Модифицированные зеленые флуоресцентные белки и способы их использования

Иллюстрации

Показать все

Изобретение относится к биотехнологии и генетической инженерии. Изобретение раскрывает модифицированный генетически сконструированный обладающий флуоресценцией флуоресцентный белок. Белок обладает повышенной скоростью созревания при температуре 20°С и выше. Раскрыты также нуклеиновые кислоты, его кодирующие, вектора, кассеты экспрессии и клетки-хозяева, содержащие такие нуклеиновые кислоты. Предложенная группа изобретений может быть использована во множестве различных приложений и методов, в особенности для мечения биомолекул, клеток или клеточных органелл. 11 н. и 4 з.п. ф-лы, 7 ил.

Реферат

ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

По настоящей заявке испрашивается приоритет по предварительной заявке на патент США, серийный номер 60/733429, поданной 4 ноября 2005 года, которая включена в настоящее описание в качестве ссылки.

Область техники, к которой относится изобретение

Настоящее изобретение относится в основном к области биологии и химии. Более конкретно, настоящее изобретение относится к флуоресцентным белкам.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Зеленый флуоресцентный белок (GFP) из водной медузы Aequorea victoria (синоним А.А.), описанный Джонсон с соавт. в J. Cell Comp Physiol. (1962), 60: 85-104, был обнаружен как часть биолюминесцентной системы медузы, в которой GFP играет роль вторичного эмиттера, трансформирующего синий свет фотопротеинового экворина в зеленый свет.

кДНК, кодирующая GFP A.victoria, была клонирована Прашером с соавт. (Prasher et al., Gene, 1992, V. 111(2), pp. 229-233). Выяснилось, что этот ген может гетерологично экспрессироваться практически в любом организме за счет уникальной способности GFP образовывать флуорофор (Chalfie et al., Gene (1992), 111(2): 229-233). Данный факт открывает широкие перспективы для использования GFP в клеточной биологии в качестве генетически кодируемой флуоресцентной метки.

Были проведены обширные исследования с целью улучшения свойств GFP и получения на основе GFP реактивов, полезных и оптимизированных для множества исследовательских целей. Были разработаны новые варианты GFP, такие как «гуманизированная» ДНК GFP, белковый продукт которой характеризуется повышенным синтезом в клетках млекопитающих (Haas, et al., Current Biology 1996, V. 6, pp. 315-324; Yang, et al., Nucleic Acids Research 1996, V. 24, pp. 4592-4593). Один такой гуманизированный белок представляет собой «улучшенный зеленый флуоресцентный белок» (EGFP). Другие мутации GFP приводят к получению вариантов, испускающих синий, голубой и желто-зеленый свет. Кроме того, были получены варианты GFP с улучшенной укладкой и также была достигнута клеточная флуоресценция в условиях инкубации при температуре 37°С. Используемые мутанты GFP A.victoria подробно описаны в патентах США 5491084, 5625048, 5777079, 5804387, 6090919, 5874304, 5968750, 6020192, 6027881, 6046925, 6054321, 6066476, 6096865, 6146826, 6414119, 6638732, 6699687, 6803188, 6077707, 6124128, 6172188, 6818443, 6194548, 6265548, 6319669, 6403374, 6593135, 6800733, 6780975, 6852849 и 6919186.

Были выделены гомологи GFP разных видов, включая Anthozoa и Arthropoda (Matz et al., Nature Biotechnol. 1999, V. 17, pp. 969-973; Shagin et al., Mol. Biol. Evol. 2004, V. 21(5), pp. 841-850). Множество биологических и биомедицинских применений, таких белков было подробно описано Lippincott-Schwartz и Patterson в Science, 2003, V. 300(5616), pp. 87-91). Кроме того, были выделены гомологи, близкие к GFP A.victoria, из других медуз рода Aequorea A, включая зеленый флуоресцентный белок А. macrodactyla GFPxm (Xia et al., Mar Biotechnol 2002, V. 4(2), pp. 155-62) и GFP-подобный белок A. coerulescens, AcGFPL (Gurskaya et al., Biochem J. 373(Pt2): 403-408).

GFPxm А. macrodactyla характеризуется 83% идентичностью с GFP A.victoria. GFPxm дикого типа не используется в качестве флуоресцентного маркера в клеточных тестах из-за низкой скорости его созревания при температуре 37°С. Модификация GFPxm для оптимизации скорости его созревания при температурах 35-39°С представляет собой способ выявления репортера в клетках млекопитающих с низкими уровнями экспрессии и/или с повышенной чувствительностью относительно GFPxm дикого типа. Указанные свойства в значительной мере повышают возможности использования GFPxm при исследовании клеточных функций живых клеток.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к функциональным сконструированным флуоресцентным белкам с повышенной скоростью созревания при температуре 20°С или выше в сравнении с зеленым флуоресцентным белком дикого типа А. macrodactyla (GFPxm), где указанные функциональные сконструированные флуоресцентные белки по существу идентичны по аминокислотной последовательности зеленому флуоресцентному белку А. macrodactyla (GFPxm) (SEQ ID NO: 2) и включают аминокислотное замещение F220L.

В предпочтительном варианте осуществления настоящее изобретение относится к молекуле нуклеиновой кислоты, включающей нуклеотидную последовательность, кодирующую функциональный флуоресцентный белок, аминокислотная последовательность которого по существу подобна аминокислотной последовательности зеленого флуоресцентного белка А. macrodactyla (GFPxm) (SEQ ID NO: 2) и отличается от SEQ ID NO: 2 по меньшей мере аминокислотным замещением F220L. Указанный функциональный флуоресцентный белок имеет повышенную скорость созревания при температуре 20°С или выше в сравнении с GFPxm.

В предпочтительном варианте молекула нуклеиновой кислоты согласно настоящему изобретению кодирует флуоресцентный белок, который также включает дополнительные замещения аминокислот, выбранные из группы, состоящей из K3G, E6D, T9A, P58T, F99L, F99H, M128K, M128E, I136M, Y151H, N144S, K162E, K156M, T214A, G228C, G228S и K238R, где указанный функциональный флуоресцентный белок имеет повышенную скорость созревания при температуре 20°С или выше в сравнении с GFPxm А. macrodactyla дикого типа.

В предпочтительных вариантах молекула нуклеиновой кислоты согласно настоящему изобретению кодирует флуоресцентный белок, который по существу подобен по аминокислотной последовательности GFPxm и включает дополнительно одно или несколько замещений аминокислот, которые изменяют его флуоресцентные свойства и/или способствуют оптимизации укладки, как было показано, например, в SEQ ID No: 18-24.

В другом предпочтительном варианте настоящее изобретение относится к функциональному мутантному флуоресцентному белку, аминокислотная последовательность которого по существу подобна аминокислотной последовательности GFPxm А. macrodactyla (SEQ ID NO: 2) и который отличается от SEQ ID No: 2 по меньшей мере аминокислотным замещением F220L. Указанный функциональный мутантный флуоресцентный белок обладает повышенной скоростью созревания при температуре 20°С или выше в сравнении с GFPxm. Рассматриваются также примеры мутантных флуоресцентных белков, имеющих аминокислотный состав, выбранный из группы, состоящей из SEQ ID No: 4-24, где указанный мутантный флуоресцентный белок имеет повышенную скорость созревания при температуре 20°С или выше в сравнении с GFPxm.

В других вариантах осуществления настоящего изобретения предлагаются векторы, включающие нуклеиновую кислоту согласно настоящему изобретению. Кроме того, настоящее изобретение относится к кассете экспрессии, включающей нуклеиновую кислоту согласно настоящему изобретению и регуляторные элементы, необходимые для экспрессии нуклеиновой кислоты в клетке.

Дополнительно, предлагаются клетки-хозяева, стабильные клеточные линии, трансгенные животные и трансгенные растения, включающие нуклеиновые кислоты, векторы или кассеты экспрессии согласно настоящему изобретению.

Дополнительно, предлагаются наборы, включающие нуклеиновые кислоты, векторы или кассеты экспрессии, которые содержат указанные нуклеиновые кислоты или белки согласно настоящему изобретению.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 приведена иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) флуоресцентного белка GFPxm.

На фиг.2 приведена иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) флуоресцентного белка Mut2.

На фиг.3 приведена иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) флуоресцентного белка Mut-g9.

На фиг.4 показана относительная яркость колоний E. coli, экспрессирующих флуоресцентный белок GFPxm, Mut2 или Mut-g9 после роста при разных температурах. Температурные условия и время инкубации указаны под гистограммой. Все данные нормализованы относительно яркости колоний, экспрессирующих Mut-g9, после роста в течение 36 часов при температуре 20°С.

На фиг.5 показаны кривые, отображающие флуоресценцию растущих колоний E. coli, экспрессирующих GFPxm (линия 1), Mut2 (линия 2) или Mut-g9 (линия 3) в течение 6 часов после индукции.

На фиг.6 показана иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) tagGFP.

На фиг.7А приведена иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) tagGFP.

На фиг.7B приведена иллюстрация нормализованных спектров возбуждения (линия 1) и эмиссии (линия 2) YFP1.

ПОДРОБНОЕ ОПИСАНИЕ

Как использовано в настоящем описании, термин «флуоресцентный белок» относится к белку, который флуоресцирует, то есть он может демонстрировать низкую, умеренную или интенсивную флуоресценцию при облучении светом соответствующей длины волны возбуждения. Флуоресценция, характерная для такого флуоресцентного белка, представляет собой свойство, определяемое флуорофором, где указанный флуорофор возникает при аутокаталитической циклизации двух или более аминокислотных остатков в полипептидном скелете. При этом флуоресцентные белки согласно настоящему изобретению не включают белки, которые демонстрируют флуоресценцию только за счет тех остатков, которые действуют сами по себе в качестве внутренних флуорофоров, например, за счет триптофана, тирозина и фенилаланина.

Как используется в настоящем описании, термин «флуоресцентное свойство» относится к коэффициенту молярной экстинкции при соответствующей длине волны возбуждения, к квантовой эффективности флуоресценции, к форме спектра возбуждения или спектра эмиссии, к максимуму длины волны возбуждения и максимуму длины волны эмиссии, отношению амплитуд возбуждения при двух разных длинах волн, к соотношению амплитуд эмиссии при двух разных волнах, к длительности возбужденного состояния или к анизотропии флуоресценции. Для оценки используются определяемые различия по любому одному из указанных свойств между GFPxm дикого типа и мутантной формой. Измеряемое различие может быть определено как уровень любого количественно определяемого свойства флуоресценции, например уровень флуоресценции при определенной длине волны или интегральный показатель флуоресценции в спектре эмиссии.

Как используется в настоящем описании, термин «уровень созревания» или «скорость созревания» относится к скорости образования зрелого флуоресцентного белка (т.е. флуоресцентного белка, способного создавать флуоресценцию) после трансляции. Уровень созревания может быть охарактеризован периодом созревания. Было обнаружено, что созревание флуоресцентного белка включает две стадии: (i) образование укладки белка, что означает формирование бета-цилиндрической структуры белка с центральной альфа-спиралью, содержащей аминокислоты, которые будут далее образовывать хромофор. Данная стадия в целом характеризуется константой скорости примерно 10(-2)с(-1) или полупериодом, равным от нескольких секунд до десятков секунд; (ii) созревание хромофора, где указанная стадия включает циклизацию белкового скелета и дегидратацию. Данная стадия обычно характеризуется константой примерно в 10(-4)с(-1) или полупериодом, равным примерно нескольким секундам. Таким образом, указанная стадия со сниженной скоростью представляет собой ограничивающую стадию в созревании зеленого флуоресцентного белка (Reid BG, Flynn GC, Biochemistry. 1997 V. 36(22), pp. 6786-6791).

Как используется в настоящем описании, термин «GFP» относится к зеленому флуоресцентному белку A. victoria, включающему ранее известные версии GFP, сконструированные с целью достижения более высокой флуоресценции или флуоресценции в различных цветах. Последовательность GFP дикого типа была описана в Prasher et al., Gene 111 (1992), 229-33.

Как используется в настоящем описании, термин «GFPxm» относится к зеленому флуоресцентному белку A. Macrodactyla дикого типа.

Как используется в настоящем описании, термин «выделенный» означает молекулу или клетку, которая находится в среде, отличной от среды, в которой существует данная молекула или данная клетка в природе.

Ссылка на нуклеотидную последовательность, «кодирующую» полипептид, означает, что указанная последовательность, при транскрипции и трансляции мРНК, образует полипептид. Данный термин включает как кодирующую цепь, нуклеотидная последовательность которой идентична мРНК, так и последовательность которая в перечне последовательностей обозначается как комплиментарная цепь, которую используют в качестве матрицы для транскрипции. Как очевидно для любого специалиста в данной области, указанный термин также включает вырожденные нуклеотидные последовательности, кодирующие одну и ту же аминокислотную последовательность. Нуклеотидные последовательности, кодирующие полипептид, включают последовательности, содержащие интроны.

Как используется в настоящем описании, термин «мутант» относится к белку согласно настоящему изобретению, в котором одна или несколько добавленных и/или замещенных, и/или делетированных, и/или вставленных аминокислот на N-конце, и/или на С-конце, и/или внутри нативных аминокислотных последовательностей белков согласно настоящему изобретению. Как используется в настоящем описании, термин «мутант» относится к молекуле нуклеиновой кислоты, которая кодирует мутантный белок. Кроме того, термин «мутант» относится к любому более короткому или более длинному варианту соответствующего белка или соответствующей нуклеиновой кислоты.

Как используется в настоящем описании, термин «гомолог или гомология» представляет собой термин, который широко используется в данной области для описания родства одной нуклеотидной или пептидной последовательности другой нуклеотидной или пептидной последовательности, которое определяется степенью идентичности и/или близости между указанными сравниваемыми последовательностями.

Как используется в настоящем описании, аминокислотная последовательность или нуклеотидная последовательность «по существу идентичны» эталонной последовательности, если данная аминокислотная последовательность или данная нуклеотидная последовательность обладает по меньшей мере 90% идентичностью по последовательности (например, 90%, 93%, 95%, 97%, 98%, 99% или 100% идентичностью по последовательности) с эталонной последовательностью в данном окне сравнения. Как используется в настоящем описании, аминокислотная последовательность и нуклеотидная последовательность «по существу подобны» эталонной последовательности, если указанная аминокислотная последовательность или указанная нуклеотидная последовательность характеризуется по меньшей мере 80% идентичностью по последовательности (например, 80%, 85% 90%, 95%, 97%, 98%, 99% или 100% идентичностью по последовательности) с эталонной последовательностью в данном окне сравнения. Идентичность по последовательности рассчитывают относительно эталонной последовательности. Алгоритмы анализа последовательностей известны в данной области и включают такие как программа BLAST, описанная Altschul et al., J. Mol. Biol. 215, pp. 403-10 (1990).

Как было описано ранее, настоящее изобретение относится к молекулам нуклеиновой кислоты, включающим нуклеотидные последовательности, кодирующие мутантные флуоресцентные белки, а также относится к белкам, кодируемым указанными нуклеиновыми кислотами. Белки, представляющие интерес, по существу идентичны зеленому флуоресцентному белку дикого типа A. macrodactyla GFPxm (SEQ ID No 2) и включают по меньшей мере аминокислотное замещение F220L. Указанные мутанты представляют собой функциональные флуоресцентные белки, обладающие повышенной скоростью созревания при температуре 20°С или выше в сравнении с GFPxm.

В одном варианте осуществления настоящего изобретения указанный мутант включает только замещение F220L. Авторы настоящего изобретения обнаружили, что замещение F220L приводит к измеримому повышению скорости созревания GFPxm при температуре 20°С или выше в сравнении с GFPxm дикого типа. Авторы настоящего изобретения также показали, что замещение F220L изменяет флуоресцентные свойства белка в сравнении с GFPxm A. macrodactyla.

В другом предпочтительном варианте осуществления настоящего изобретения указанный мутант также включает дополнительные аминокислотные замещения, которые дополнительно повышают скорость созревания белка при температуре 20°С, например данный вариант относится к мутанту, имеющему аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID No: 6, 8, 10, 12, 14, 16 и 18.

Указанные выше мутации в GFPxm могут быть объединены с мутациями, которые дополнительно повышают способность к образованию укладки, снижают уровень олигомеризации или влияют на спектральные свойства GFPxm и его мутантов, показанных, например, в SEQ ID No: 18-24.

В других вариантах осуществления настоящего изобретения предлагаются вектора, включающие нуклеиновую кислоту согласно настоящему изобретению. Кроме того, настоящее изобретение относится к кассете экспрессии, включающей нуклеиновую кислоту согласно настоящему изобретению и регуляторные элементы, необходимые для экспрессии нуклеиновой кислоты в клетке.

Представляют также интерес белки и нуклеиновые кислоты, которые по существу подобны указанным выше эталонным специфическим белкам и нуклеиновым кислотам, или к производным или гомологам, или мутантам указанных эталонных специфических белков и нуклеиновых кислот. Дополнительно, настоящее изобретение относится к клеткам-хозяевам, стабильным клеточным линиям и трансгенным организмам, включающим указанные выше эталонные молекулы нуклеиновой кислоты. Белки и нуклеиновые кислоты рассматриваемого состава могут найти применение во множестве различных направлений и способов и конкретно для мечения клетки и белка. И наконец, в настоящем изобретении предлагаются наборы для применения таких способов и приложений.

Молекулы нуклеиновой кислоты

Настоящее изобретение относится к молекулам нуклеиновой кислоты, включающим нуклеотидные последовательности, которые кодируют мутантные флуоресцентные белки, которые по существу идентичны зеленому флуоресцентному белку GFPxm A. Macrodactyla дикого типа (SEQ ID No: 2) и включают по меньшей мере аминокислотное замещение F220L.

Молекула нуклеиновой кислоты, используемая в настоящем изобретении, представляет собой молекулу ДНК, такую как молекулы геномной ДНК, молекулы кДНК или молекулы РНК, такие как молекулы мРНК.

В частности, указанные молекулы нуклеиновой кислоты представляют собой молекулы ДНК, включающие открытую рамку считывания, кодирующую флуоресцентный белок согласно настоящему изобретению. Рассматриваемые нуклеиновые кислоты присутствуют в среде, отличной от их природного окружения; т.е., они являются выделенными, присутствуют в обогащенных количествах или присутствуют, или экспрессируются in vitro, или в клетке или в организме, отличающихся от их природного окружения. В предпочтительном варианте молекулы нуклеиновой кислоты согласно настоящему изобретению получают генно-инженерными методами, то есть получают из природного белка, например зеленого флуоресцентного белка GFPxm A. Macrodactyla дикого типа путем модификаций.

Модификации, а также добавки или делеции, могут быть встроены любым методом, известным в данной области (см., например, Gustin et al., Biotechniques (1992) 14: 22; Barany, Gene (1985) 37: 11-123; и Colicelli et al., Mol. Gen. Genet. (1985) 199:537-539), Sambrook et al., Molecular Cloning: A Laboratory Manual, (1989), CSH Press, pp. 15.3-15.108), включая ошибочно-направленную ПЦР, перестановку, сайт-направленный мутагенез с использованием олигонуклеотидов, мутагенез с использованием ПЦР на основе спаренных молекул, мутагенез in vivo, кассетный мутагенез, рекурсивный согласованный мутагенез, экспоненциальный согласованный мутагенез, сайт-направленный мутагенез, случайный мутагенез, генную повторную сборку, генный сайт-насыщенный мутагенез (GSSM), повторную сборку при проведении синтеза лигированием (SLR), или их сочетание. Указанные модификации, добавления или делеции могут быть также встроены способом, включающим рекомбинацию, рекурсивную рекомбинацию последовательности, мутагенез ДНК путем фосфотиоатной модификации, мутагенез на основе включения матрицы, содержащей урацил, мутагенез на основе дуплекса, содержащего бреши, репарационный мутагенез с точечными ошибочными спариваниями, мутагенез с использованием штамма-хозяина, дефицитного по репарации, химический мутагенез, радиогенный мутагенез, делеционный мутагенез, мутагенез с использованием ограничения по селекции, мутагенез с использованием ограничения по очистке, искусственный синтез гена, согласованный мутагенез, создание химерного мультимера нуклеиновой кислоты или их сочетание.

Конкретные молекулы нуклеиновой кислоты согласно настоящему изобретению включают нуклеотидные последовательности, кодирующие следующие флуоресцентные белки: Mut 2 (SEQ ID No: 4); Mut 235 (SEQ ID No: 6); Mut 235-1 (SEQ ID No: 8); Mut 235-2 (SEQ ID No: 10); Mut 235-4 (SEQ ID No: 12); Mut-g9 (SEQ ID No: 14); Mut 235-4G6 (SEQ ID No: 16). Кроме того, представляют интерес молекулы нуклеиновой кислоты, включающие последовательности нуклеиновой кислоты, кодирующие мутанты Mut-g9, tagGFP (также называемые как macGFP, SEQ ID No: 18), tagCFP (SEQ ID No: 20), tagYFP1 (SEQ ID No: 22) и tagYFP2 (SEQ ID No: 24)), где флуоресцентные свойства указанных мутантов сравнивают с белком Mut-g9.

Примеры нуклеотидных последовательностей, кодирующих указанные выше белки, приведены в виде SEQ ID No: 3-23.

Каждый из указанных конкретных типов молекул интересующих нуклеиновых кислот описывается более подробно отдельно в разделе «Примеры», приведенном ниже.

Кроме того, в настоящем описании рассматриваются нуклеиновые кислоты, которые гибридизируются с указанными выше нуклеиновыми кислотами в жестких условиях, предпочтительно в условиях высокой жесткости (например, комплементы описанных выше нуклеиновых кислот). Пример соответствующих условий жесткости включает гибридизацию при температуре 50°С или выше и в среде, содержащей 0,1×SSC (15 мМ хлорид натрия/1,5 мМ цитрат натрия). Другой пример условий гибридизации высокой жесткости включает инкубацию в течение ночи при температуре 42°С в растворе, содержащем 50% формамида, 5×SSC (150 мМ NaCl, 15 мМ цитрат тринатрия), 50 мМ фосфата натрия (pH 7,6), 5×раствор Денхардта, 10% сульфата декстрана и 20 мкг/мл денатурированной обработанной ДНК спермы лосося, с последующей промывкой в 0,1×SSC при температуре 65°С. Другие варианты гибридизации в условиях высокой жесткости известны в данной области и могут быть также использованы для идентификации нуклеиновых кислот согласно настоящему изобретению.

Кроме того, в настоящем изобретении рассматриваются вырожденные варианты нуклеиновых кислот, кодирующих белки согласно настоящему изобретению. Вырожденные варианты нуклеиновых кислот включают замещения кодонов нуклеиновой кислоты, которые отличаются от кодонов, кодирующих те же самые аминокислоты. В частности, получают вырожденные варианты нуклеиновых кислот, которые повышают экспрессию в клетке-хозяине. В указанном варианте осуществления изобретения кодоны нуклеиновой кислоты, которые являются не предпочтительными или менее предпочтительными в генах клетки-хозяина, замещают кодонами, которые представлены в повышенных количествах в кодирующих последовательностях в генах клетки-хозяина, где указанные замещенные кодоны кодируют ту же самую аминокислоту. В предпочтительном варианте осуществления настоящего изобретения рассматриваемые в нем нуклеиновые кислоты являются гуманизированными. В контексте настоящего описания термин «гуманизированный» относится к изменениям, вводимым в последовательность нуклеиновой кислоты для оптимизации кодонов с целью экспрессии белка в клетках млекопитающих (человека) (Yang et al., Nucleic Acids Research (1996) 24: 4592-4593). См. также патент США No. 5795737, в котором описывается процесс гуманизации белков.

Нуклеиновые кислоты согласно настоящему изобретению, соответствующие кДНК, гены полной длины и конструкции могут быть получены путем синтеза с использованием множества различных процедур, известных в данной области. Соответствующие конструкции нуклеиновой кислоты очищают с использованием стандартных методик рекомбинантных ДНК, описанных, например, в Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY), и нормативов, описанных в руководстве Национального Института здоровья США (United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research).

Было показано, что флуоресцентные белки могут быть генетически слиты с другими целевыми белками и использованы в качестве маркеров для идентификации локализации и количества получаемого целевого белка. Соответственно настоящее изобретение относится к нуклеиновым кислотам, кодирующим белки слияния, которые включают флуоресцентный белок и дополнительные аминокислотные последовательности. Такие последовательности могут достигать, в частности, примерно до 15, примерно до 100, примерно до 200 или примерно до 1000 аминокислот в длину. Указанные белки слияния обладают способностью флуоресцировать, что определяется частью флуоресцентного белка.

В настоящем изобретении также предлагается вектор и другие конструкции нуклеиновой кислоты, включающие рассматриваемые нуклеиновые кислоты. Соответствующие векторы включают вирусные векторы и векторы невирусной природы, плазмиды, космиды, фаги и т.п., предпочтительно плазмиды, используемые для клонирования, амплификации, экспрессии, переноса и т.п. последовательности нуклеиновой кислоты согласно настоящему изобретению в соответствующей клетке-хозяине. Выбор подходящего вектора может сделать любой специалист со средним уровнем знаний в данной области, и многие такие векторы коммерчески доступны. Для получения конструкций частичную нуклеиновую кислоту или полноразмерную нуклеиновую кислоту встраивают в вектор, в типичном случае за счет присоединения с помощью ДНК-лигазы к сайту расщепления рестрикционным ферментом в векторе. Альтернативно, желательная нуклеотидная последовательность может быть встроена путем гомологичной рекомбинации in vivo, в типичном случае за счет присоединения участков гомологии к вектору на границах желательной нуклеотидной последовательности. Участки гомологии добавляют путем лигирования олигонуклеотидов или по процедуре полимеразно-цепьевой реакции с использованием праймеров, включающих как участок гомологии, так и, например, часть желательной нуклеотидной последовательности.

В настоящем изобретении также рассматриваются кассеты или системы экспрессии, используемые, в том числе, для получения целевых флуоресцентных белков или их белков слияния, или для репликации целевых молекул нуклеиновой кислоты. Кассета экспрессии может существовать в виде внехромосомного элемента или может быть интегрирована в геном клетки в результате встраивания такой кассеты экспрессии в клетку. В процессе экспрессии генный продукт, кодируемый нуклеиновой кислотой согласно настоящему изобретению, экспрессируется в любой подходящей системе экспрессии, включающей, например, бактериальную систему, дрожжевую систему, системы экспрессии в насекомых, амфибиях или млекопитающих. В векторе экспрессии целевая нуклеиновая кислота оперативно соединяется с регуляторной последовательностью, которая может включать промоторы, энхансеры, терминирующие последовательности, операторы, репрессоры и индукторы. Способы получения кассет или систем экспрессии, способных экспрессировать желательный продукт, известны специалистам в данной области.

Клеточные линии, стабильно экспрессирующие белки согласно настоящему изобретению, могут быть выбраны в соответствии с известными в данной области методиками (например, путем совместной трансфекции с использованием селектируемого маркера, такого как dhfr, gpt, неомицин или гигромицин, который позволяет идентифицировать и выделить трансфицированные, которые содержат ген, интегрированный в геном).

Указанные выше системы экспрессии могут использоваться в прокариотических или эукариотических клетках-хозяевах. Для получения белка могут использоваться клетки-хозяева, такие как клетки E. coli, B. subtilis, S. cerevisiae, клетки насекомых в сочетании с векторами на основе бакуловируса или могут использоваться клетки высшего организма, такого как позвоночные, например, COS 7 клетки, HEK 293, CHO, Xenopus oocytes и т.п.

В том случае, когда любые указанные выше клетки-хозяева или другие подходящие клетки-хозяева или организмы используют для репликации и/или экспрессии нуклеиновых кислот согласно настоящему изобретению, полученная реплицированная нуклеиновая кислота, экспрессированный белок или полипептид входят в область настоящего изобретения в качестве продукта клетки-хозяина или организма-хозяина. Указанный продукт может быть выделен известными в данной области процедурами.

Белки

Настоящее изобретение также относится к функциональным флуоресцентным мутантным белкам, аминокислотная последовательность которых по существу идентична аминокислотной последовательности GFPxm A. Macrodactyla (SEQ ID No: 2) и которые отличаются от SEQ ID No: 2 по меньшей мере аминокислотным замещением F220L. Указанные функциональные флуоресцентные мутантные белки имеют повышенную скорость созревания при температуре 20°C или выше в сравнении с GFPxm.

В предпочтительном варианте осуществления настоящего изобретения рассматриваемый в нем флуоресцентный белок включает только одно замещение F220L в сравнении с SEQ ID NO: 2 и имеет повышенный уровень созревания, в сравнении с GFPxm А. macrodactyla. В предпочтительном варианте осуществления настоящего изобретения указанный флуоресцентный белок может обладать измененными флуоресцентными свойствами в сравнении с GFPxm A. Macrodactyla.

В другом предпочтительном варианте замещение F220L объединено с другими мутациями, введенными для улучшения свойств белка. Например, разные сочетания аминокислотных замещений, выбранные из группы, состоящей из K3G, E6D, T9A, P58T, F99L, F99H, M128K, M128E, I136M, Y151H, N144S, K162E, K156M, T214A, G228C, G228S и K238R, дополнительно повышают скорость созревания белка при температуре 20°С или выше, как показано в разделе «Примеры».

Во многих вариантах осуществления настоящего изобретения целевые белки обладают максимумом поглощения в диапазоне примерно от 300 до 700 нм, обычно в диапазоне примерно от 350 до 650 нм и чаще в диапазоне примерно от 400 до 600 нм. Целевые белки представляют собой флуоресцентные белки, где указанный термин означает, что они могут возбуждаться при одной длине волны света, после чего они испускают свет другой длины волны. Спектры возбуждения целевых белков варьируют в типичном случае в диапазоне примерно от 300 до 700 нм. Целевые белки в основном имеют максимальный коэффициент экстинкции примерно от 25000 до 150000 и обычно в диапазоне примерно от 45000 до 129000. Целевые белки в типичном случае имеют длину примерно от 150 до 300 аминокислот и обычно примерно от 200 до 300 аминокислотных остатков и в основном имеют молекулярный вес в диапазоне примерно от 15 до 35 кДа, обычно в диапазоне примерно от 17,5 до 32,5 кДа.

В некоторых вариантах осуществления настоящего изобретения целевые белки представляют собой яркосветящиеся белки, где яркость в данном случае означает, что флуоресценция белка может быть выявлена обычными методами (например, при визуальном скрининге, спектрофотометрией, спектрофлуориметрией, с использованием флуоресцентного микроскопа, флуоресцентного сортировщика (FACS) и т.п.). Флуоресцентная яркость конкретных флуоресцентных белков определяется по их квантовому выходу, умноженному на коэффициент максимальной экстинкции.

В некоторых вариантах осуществления настоящего изобретения целевые белки характеризуются повышенной скоростью созревания при температуре 20°C или выше, в сравнении с GFPxm. Скорость созревания может быть определена как время, необходимое для того, чтобы белки достигли своей третичной структуры, которая определяет их флуоресцирующие качества в определенный период времени. Иными словами, скорость созревания флуоресцентного белка может быть оценена по интенсивности флуоресценции клеток-хозяев, экспрессирующих целевой белок, после определенного периода времени, прошедшего после трансфекции клетки-хозяина конструкцией экспрессии, способной экспрессировать указанный флуоресцентный белок.

В некоторых вариантах осуществления настоящего изобретения целевые белки имеют повышенную скорость созревания при температуре 20°C или выше, предпочтительно при температуре 30°C или выше и наиболее предпочтительно при температуре в диапазоне от 35°C до 39°C, например, при температуре 37°C. Хорошо известно, что многие клетки, включая клетки млекопитающих, инкубируют при температуре примерно 37°C, с тем чтобы сохранить оптимальный и/или физиологический приемлемый рост. Клеточные линии, происходящие из разных организмов или тканей, могут иметь различные релевантные температуры, варьирующие от примерно 35°C для фибробластов, до примерно 38°C-39°C для бета-клеток мышей.

Так, например, для сравнения скоростей созревания флуоресцентных белков при разных температурах может быть использован следующий подход: клетки-хозяева (например, бактериальные клетки, предпочтительно клетки E. coli) трансфицируют вектором экспрессии, кодирующим флуоресцентный белок, под контролем подходящего промотора. В определенном варианте экспрессия флуоресцентного белка начинается сразу же после трансфекции (в том случае, когда используют конститутивный промотор, или в связи с проникновением индуцибельного промотора). В другом варианте экспрессию флуоресцентного белка индуцируют по методу, известному в данной области. Клетки-хозяева растят на чашках Петри при температуре 20°C, 30°C или 37°C в течение определенных периодов времени (например, в течение 36, 24 и 12 часов после начала экспрессии флуоресцентного белка), определяют флуоресценцию колоний E. coli, обычными методами (например, при визуальном скрининге, спектрофотометрией, спектрофлуориметрией, с использованием флуоресцентного микроскопа, флуоресцентного сортировщика (FACS) и т.п.) и рассчитывают яркость флуоресценции.

Конкретные белки, представляющие интерес в контексте настоящего изобретения, включают мутантные зеленые флуоресцентные белки: Mut 2 (SEQ ID No: 4); Mut 235 (SEQ ID No: 6); Mut 235-1 (SEQ ID No: 8); Mut 235-2 (SEQ ID No: 10); Mut 235-4 (SEQ ID No: 12); Mut-g9 (SEQ ID No: 14) и Mut 235-4G6 (SEQ ID No: 16). Конкретные белки, представляющие интерес, имеют большую скорость созревания при температуре 20°С или выше, чем белок GFPxm.

Конкретные интересующие белки обсуждаются более подробно в разделе «Примеры», приведенном ниже.

Белки, которые по существу подобны или по существу идентичны специфическим аминокислотным последовательностям согласно настоящему изобретению, то есть SEQ ID No:4-16, также рассматриваются в настоящем изобретении. Идентичность по последовательности вычисляют на основе эталонной последовательности по методике, включающей использованием алгоритма MegAlign, DNAstar clustal, описанного в соответствующей работе Хиггинса и Шарпа «Fast and Sensitive multiple Sequence Alignments on a Microcomputer», CABIOS, 5 pp. 151-3 (1989)) (с использованием параметров: ktuple 1, штраф за наличие бреши 3, окно 5 и сохраненные диагонали 5). Во многих вариантах осуществления настоящего изобретения представляющие интерес аминокислотные последовательности характеризуются значительной идентичностью по последовательности, которая составляет, например, 93%, 95%, 97%, 99%, 100%, в особенности это относится к последовательности аминокислот, которые обеспечивают функциональные участки белка.

Белки, представляющие собой мутанты указанных выше белков, также рассматриваются в настоящем изобретении. Мутанты могут сохранять биологические свойства белков из того источника, из которого они были получены, или могут обладать биологическим свойствами, которые отличаются от белков дикого типа. Термин «биологическое свойство» белков согласно настоящему изобретению относится, без ограничения, к флуоресцентным свойствам; биохимическим свойствам, таким как стабильность in vivo и/или in vitro (например, период полувыведения); скорость созревания; тенденция к агрегации или олигомеризации, а также другие подобные свойства. Мутации включают изменения одной аминокислоты, делеции или вставки одной или нескольких аминокислот; N-концевые усечения или расширения, С-концевые усечения или расширения и т.п.

Мутанты могут быть получены с использованием стандартных методик молекулярной биологии, таких как подробно описанные выше в разделе «Молекулы нуклеиновой кислоты». Приведенные в настоящем описании мутанты включают следующие:

(1) Мутант Mut-g9 с усиленными флуоресцентными свойствами, включающий замещения I167T, F223S, S65C и F64L относительно Mut-g9 (SEQ ID No: 14). Указанный мутант также имеет повышенную скорость созревания в сравнении с белками GFPxm и Mut-9. Аминокислотная последовательность указанного