Активная система подвески транспортного средства (варианты)

Иллюстрации

Показать все

Изобретение относится к области автомобилестроения. Активная система подвески для транспортного средства содержит активный элемент подвески, включающий статор и якорь. Статор закреплен на кузове транспортного средства. Якорь имеет магнитную связь со статором и выполнен с возможностью вертикального перемещения по первой опорной системе. При этом якорь имеет жесткую связь с кареткой, которая перемещается по второй опорной системе. Каретка соединена тягой управления с колесом транспортного средства. Вторая опорная система воспринимает нагрузки, возникающие при боковых и продольных колебаниях колеса. Достигается исключение воздействия указанных нагрузок со стороны колеса на активный элемент подвески. 11 н. и 67 з.п. ф-лы, 23 ил.

Реферат

Активные системы подвески транспортных средств обычно включают в себя управляемый элемент подвески, такой как привод с изменяемым усилием. Управляемый элемент подвески обычно соединяют между колесным узлом и шасси транспортного средства при помощи промежуточной опоры.

Согласно первому объекту настоящего изобретения создана активная система подвески для транспортного средства, содержащая активный элемент подвески, который, по существу, жестко прикреплен к раме транспортного средства для того, чтобы, по существу, исключить механическую связь движения якоря активного элемента подвески с боковым перемещением колеса транспортного средства, и тягу управления, которая прикреплена между якорем активного элемента подвески и колесом транспортного средства, причем первый конец тяги управления прикреплен к якорю активного элемента подвески с помощью шарового шарнира или втулки.

Предпочтительно, по существу, исключена механическая связь активного элемента подвески с тягой подвески транспортного средства.

Предпочтительно, по существу, исключена механическая связь активного элемента подвески с рулевым приводом транспортного средства.

Предпочтительно, боковое перемещение содержит, по меньшей мере, одно из продольного и поперечного движений.

Предпочтительно, система дополнительно содержит пассивный элемент подвески, который выполнен с возможностью удерживания части массы транспортного средства.

Предпочтительно, расстояние между активным элементом подвески и шиной транспортного средства составляет, по меньшей мере, два сантиметра.

Согласно второму объекту настоящего изобретения создан способ активной подвески шасси транспортного средства, при котором прикрепляют активный элемент подвески к раме транспортного средства, для того чтобы, по существу, исключить связь движения якоря активного элемента подвески с боковым перемещением колеса транспортного средства, и прикрепляют тягу управления между якорем активного элемента подвески и колесом транспортного средства, причем первый конец тяги управления прикрепляют к якорю активного элемента подвески с помощью шарового шарнира или втулки.

Предпочтительно, дополнительно прикрепляют пассивный элемент подвески к раме транспортного средства.

Предпочтительно, по существу, исключают механическую связь активного элемента подвески с тягой подвески транспортного средства.

Предпочтительно, по существу, исключают механическую связь массы активного элемента подвески с рулевым приводом транспортного средства.

Предпочтительно, боковое перемещение содержит, по меньшей мере, одно из продольного и поперечного движений.

Согласно третьему объекту настоящего изобретения создана активная система подвески для транспортного средства, содержащая линейный электромагнитный привод, содержащий статор и якорь, который выполнен с возможностью перемещения относительно статора, причем статор, по существу, жестко прикреплен к раме транспортного средства, и тягу управления, имеющую первый конец, прикрепленный к якорю, и имеющую второй конец, прикрепленный к колесу транспортного средства таким образом, что движение якоря вызывает движение колеса транспортного средства относительно рамы транспортного средства, при этом первый конец тяги управления прикреплен к якорю активного элемента подвески с помощью шарового шарнира или втулки.

Предпочтительно, система дополнительно содержит пассивный элемент подвески, соединенный между рамой транспортного средства и колесом транспортного средства.

Предпочтительно, пассивный элемент подвески выбран из группы, содержащей пружину и амортизатор.

Предпочтительно, линейный электромагнитный привод содержит электромагнитный привод с подвижным магнитом.

Предпочтительно, система дополнительно содержит пассивный элемент подвески, соединенный между шасси транспортного средства и колесом транспортного средства.

Предпочтительно, статор прикреплен к раме транспортного средства при помощи втулки.

Предпочтительно, движение якоря вызывает движение колеса транспортного средства, по существу, в вертикальном направлении относительно горизонтальной плоскости транспортного средства.

Предпочтительно, отношение перемещения якоря к перемещению колеса составляет, по существу, один к одному.

Предпочтительно, отношение перемещения якоря к перемещению колеса составляет меньше одного к одному.

Предпочтительно, система дополнительно содержит датчик, прикрепленный к одному из линейного электромагнитного привода, рамы и колеса.

Предпочтительно, датчик интегрирован в линейный электромагнитный привод.

Предпочтительно, тяга управления содержит изогнутую часть.

Предпочтительно, по существу, исключена механическая связь движения якоря с движением колеса.

Предпочтительно, система дополнительно содержит покрытие, которое, по существу, изолирует якорь.

Предпочтительно, система дополнительно содержит гофр, который окружает, по меньшей мере, часть тяги управления.

Предпочтительно, по существу, исключена механическая связь линейного электромагнитного привода с рулевым приводом транспортного средства.

Согласно четвертому объекту изобретения создан способ активной подвески шасси транспортного средства, при котором: прикрепляют статор линейного электромагнитного привода к раме транспортного средства, при этом шасси транспортного средства прикреплено к раме; прикрепляют первый конец тяги управления к якорю линейного электромагнитного привода, причем якорь выполнен подвижным относительно статора; и прикрепляют второй конец тяги управления к колесу транспортного средства таким образом, что движение якоря вызывает движение колеса транспортного средства относительно рамы транспортного средства.

Предпочтительно, дополнительно прикрепляют пассивный элемент подвески между рамой транспортного средства и колесом транспортного средства.

Предпочтительно, пассивный элемент подвески выбирают из группы, содержащей пружину и амортизатор.

Предпочтительно, линейный электромагнитный привод содержит электромагнитный привод с подвижным магнитом.

Предпочтительно, дополнительно прикрепляют пассивный элемент подвески между шасси транспортного средства и колесом транспортного средства.

Предпочтительно, дополнительно прикрепляют статор к раме транспортного средства при помощи втулки.

Предпочтительно, дополнительно соединяют шаровой шарнир первого конца тяги управления с якорем.

Предпочтительно, дополнительно прикрепляют первый конец тяги управления к якорю при помощи втулки.

Предпочтительно, движение якоря вызывает движение колеса транспортного средства, по существу, в вертикальном направлении относительно горизонтальной плоскости транспортного средства.

Согласно пятому объекту изобретения создан линейный электромагнитный привод для активной системы подвески транспортного средства, содержащий статор; якорь, имеющий магнитную связь со статором; первую опорную систему, механически соединенную с якорем, причем первая опорная система поддерживает воздушный зазор между якорем и статором; и вторую опорную систему, механически соединенную со статором, причем вторая опорная система поглощает изгибающие нагрузки, относящиеся к подвеске, тем самым минимизируя изгибающие нагрузки на якорь, относящиеся к подвеске, каретку, механически соединенную с первой опорной системой таким образом, что каретка перемещается относительно первой опоры.

Предпочтительно, статор содержит, по меньшей мере, одну катушку.

Предпочтительно, якорь содержит, по меньшей мере, один магнит.

Предпочтительно, первая опорная система удерживает магнитную нагрузку от взаимодействия якоря и статора.

Предпочтительно, первая опорная система механически связана со второй опорной системой при помощи одного из пальца и изогнутого элемента.

Предпочтительно, привод дополнительно содержит каретку, которая механически связана со второй опорной системой.

Предпочтительно, каретка механически связана с первой опорной системой при помощи пальца или изогнутого элемента.

Предпочтительно, палец или изогнутый элемент обеспечивают перемещение каретки относительно первой опорной системы.

Предпочтительно, каретка механически связана с колесом транспортного средства при помощи тяги управления.

Предпочтительно, один конец тяги управления соединен с кареткой при помощи одного из шарового шарнира и втулки.

Согласно шестому объекту изобретения создан линейный электромагнитный привод для активной системы подвески транспортного средства, содержащий: статор; якорь, имеющий магнитную связь со статором, причем якорь выполнен подвижным относительно статора; корпус, окружающий статор и якорь, причем огибающая корпуса остается зафиксированной независимо от положения якоря относительно статора; тягу управления, имеющую первый конец, прикрепленный к якорю, и имеющую второй конец, прикрепленный к колесу транспортного средства таким образом, что движение якоря вызывает движение колеса транспортного средства относительно рамы транспортного средства.

Предпочтительно, корпус, по существу, жестко прикреплен к раме транспортного средства.

Предпочтительно, огибающая корпуса имеет размеры корпуса.

Предпочтительно, якорь механически связан со статором при помощи опоры.

Согласно седьмому объекту изобретения создана активная система подвески для транспортного средства, содержащая: линейный электромагнитный привод, содержащий статор и якорь, который выполнен с возможностью перемещения относительно статора, причем статор, по существу, жестко прикреплен к раме транспортного средства, и контроллер, имеющий электрическую связь с линейным электромагнитным приводом посредством одного или более неизгибающихся кабелей.

Предпочтительно, один или более неизгибающихся кабелей содержит, по меньшей мере, один из сигнального кабеля и силового кабеля.

Предпочтительно, линейный электромагнитный привод дополнительно содержит усилитель, имеющий электрическую связь с контроллером.

Предпочтительно, статор прикреплен к раме транспортного средства при помощи втулки.

Предпочтительно, система дополнительно содержит тягу управления, имеющую первый конец, прикрепленный к якорю, и имеющую второй конец, прикрепленный к колесу транспортного средства таким образом, что движение якоря вызывает движение колеса транспортного средства относительно рамы транспортного средства.

Согласно восьмому объекту изобретения создан электромагнитный привод для активной системы подвески транспортного средства, содержащий: статор; якорь, имеющий магнитную связь со статором, причем якорь выполнен подвижным относительно статора; корпус, окружающий статор и якорь; и первый механический стопор, расположенный в корпусе, причем имеет место относительное перемещение между якорем и стопором, когда якорь движется, при этом стопор ограничивает перемещение якоря в первом направлении.

Предпочтительно, привод дополнительно включает второй механический стопор, расположенный в корпусе, причем имеет место относительное перемещение между якорем и вторым стопором, когда якорь движется, при этом второй стопор ограничивает перемещение якоря во втором направлении, противоположном первому направлению.

Предпочтительно, привод дополнительно включает третий механический стопор, расположенный в корпусе, причем имеет место относительное перемещение между якорем и третьим стопором, когда якорь движется, при этом третий стопор ограничивает перемещение якоря во втором направлении.

Предпочтительно, стопор имеет круглое сечение.

Предпочтительно, стопор имеет канавку.

Предпочтительно, привод дополнительно включает опорную направляющую, которая направляет движение якоря, при этом стопор охватывает опорную направляющую.

Предпочтительно, стопор включает неопрен.

Предпочтительно, стопор включает этиленпропилендиеновый мономер.

Согласно девятому объекту изобретения создан электромагнитный привод для активной системы подвески транспортного средства, содержащий: статор; якорь, имеющий магнитную связь со статором, причем якорь выполнен подвижным относительно статора; корпус, окружающий статор и якорь; и механический стопор, расположенный в корпусе, причем механический стопор выполнен из материала, включающего полимерный эластомер.

Предпочтительно, эластомер представляет собой термореактивный полимерный эластомер.

Предпочтительно, термореактивный полимерный эластомер включает материал, выбранный из группы, состоящей из этиленпропилендиенового мономера, неопрена, нитрилового каучука, полиуретана, кремнийорганического каучука, натурального каучука, стиролбутадиенового каучука и фторуглеродов.

Предпочтительно, эластомер представляет собой термопластический полимерный эластомер.

Предпочтительно, термопластический полимерный эластомер включает динамически вулканизированный эластомер.

Предпочтительно, полимерный эластомер имеет форму, выбранную из группы, состоящей из плотной пены или ячеистой пены.

Согласно десятому объекту изобретения создан электромагнитный привод для активной системы подвески транспортного средства, содержащий: статор; якорь, имеющий магнитную связь со статором, причем якорь выполнен подвижным относительно статора; корпус, окружающий статор и якорь; и механический стопор, расположенный в корпусе, причем механический стопор имеет толщину от 10 мм до 60 мм.

Предпочтительно, механический стопор имеет толщину от 20 мм до 50 мм.

Предпочтительно, механический стопор имеет толщину от 30 мм до 40 мм.

Предпочтительно, механический стопор имеет толщину 35 мм.

Согласно одиннадцатому объекту изобретения создан электромагнитный привод для активной системы подвески транспортного средства, содержащий: статор; якорь, имеющий магнитную связь со статором, причем якорь выполнен подвижным относительно статора; первую опорную направляющую, которая направляет движение якоря; и первую опору для удерживания первого конца опорной направляющей, причем опора обеспечивает перемещение первого конца опорной направляющей из первого исходного положения, когда к опорной направляющей прилагается первая сила, и опора возвращает первый конец опорной направляющей в исходное положение, когда прекращается приложение силы к первой опорной направляющей.

Предпочтительно, привод дополнительно включает в себя вторую опору для удерживания второго конца опорной направляющей, причем вторая опора обеспечивает перемещение второго конца опорной направляющей из второго исходного положения, когда к опорной направляющей прилагается сила, и вторая опора возвращает второй конец опорной направляющей во второе исходное положение, когда прекращается приложение силы к первой опорной направляющей.

Предпочтительно, привод дополнительно содержит: вторую опорную направляющую, которая направляет движение якоря; и третью опору для удерживания первого конца второй опорной направляющей, причем третья опора обеспечивает перемещение первого конца второй опорной направляющей из третьего исходного положения, когда ко второй опорной направляющей прилагается вторая сила, и третья опора возвращает первый конец второй опорной направляющей в третье исходное положение, когда прекращается приложение второй силы ко второй опорной направляющей.

Предпочтительно, привод дополнительно включает в себя четвертую опору для удерживания второго конца второй опорной направляющей, причем четвертая опора обеспечивает перемещение второго конца второй опорной направляющей из четвертого исходного положения, когда ко второй опорной направляющей прилагается вторая сила, и четвертая опора возвращает второй конец второй опорной направляющей в четвертое исходное положение, когда прекращается приложение силы ко второй опорной направляющей.

Предпочтительно, опора включает в себя механический стопор, который ограничивает движение якоря.

Настоящее изобретение описано более детально в подробном описании изобретения. Указанные выше и дополнительные преимущества настоящего изобретения могут быть лучше поняты при ознакомлении с нижеследующим описанием, приведенным со ссылкой на прилагаемые чертежи, на которых одинаковые ссылочные позиции обозначают одинаковые элементы конструкции и признаки на разных чертежах. Чертежи необязательно выполнены в масштабе, и особое значение вместо этого придано иллюстрации принципов изобретения. На чертежах:

фиг.1 - схема обычной активной системы подвески для одного колеса транспортного средства;

фиг.2 - вид активной системы подвески для одного колесного узла транспортного средства, соответствующей одному варианту осуществления изобретения;

фиг.3А-3С - иллюстрации перемещения тяги управления относительно активного элемента подвески, соответствующего настоящему изобретению;

фиг.4 - вид активной системы подвески для одного колесного узла транспортного средства, соответствующей другому варианту осуществления изобретения;

фиг.5 - вид в перспективе активной системы подвески с фиг.2;

фиг.6 - вид электромагнитного привода, соответствующего одному варианту осуществления изобретения.

фиг.7А-7С - иллюстрации движения гофра электромагнитного привода, показанного на фиг.6;

фиг.8 - вид в перспективе электромагнитного привода, соответствующего другому варианту осуществления изобретения;

фиг.9 - вид, показанный на фиг.8, с удаленной частью корпуса для облегчения видения каретки в срединном положении;

фиг.10 - вид в перспективе механического стопора, который может использоваться в варианте осуществления изобретения, показанном на фиг.8;

фиг.11 - вид, показанный на фиг.9, с кареткой, показанной на одном конце пути ее движения;

фиг.12 - вид, показанный на фиг.9, с кареткой, показанной на другом конце пути ее движения;

фиг.13 - вид в перспективе электромагнитного привода, соответствующего другому варианту настоящего изобретения;

фиг.14 - вид, показанный на фиг.13, с удаленной частью корпуса для облегчения видения каретки в срединном положении;

фиг.15 - вид в перспективе механического стопора, который может использоваться в варианте осуществления изобретения, показанном на фиг.13;

фиг.16 - вид в перспективе механического стопора, который может использоваться в варианте осуществления изобретения, показанном на фиг.13;

фиг.17 - вид, показанный на фиг.14, с кареткой, показанной на одном конце пути ее движения;

фиг.18 - вид, показанный на фиг.14, с кареткой, показанной на другом конце пути ее движения;

фиг.19 - диаграмма жесткости для механического стопора.

Система активной подвески для транспортного средства включает в себя управляемый источник силы, который создает изменяемую силу между колесным узлом транспортного средства и шасси транспортного средства. Колесный узел состоит из различных подвижных частей, которые механически соединены с колесом, таких как тяги, рычаги управления, ступицы, оси и т.д. Подвижные части увеличивают общую массу колесного узла. Обычно желательно уменьшать подвижную массу колеса.

На фиг.1 показана схема активной системы 100 подвески для одного колесного узла 101 транспортного средства 102. Для ясности ось транспортного средства, приводной вал, кардан и различные другие компоненты колесного узла 101 не показаны. Активная система 100 подвески включает в себя управляемый силовой привод 104, который соединен между колесным узлом 101 и промежуточной опорой 108 транспортного средства 102. Привод 104 может быть, например, электромагнитным приводом или гидравлическим приводом. Верхняя часть управляемого силового привода 104 обычно прикреплена к опоре 108 при помощи первой втулки 110. Нижняя часть управляемого силового привода 104 может быть прикреплена непосредственно или при помощи второй втулки 114 к нижнему рычагу 112 управления.

Нижняя часть привода 104 прикреплена к кулаку колеса как можно ближе к вертикальной центральной линии колеса. Таким образом, привод 104 достигает почти однозначного отношения движения с колесом. Таким образом, движение каркаса привода приводит к соответствующему движению колеса. Это почти однозначное отношение движения означает, что, по существу, вся сила, генерируемая приводом 104, передается непосредственно ободу колеса. По существу, вся производимая приводом 104 сила эффективно используется для управления движением колесного узла 101. Когда один конец привода 104 непосредственно прикреплен к кулаку колеса, привод 104, можно сказать, смонтирован "за бортом" транспортного средства 102.

В системе 100 подвески, показанной на фиг.1, использован "телескопический привод". Под телескопичностью понимается то, что когда колесный узел движется вверх и вниз, реагируя на воздействия со стороны дороги, диапазон, который охватывает физическую структуру привода 104, изменяется в длину. Это означает, что конструктор подвески должен планировать изменения длины привода 104 при планировании пространства, требуемого в нише 115 шасси для размещения привода 104. Это отличается от "привода с фиксированным диапазоном", общий диапазон которого не изменяется при движении колеса. Один вариант выполнения привода с фиксированным диапазоном, соответствующего изобретению, описан со ссылками на фиг.2.

Телескопический привод 104, показанный на фиг.1, может требовать использования резиновых гофров (не показаны) для защиты подвижного якоря 117, когда он движется в привод 104 и из него. Поскольку якорь 117 может быть не круглым, резиновые гофры могут иметь не круглую форму. На практике наиболее легкая часть привода 104, которой обычно является якорь, соединена непосредственно с кулаком колеса. Таким образом, гофр обычно устанавливают низко, очень близко к колесу. Кроме того, поскольку гофр должен быть достаточно большим для окружения якоря привода 104, объем воздуха внутри гофра относительно велик. Таким образом, количество циркулирующего воздуха, когда якорь 117 движется, является существенным. По существу, привод 104 должен "дышать" (то есть совершать обмен воздуха, когда якорь движется вверх и вниз) для предотвращения смятия и раздувания гофра. Обычно требуется вентиляционное отверстие для воздуха (не показано) для регулирования перепада давлений внутри привода 104 и снаружи от него.

Рулевой привод включает в себя соединительную тягу 116. Соединительная тяга 116 соединена со шпинделем 118 колесного узла 101 и управляет направлением движения транспортного средства. Кроме того, между подвесочной опорой 108 и нижним рычагом 112 управления параллельно приводу 104 может быть присоединен пассивный элемент 120 подвески. В показанном варианте осуществления изобретения один конец пассивного элемента 120 подвески соединен с пластиной 121, которая прикреплена к срединной точке якоря 117 привода 104. Пассивный элемент 120 подвески может представлять собой, например, спиральную пружину или пневмоподушку. В альтернативном варианте пружина может быть прикреплена между рычагом управления подвески и шасси транспортного средства.

Подвесочная опора 108 соединена с шасси 122 транспортного средства 102. Шасси 122 транспортного средства 102 соединено с рамой (не показана) транспортного средства 102. Рама транспортного средства 102 является основанием, на котором установлено шасси 122 и другие компоненты транспортного средства 102. Например, конец нижнего рычага 112 управления, который не показан, соединен с рамой транспортного средства 102. Поскольку подвесочная опора 108 непосредственно соединена листовым металлом с рамой транспортного средства 102, и подвесочная опора 108, и рама могут рассматриваться как структурные элементы транспортного средства 102, пригодные в качестве линий передачи сил. Следует отметить, что только верхний конец привода 104, показанного на Фиг.1, непосредственно смонтирован на шасси/раме.

Привод 104 и пассивный элемент 120 подвески контролируют вертикальное отклонение колеса. Угол привода 104 относительно вертикальной плоскости оптимизирован для специфической геометрии подвески транспортного средства 102.

В этой конфигурации привод 104 непосредственно соединен с тягой подвески транспортного средства 102. Более конкретно, привод 104 активной системы 100 подвески, показанной на фиг.1, используется как структурный элемент подвески. Это, в свою очередь, требует того, что опорная система в приводе 104 служит для выполнения двух отдельных функций: (1) поддержания воздушного магнитного зазора между подвижным якорем и неподвижным узлом; (2) контроля нагрузок в повороте и разрывных нагрузок, поступающих в привод 104 от подвески. Эти нагрузки в повороте и разрывные нагрузки иногда называют изгибающими нагрузками.

Когда встречается выбоина или другая неровность на дороге, шине 124 передаются вертикальные, продольные и/или поперечные силы. Активная система 100 подвески, показанная на фиг.1, может использоваться для ослабления вертикального движения шасси 122, которое происходит от этих воздействий дороги. Показанная система 100 подвески существенно не ослабляет продольное, поперечное или, как можно назвать, боковое перемещение. Когда на систему 100 подвески воздействует продольная сила, вся масса привода 104 (как подвижных по вертикали, так и неподвижных элементов) отклоняется назад и вперед на верхней опоре 110 вместе с массой различных других компонентов подвески. Подобный результат возникает в отношении поперечных движений. Эти поперечные движения могут также увеличивать изгибающие нагрузки.

Если система 100 подвески, показанная на фиг.1, используется на транспортном средстве 102 спереди, то может потребоваться привод 104 для поворота с колесом. Для обеспечения поворота привода 104 требуется вращающаяся опора. Кроме того, поворот привода 104 требует использования гибких силовых кабелей и управляющих кабелей, имеющих адекватную способность снятия напряжений и проведенных к приводу 104. Более того, поскольку привод 104 непосредственно соединен с рулевым приводом, рулевой привод должен быть приспособлен к дополнительной массе привода 104 наряду с массой компонентов колеса, относящихся к рулевому управлению.

На фиг.2 показана активная система 200 подвески для одного колесного узла транспортного средства, соответствующая одному варианту осуществления изобретения. Хотя описана модель для одного колеса, изобретение может применяться для всех колес транспортного средства. Колесный узел включает в себя шину 201, шпиндель 202, ступицу 203, ось транспортного средства (не показана), приводной вал (не показан), кардан (не показан) и различные другие подвижные компоненты.

Активная система 200 подвески включает в себя активный элемент 204 подвески. Например, активный элемент 204 подвески может представлять собой электромагнитный привод. Привод 204 может представлять собой линейный привод или вращающийся привод. Кроме того, привод 204 может включать в себя подвижный магнит, подвижную катушку, переменное магнитное сопротивление или любую другую известную топологию электродвигателя. Пример активной системы подвески, имеющей активный элемент подвески, описан в патенте США №4981309, содержание которого включено сюда посредством ссылки. Этот патент описывает активный элемент подвески, представляющий собой электромагнитный привод.

Активный элемент 204 подвески может быть расположен в последовательной или параллельной конфигурации наряду с пассивным элементом подвески, например, таким как пружина или пневмоподушка.

Активный элемент 204 подвески включает в себя корпус 206. Внутри корпуса 206 установлен статор 208. Статор 208 может включать в себя обмотки электродвигателя. Активный элемент 204 подвески также включает в себя якорь 210. Якорь 210 может содержать один или более магнитов (не показан). Якорь 210 может также включать в себя подшипники 212. Подшипники 212 поддерживают магнитный воздушный зазор между якорем 210 и катушками статора и позволяют якорю 210 скользить относительно статора 208.

Активный элемент 204 подвески механически соединен с рамой 214 транспортного средства. Например, активный элемент 204 подвески может быть жестко соединен с рамой 214 или может быть соединен с рамой 214 при помощи втулки 216. В одном варианте осуществления изобретения активный элемент 204 подвески установлен, возможно, при помощи втулки, его средней секцией на шасси/раме транспортного средства. В одном варианте осуществления изобретения один конец активного элемента 204 подвески также прикреплен к подвесочной опоре в дополнение к прикреплению средней секцией к шасси/раме транспортного средства.

Активный элемент подвески, по существу, жестко прикреплен к раме транспортного средства таким образом, чтобы, по существу, исключалась механическая связь активного элемента подвески с боковым перемещением колеса транспортного средства. Под боковым перемещением подразумевается продольное и поперечное движение. Под отсутствием связи подразумевается, что продольные и поперечные силы и движения существенно уменьшены до того, как они могут быть переданы якорю 210 и/или активному элементу 204 подвески. В одном варианте осуществления изобретения разъединение достигается благодаря тяге управления, которая прикреплена между активным элементом подвески и колесом транспортного средства. Тяга управления описана здесь подробно.

В одном варианте осуществления изобретения от активного элемента 204 подвески к раме 214 по соединению проводится тепло. Например, статор 208 в активном элементе 204 подвески включает в себя катушки, которые могут генерировать тепло. Тепло может рассеиваться из активного элемента 204 подвески в раму транспортного средства без использования внешних вентиляционных средств или активного охлаждения.

Может быть желательным использование канала с низким тепловым сопротивлением между активным элементом 204 подвески и рамой 214 транспортного средства. Канал с низким тепловым сопротивлением может быть получен с использованием известных способов, таких как увеличение площади поверхности контакта между активным элементом 204 подвески и рамой, использование материала для корпуса, который имеет высокую теплопроводность (такого как алюминий), подготовка сопрягаемых поверхностей таким образом, чтобы они были как можно более плоскими и копланарными, и/или использование теплопроводных наполняющих материалов граничного слоя, таких как калорическая консистентная смазка или теплопроводные прокладки. В качестве средства сопряжения можно использовать теплопроводную втулку, когда эластомер, используемый для изготовления втулки, имеет высокое процентное содержание добавленного теплопроводного наполнителя (чешуек алюминия или меди, или другого теплопроводного наполнителя).

Нижний рычаг 222 управления включает в себя первый конец 224, который соединен с рамой 214 при помощи втулки или подшипника (не показаны). Втулка/подшипник позволяет рычагу 222 управления поворачиваться, когда колесный узел перемещается в вертикальном направлении. Нижний рычаг 222 управления включает в себя второй конец 228, имеющий шаровой шарнир 230, который соединен со шпинделем 202. Шпиндель 202 включает в себя рычаг 234 рулевого привода. Рычаг 234 рулевого привода механически соединен с соединительной тягой (не показана). Соединительная тяга представляет собой компонент в рулевом приводе транспортного средства. Движение соединительной тяги вызывает поворот колеса транспортного средства шпинделем 202.

Тяга 232 управления соединена между активным элементом 204 подвески и шпинделем 202 колесного узла. В одном варианте осуществления изобретения рычаг 232 управления соединен с якорем 210 активного элемента 204 подвески. Тяга 232 управления может включать изгиб 236. Изгиб 236 конфигурирован таким образом, чтобы обеспечивать достаточное удаление шины от активного элемента 204 подвески. Например, удаление шины может составлять два сантиметра или более. Тяга 232 управления может быть соединена с активным элементом 204 подвески при помощи шарового шарнира 238. Шаровой шарнир 238 конфигурирован таким образом, чтобы он допускал поворот тяги 232 управления относительно якоря 210 активного элемента 204 подвески. Тяга 232 управления в альтернативном варианте может быть соединена с активным элементом 204 подвески при помощи втулки (не показана). В одном варианте осуществления изобретения тяга 232 управления выполнена с возможностью поворота с колесом 201 транспортного средства при повороте колеса при рулевом управлении. Например, когда система 200 подвески, показанная на фиг.2, используется в передней части транспортного средства, для рулевого управления может использоваться шаровой шарнир в верхней или нижней части тяги 232 управления. В целом стоимость и сложность шарового шарнира меньше стоимости вращающейся опоры. Кроме того, неподвижный характер активного элемента 204 подвески устраняет потребность в гибкой электропроводке.

Как и система 100 подвески, показанная на фиг.1, система 200 подвески, показанная на фиг.2, достигает, по существу, однозначного отношения движения между движением якоря 210 и движением колесного узла. Однако однозначное отношение движения достигается по-разному. В частности, тяга 232 управления обеспечивает то, что любое движение якоря 210 непосредственно приводит к движению колеса. Подобно тому, как это происходит в системе 100, показанной на фиг.1, вся способность создания силы активного элемента 204 подвески эффективно используется для управления движением колеса. Однако конфигурация, показанная на фиг.2, не требует прикрепления одного конца активного элемента 204 подвески к кулаку вблизи колеса. В свою очередь, это делает компоновку активного элемента 204 подвески относительно прямой, поскольку конструировать сечение тяги 232 управления в целом просто, и оно меньше соответствующего сечения в активном элементе 204 подвески. Поскольку активный элемент 204 подвески не прикреплен непосредственно к кулаку колеса, активный элемент 204 подвески установлен, можно сказать, "на борту" транспортного средства. Установленный на борту активный элемент 204 подвески можно легче компоновать, и он допускает большее разнесение между колесом и активным элементом 204 подвески.

Опорная система 212 в активном элементе 204 подвески в целом выполняет две функции. Первая функция опорной системы 212 состоит в поддержании магнитного воздушного зазора между якорем 210 и статором 208. Вторая функция опорной системы 212 состоит в поглощении нагрузок в повороте и разрывных нагрузок. Можно показать, что величина нагрузок в повороте и разрывных нагрузок, которые передаются опорам привода 204, показанного на фиг.2, уменьшены по сравнению с теми, которые относятся к приводу 104, показанному на фиг.1. Это происходит, по меньшей мере, частично вследствие того, что тяга 232 управления выполнена с возможностью поглощения большей части напряжений, создаваемых изгибающими нагрузками, которые, в противном случае, передавались бы якорю 210 через опоры 212. Кроме того, когда на систему 100 подвески, показанную на фиг.1, воздействует продольная сила, вся масса привода 104 (как перемещающихся вертикально, так и неподвижных элементов) отклоняется назад и вперед на верхней втулке вместе с массой различных других компонентов подвески. Подобный результат возникает относительно поперечных перемещений. В противоположность этому, когда продольная сила воздействует на систему 200 подвески, показанную на фиг.2, только масса тяги 232 управления отклоняется назад и вперед вместе с массой различных других компонентов подвески. Это также относится к воздействиям в поперечном направлении. По существу, отклоняющаяся масса в системе 200 подвески, показанной на фиг.2, уменьшена по сравнению с отклоняющейся массой в системе 100 подвески, показанной на фиг.1.

В противоположность приводу 104, показанному на фиг.1, активный элемент 204 подвески назван приводом с фиксированной огибающей. В этом варианте осуществления изобретения тяга 232 управления, соединяющая якорь 210 с колесом, движется вверх и вниз с колесом, а весь корпус 206, окружающий привод 204, не изменяется в длину. Эта зафиксированная огибающая может быть преимуществом компоновки.

Активны