, еще более предпочтительно не более 0,04. В рамках этого же варианта, элемент М может быть также комбинацией, по меньшей мере, двух редкоземельных металлов, по меньшей мере, один из которых является празеодимом. Наконец, можно отметить, что в случае, когда М является тербием или празеодимом, необязательно в комбинации с другим редкоземельным металлом, то эти металлы могут присутствовать одновременно в форме TbIII, PrIII и TbIV и PrIV.

Соединением описанной выше дисперсии может быть также соединение, в котором М является редкоземельным элементом или комбинацией этих элементов. Также наиболее интересным вариантом является вариант, когда редкоземельным элементом является трехвалентный редкоземельный элемент. В частности, редкоземельным элементом может быть лантан, гадолиний, тербий, празеодим или неодим. В этом случае соединение может соответствовать следующей формуле (5) Ce1-xLnxO2, в которой х не более 0,15 и не менее 0,01, предпочтительно, по меньшей мере, равен 0,02, еще более предпочтительно, по меньшей мере, равен 0,04. Предпочтительно, х имеет значение не более 0,10, еще более предпочтительно, не более 0,05. Редкоземельный элемент может присутствовать, по меньшей мере частично, в форме Ln III, и тогда он находится также либо в кристаллической ячейке, либо в форме, адсорбированной на поверхности частиц соединения церия. В случае празеодима этот элемент может находиться одновременно в формах Pr III и Pr IV и в этом же случае х, более конкретно, равен, по меньшей мере, 0,04, еще более конкретно, между 0,03 и 0,08. Наконец, соединение дисперсии может также иметь формулу (6) Ce1-xLn'xO2, в которой Ln' означает комбинацию, по меньшей мере, двух редкоземельных элементов, где х равен не более 0,30 и, предпочтительно, может быть равен, по меньшей мере, 0,01.

Частицы, которые состоят из соединения дисперсии, имеют мелкозернистый и плотный гранулометрический состав. Действительно, они имеют размер, измеренный по их среднему диаметру, который, предпочтительно, составляет не более 10 нм и, более конкретно, может находиться в интервале между 2 и 8 нм. Этот размер определяется с помощью трансмиссионной электронной микроскопии (МЕТ), проводимой традиционно с использованием образца, предварительно высушенного на углеродной мембране, нанесенной на медную решетку, и с получением среднего результат