Способ переработки сырья, включающего нафту, и установка для его осуществления
Иллюстрации
Показать всеИзобретение относится к способу переработки нефтехимического сырья, включающего нафту, содержащую углеводороды от С5 до С9+, в котором осуществляют каталитический крекинг исходного сырья, содержащего тяжелые углеводороды с образованием потока сырья, включающего нафту, посредством контакта потока исходного сырья тяжелых углеводородов с катализатором крекинга углеводородов в реакционной зоне с псевдоожиженным слоем с получением выходящего потока ряда углеводородных продуктов, включающих легкие олефины; ввод сырья, включающего нафту, содержащую углеводороды от С5 до С9+, в разделительную колонну с разделительной перегородкой и разделение указанного сырья на легкую фракцию, включающую соединения, содержащие от пяти до шести атомов углерода, промежуточную фракцию с соединениями, содержащими от семи до восьми атомов углерода, и тяжелую фракцию с соединениями, содержащими более восьми атомов углерода, и крекинг, по меньшей мере, части соединений легкой фракции, содержащих от пяти до шести атомов углерода с образованием выходящего потока крекированных олефинов, включающих олефины С2 и С3. Также изобретение относится к установке для осуществления данного способа. Применение настоящего изобретения позволяет улучшить переработку потоков углеводородов, предназначенную для получения больших относительных количеств легких олефинов. 2 н. и 6 з.п. ф-лы, 2 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение, вообще, относится к переработке углеводородов, в частности к переработке полученного технологического потока нафты с помощью разделительной колонны, имеющей разделительную перегородку, с образованием или получением технологических потоков, содержащих углеводороды, количество атомов углерода в которых находится в определенных желательных интервалах.
Уровень техники
Основная часть нефтехимической промышленности во всем мире связана с производством материалов, содержащих легкие олефины, и их последующим использованием при производстве разнообразных важных химических продуктов посредством полимеризации, олигомеризации, алкилирования и тому подобных хорошо известных химических реакций. Легкие олефины включают этилен, пропилен и их смеси. Эти легкие олефины являются важными «строительными элементами» в современной нефтехимической и химической промышленностях.
Легкие олефины традиционно производят посредством процессов парового или каталитического крекинга углеводородов, например, полученных из источников, включающих нефть. Каталитический крекинг потоков тяжелых углеводородов в псевдоожиженном слое катализатора (ККПС) обычно осуществляют путем контактирования исходного материала, будь то вакуумный газойль, нефть без легких фракций или другой источник углеводородов с относительной высокой температурой кипения, с катализатором, образованным, например, из тонкораздробленных или микроскопического размера частиц твердого материала. Катализатор транспортируется, подобно текучей среде, посредством пропускания через него газа или пара при достаточной скорости для создания желательного режима транспортирования этой текучей среды. Контактное взаимодействие нефти с псевдоожиженным материалом ускоряет проведение реакции крекинга.
Реакция крекинга обычно сопровождается отложениями кокса на поверхности катализатора. Катализатор, находящийся в реакционной зоне, обычно называют «отработавшим», т.е. частично дезактивированным, вследствие отложения на нем кокса. В состав кокса входят водород и углерод, а также могут входить, в ничтожных количествах, другие вещества, например сера и металлы, такие, которые могут вступать в реакционный процесс с исходным материалом. Присутствие кокса ухудшает каталитическую активность отработавшего катализатора. Считается, что кокс блокирует кислотные центры на поверхности катализатора, где происходят реакции крекинга. Отработавший катализатор традиционно направляют в очиститель, в котором производится удаление из катализатора адсорбированных углеводородов и газов, и затем направляют в регенератор с целью удаления кокса за счет окисления с использованием кислородсодержащего газа. Массу катализатора с пониженным содержанием кокса, по отношению к отработавшему катализатору в очистителе, называемого далее регенерированным катализатором, накапливают для возращения в реакционную зону.
Окисление кокса на поверхности катализатора приводит к выделению большого количества теплоты, часть которой отводится из регенератора вместе с газообразными продуктами окисления кокса, обычно называемыми отходящим газом. Остальная часть теплоты отводится из регенератора вместе с регенерированным катализатором. Псевдоожиженный катализатор непрерывно циркулирует между реакционной зоной и зоной регенерации. При этом псевдоожиженный катализатор, помимо обеспечения функции катализатора, действует как средство передачи теплоты из одной зоны в другую. Процесс переработки посредством проведения ККПС более подробно описан в патентных документах US5360533 (Tagamolila et al.), US5584985 (Lomas), US5858206 (Castillo), US6843906 (Eng). Содержание каждого из этих документов включено в настоящее описание посредством ссылки. Конкретные детали выполнения различных зон контакта, зон регенерации и зон очистки наряду с устройствами для транспортирования катализатора между указанными различными зонами хорошо известны специалистам в данной области техники.
Процесс переработки посредством проведения ККПС обычно приводит к образованию продукта или потока выходящего продукта, содержащего некоторый спектр углеводородных продуктов, количество атомов углерода в которых находится в пределах некоторого интервала. Соответственно, такая переработка, кроме того, обычно связана с извлечением определенных фракций углеводородов - продуктов с целью их использования для или после последующей или дополнительной переработки. К примеру, этилен и пропилен могут быть извлечены в качестве желательных продуктов, например, в виде высококачественного исходного полимерного сырья для последующего использования в соответствующих или работающих совместно разнообразных аппаратах. В частности, крекинг-пары из аппарата для проведения ККПС поступают в зону разделения, обычно образованную в основной колонне, в которой получают поток газа, бензиновую фракцию, легкий газойль (ЛГО), осветленное масло (ОМ), включающее компоненты с тяжелым газойлем (ТГО). В известном процессе переработки с использованием ККПС такой поток газа обычно в дальнейшем перерабатывают с помощью системы концентрирования газа с тем, чтобы получить поток осушенного газа, т.е. водорода, углеводороды C1 и С2 и, как правило, менее 5 мол.% углеводородов С3+, поток смешанного сжиженного нефтяного газа (СНГ), т.е. углеводороды С3 и С4, иногда называемый также потоком мокрого газа, и стабилизированной нафты. Затем нафта может быть освобождена от легких компонент с удалением веществ С2- и затем дебутанизирована для извлечения СНГ.
Вследствие увеличения необходимости в легких олефинах и повышения требований, предъявляемых к легким олефинам, таким как этилен и пропилен, для их использования в различных нефтехимических производствах, например для производства полиэтилена, полипропилена и тому подобного, а также из-за необходимости производить относительно меньшее количество более тяжелых олефинов, таких как бутилены и пентены, которые с точки зрения окружающих условий обычно менее желательны как компоненты для смешивания с бензином, может быть желательным проводить реакции крекинга тяжелого углеводородного исходного сырья с целью увеличения относительного количества легких олефинов в полученном ассортименте продукции.
Усилия исследователей привели к разработке способа проведения ККПС, который обеспечивает производство легких олефинов или позволяет получить большие относительные выходы легких олефинов, т.е. этилена и пропилена. Такой процесс более подробно описан в патентном документе US6538169 (Pittman et al.), содержание которого полностью включено в настоящее описание посредством ссылки. Как описано в этом документе, сырьевой поток углеводорода может желательным образом контактировать со смешанным катализатором, включающим регенерированный катализатор и закоксованный катализатор. В состав этого катализатора входит первая компонента и вторая компонента. Вторая компонента представляет собой цеолит с размером пор, не превышающим средний, при этом цеолит образует, по меньшей мере, 1 мас.% состава катализатора. Контактирование происходит в вертикальной подъемной трубе и сопровождается крекингом углеводородов, содержащихся в сырьевом потоке, с получением потока продуктов крекинга, включающих легкие олефины, и закоксованного катализатора. Поток продуктов крекинга выходит из конца подъемной трубы, при этом сырьевой поток углеводородов контактирует со смешанным катализатором в подъемной трубе в среднем в течение 2 секунд или менее.
Кроме того, предполагается, что количество легких олефинов, произведенных в результате, по меньшей мере, определенных видов переработки углеводородов, может быть также увеличено за счет химического реагирования, т.е. за счет крекинга более тяжелых углеводородных продуктов, в частности тяжелых олефинов, таких как олефины С4-С6, с их превращением в легкие олефины. В патентном документе US 5914433 (Marker), полное описание которого полностью включено в настоящее описание посредством ссылки, раскрыт способ производства легких олефинов, включающих олефины, в молекулы которых входит от 2 до 4 атомов углерода, из кислородсодержащего исходного сырья. Способ включает прохождение кислородсодержащего исходного сырья в обогащенную кислородом зону конверсии, в которой находится катализатор из металлического алюминофосфата, с получением потока легких олефинов. Из указанного потока легких олефинов путем фракционирования получают поток пропилена и/или смешанного бутилена и подвергают его крекингу для увеличения выхода продуктов, содержащих этилен и пропилен.
Хотя такая переработка посредством ККПС и крекинга олефинов оказалась, в общем, достаточно эффективной при производстве желательных легких олефинов, в настоящее время были продолжены и продолжаются поиски дальнейших путей совершенствований указанного процесса переработки. В частности, изыскивались совершенствования в части последующих операций, проводимых с произведенным потоком процесса ККПС, с тем чтобы как упростить процесс переработки, так и повысить производительность и/или эффективность желательной последующей переработки, проводимой ниже по ходу течения потока. В частности, изыскиваются и желательны дальнейшие улучшения переработки произведенных продуктов, в особенности, в части производства более резко выраженных желательных фракций углеводородных продуктов, по сравнению с обычно получаемыми в настоящее время и, в особенности, осуществляемого с более низким энергопотреблением.
Сущность изобретения
Основная задача изобретения заключается в обеспечении улучшенной переработки потоков углеводородов, полученных, например, в результате проведения процесса ККПС, предназначенной или осуществляемой для получения больших относительных количеств легких олефинов.
Более конкретно, задача изобретения заключается в решении одной или более из отмеченных выше проблем.
Основная задача изобретения может быть решена, по меньшей мере, частично с помощью определенного способа переработки сырья, содержащего нафту, включающую углеводороды от С5 до С9+. В соответствии с одним предпочтительным воплощением такой способ включает ввод сырья, содержащего нафту, включающую углеводороды от С5 до С9+, в разделительную колонну с разделительной перегородкой, разделяющую сырье на легкую фракцию, которая включает соединения, содержащие от пяти до шести атомов углерода, промежуточную фракцию, которая включает соединения, содержащие от семи до восьми атомов углерода, и тяжелую фракцию, которая включает соединения, содержащие более восьми атомов углерода.
Известные аналоги не способны обеспечивать или иметь своим результатом процесс переработки, который позволяет производить из продуктов, полученных посредством ККПС, такие резко выраженные, как это желательно, фракции необходимых углеводородных продуктов, в частности, эти аналоги не способны обеспечить проведение переработки с таким низким, как это желательно, энергопотреблением.
Кроме того, изобретение обеспечивает способ производства сырья для нефтехимической промышленности. В соответствии с одним воплощением такой способ включает введение исходного углеводородного сырья в реакционную зону для проведения крекинга в псевдоожиженном слое для получения потока продуктов, выходящего из этой реакционной зоны, который представляет собой сырье, включающее нафту, содержащую углеводороды от С5 до С9+. Из потока, отводимого из реакционной зоны, удаляют, по меньшей мере, часть указанного сырья, включающего нафту, содержащую углеводороды от С5 до С9+. По меньшей мере, часть извлеченного сырья, включающего нафту, содержащую углеводороды от С5 до С9+, вводят в разделительную колонну, снабженную разделительной перегородкой, где сырье разделяют на легкую фракцию, которая включает соединения, содержащие от пяти до шести атомов углерода, промежуточную фракцию, которая включает соединения, содержащие от семи до восьми атомов углерода, и тяжелую фракцию, которая включает соединения, содержащие более восьми атомов углерода. По меньшей мере, часть соединений легкой фракции, содержащих от пяти до шести атомов углерода, подвергают крекингу с образованием выходящего потока полученных в результате крекинга олефинов, который содержит олефины С3 и С4. Из соединений промежуточной фракции, содержащих от семи до восьми атомов углерода, извлекают ароматические углеводороды.
Соединения тяжелой фракции, содержащие более семи атомов углерода, отдельно смешивают в поток, содержащий углеводороды бензина.
Изобретение, кроме того, включает ещё установку для производства сырья для нефтехимической промышленности. Такая установка в соответствии с одним воплощением изобретения содержит реакционную зону для проведения ККПС, в которой исходное углеводородное сырье реагирует с получением потока продуктов, выходящих из реакционной зоны, включающих сырье, содержащее нафту, которая включает углеводороды от С5 до С9+. Установка, кроме того, содержит зону извлечения, в которой, по меньшей мере, часть сырья, включающего нафту, содержащую углеводороды от С5 до С9+, извлекают из потока продуктов, выходящих из реакционной зоны. В состав установки входит разделительная колонна с разделительной стенкой, в которой, по меньшей мере, часть извлеченного сырья, включающего нафту, содержащую углеводороды от С5 до С9+, отделяют с образованием легкой фракции, включающей соединения, содержащие от пяти до шести атомов углерода, промежуточной фракции, включающей соединения, содержащие от семи до восьми атомов углерода, и тяжелой фракции, включающей соединения, содержащие более восьми атомов углерода. В установке обеспечивается зона крекинга соединений легких фракций, в которой, подвергают крекингу, по меньшей мере, часть соединений легких фракций, содержащих от пяти до шести атомов углерода, с образованием продуктов крекинга, в состав которых входят олефины, включающие олефины С2 и С3. Кроме того, установка содержит зону извлечения ароматических углеводородов, в которой ароматические углеводороды извлекают из соединений промежуточной фракции, содержащих от семи до восьми атомов углерода. Установка содержит также зону перемешивания, в которой соединения тяжелых фракций, содержащие более восьми атомов углерода, отдельно перемешивают в поток, содержащий углеводороды бензина.
Используемый здесь термин «легкие углеводороды» следует понимать в общем как относящийся к олефинам С2 и С3, т.е. этилену и пропилену, в единственном числе или в комбинации.
Описанные ниже более подробно «потоки, содержащие углеводороды богатые этиленом», следует понимать как относящиеся, в общем, к углеводородсодержащим потокам, которые, как правило, содержат, по меньшей мере, 20 процентов этилена и, в соответствии с, по меньшей мере, определенными предпочтительными воплощениями в качестве альтернативы содержат, по меньшей мере, 25 процентов этилена, по меньшей мере, 30 процентов этилена, по меньшей мере, 35 процентов этилена, по меньшей сере, 40 процентов этилена или от 40 до 60 процентов этилена.
Ссылки на «углеводород Сх» следует понимать как относящиеся к молекулам углеводорода, имеющим количество атомов углерода, характеризуемое нижним индексом «х». Подобным образом, термин «поток, содержащий Сх», обозначает поток, который содержит углеводород Сх. Термин «углеводороды Сх+» относится к молекулам углеводорода, имеющим количество атомов углерода, характеризуемое нижним индексом «х», или большее количество. Например, «углеводороды С4+» включают углеводороды С4, С5 и углеводороды с большим количеством атомов углерода. Термин «углеводороды Сх-» относится к молекулам углеводорода, имеющим количество атомов углерода, характеризуемое нижним индексом «х», или меньшее количество. Например, «углеводороды С4-» включают углеводороды С4, С3, и углеводороды с меньшим количеством атомов углерода.
Другие задачи и преимущества будут понятны специалистам в данной области техники из нижеследующего подробного описания в совокупности с прилагаемыми пунктами формулы и чертежами.
Краткое описание чертежей
Фиг. 1 - упрощенная принципиальная схема установки для проведения каталитического крекинга исходного сырья, содержащего тяжелые углеводороды и извлечения из него желательных фракций углеводородов.
Фиг. 2 - упрощенная схема разделительной колонны с разделительной перегородкой в соответствии с одним воплощением.
Подробное описание изобретения
Подходящее исходное сырье, включающее тяжелые углеводороды, может быть подвергнуто крекингу, и полученный из него поток продуктов обрабатывают, используя разделительную колонну с разделительной стенкой, в соответствии с предпочтительным воплощением для производства или образования потока углеводородных продуктов, имеющих, что желательно, более резко выраженные фракции углеводородных продуктов, чем обычно можно было получить до сих пор, в частности для осуществления процесса желательно с меньшими энергетическими затратами.
Фиг. 1 схематически иллюстрирует установку, обозначенную в целом позицией 210, предназначенную для каталитического крекинга тяжелого углеводородного сырья и получения выбранных фракций углеводородов из выходящего потока продуктов, полученных в результате проведения крекинга в соответствии с одним воплощением изобретения. Следует понимать, что не существует излишнего ограничения объема прилагаемых пунктов формулы, которое накладывалось бы нижеследующим описанием. Специалистам в данной области техники, которые руководствуются изложенными здесь идеями, будет понятно и принято во внимание, что иллюстрируемая установка или блок-схема технологического процесса упрощена за счет исключения различных обычных или стандартных элементов технологического оборудования, включающего некоторое количество теплообменников, систем регулирования процесса, насосов, систем фракционирования и тому подобных элементов установки. Кроме того, можно понять, что блок-схема, представленная на фиг. 1, может быть модифицирована в соответствии со многими аспектами без выхода за пределы основной общей концепции изобретения.
В установке 210 поток подходящего исходного сырья, включающего тяжелые углеводороды, вводят по трубопроводу 212 в псевдоожиженную реакционную зону 214, в которой тяжелое углеводородное исходное сырье контактирует с катализатором крекинга углеводородов с производством выходящего потока продуктов, включающих некоторый диапазон углеводородных продуктов, включая легкие олефины.
Подходящие реакционные зоны для проведения каталитического крекинга в псевдоожиженном слое для практического осуществления такого воплощения могут, как это описано в вышеуказанном патентном документе US 6538169 (Pittman et al.), содержать разделительную ёмкость, регенератор, смесительную ёмкость и вертикальную подъемную трубу, обеспечивающую наличие зоны пневмотранспорта, в которой происходит конверсия. Устройство обеспечивает циркуляцию катализатора и его контактное взаимодействие с сырьем, в частности так, как это описано в указанном документе.
Более конкретно и как описано в указанном патентном документе, катализатор, как правило, содержит две компоненты, которые могут или не могут находиться на одном и том же носителе. Эти две компоненты циркулируют по всей установке. Первая компонента может включать какой-либо известный катализатор, который используют в уровне техники для проведения каталитического крекинга в псевдоожиженном слое, например активный аморфный катализатор типа глинозема и/или кристаллические молекулярные сита с высокой активностью. Катализаторы в виде молекулярных сит более предпочтительны по сравнению с аморфными катализаторами из-за их намного лучшей избирательности к желательным производимым продуктам. Наиболее широко используемыми молекулярными ситами в процессах ККПС являются цеолиты. Предпочтительно первый каталитический компонент включает цеолит с большими порами, например цеолит Y-типа, материал, включающий оксид алюминия, связующее, содержащее или оксид кремния, или оксид алюминия, и инертный наполнитель, например каолин.
Цеолитовые молекулярные сита, подходящие для первой каталитической компоненты, должны иметь большой средний размер пор. Как правило, молекулярные сита с большим размером пор имеют поры с эффективным диаметром отверстий - более 0,7 нм, и образованы более чем десяти- и, как правило, двенадцатичленными кольцами. Индексы размера пор для больших пор превышают 31. Подходящие цеолиты с большими порами включают синтетические цеолиты, например цеолиты Х-типа и Y-типа, морденит и фожазит. Было установлено, что для первой каталитической компоненты предпочтительными являются Y-цеолиты с низким содержанием редкоземельных металлов. Отмеченное низкое содержание редкоземельных металлов означает менее чем или равное 1 мас.% содержание окиси редкоземельного металла на цеолитовой части катализатора. Катализатор Octacat ТМ, изготовленный компанией W.R.Grace @Со., является подходящим катализатором из Y-цеолита с низким содержанием редкоземельных металлов.
Вторая каталитическая компонента представляет собой катализатор, содержащий вещество, или цеолитовый катализатор, с меньшим размером пор, представленный такими материалами, как ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48, и другими подобными материалами. Катализатор ZSM-5 описан в патентном документе US3702886. Другие подходящие вещества или цеолиты с меньшими размерами пор включают феррит, эрионит и ST-5, разработанный Petroleos de Venezuela, S.A. Второй каталитический компонент предпочтительно представляет собой вещество или цеолит с меньшими порами, распределенный на носителе, включающем связующий материал, такой как оксид кремния или оксид алюминия, и инертный материал-наполнитель, например каолин. Второй компонент также может включать некоторое количество другого активного материала, такого как Бета-цеолит. Эти каталитические композиции характеризуются содержанием кристаллического цеолита от 10 до 25 мас.% или более и содержанием материала носителя от 75 до 90 мас.%. Катализаторы, содержащие 25 мас.% кристаллического цеолитового материала, являются предпочтительными. Могут быть использованы катализаторы с большим содержанием кристаллического цеолитового материала, при условии, что они имеют удовлетворительное сопротивление истиранию. Вещество и цеолиты с меньшим размером пор характеризуются наличием эффективного диаметра отверстий пор менее чем или равным 0,7 нм, а также десятичленными, или менее, кольцами и индексом размера пор менее 31.
Общая каталитическая композиция должна содержать от 1 до 10 мас.% вещества по отношению к цеолитам с малым размером пор, при этом предпочтительно содержание более или равное 1,75 мас.%. Если вторая каталитическая компонента содержит 25 мас.% кристаллического цеолита, композиция содержит от 4 до 40 мас.% второй каталитической компоненты с предпочтительным содержанием большим или равным 7 мас.%. Цеолиты типа ZSM-5 и ST-5, в особенности, предпочтительны, поскольку их высокая стойкость к коксу будет стремиться сохранить активные центры крекинга, если каталитическая композиция совершает некоторое количество проходов через подъемную трубу, поддерживая тем самым полную активность. Остальную каталитическую композицию будет представлять первая каталитическая компонента. Относительные пропорции первой и второй компонент в каталитической композиции не будет существенным образом изменяться в аппарате для проведения ККПС.
Высокая концентрация вещества или цеолита с малым размером пор во второй компоненте каталитической композиции улучшает избирательность к легким олефинам при дальнейшем крекинге более легких молекул, относящихся к диапазону соединений нафты. В то же время располагаемые меньшие концентрации первой каталитической компоненты ещё демонстрируют достаточную активность для поддерживания конверсии более тяжелых молекул сырья до достаточно высокого уровня.
В соответствии с настоящим изобретением подходящее для переработки относительно более тяжелое сырье включает общеизвестное исходное сырье для ККПС или сырье с более высокой температурой кипения или остаточное мазутное сырье. Обычное известное сырье представляет собой вакуумный газойль, который, как правило, является углеводородным материалом, произведенным посредством вакуумной перегонки остатка, полученного в результате перегонки при атмосферном давлении, и который имеет широкий интервал температур кипения от 315°С до 622°С (от 600° до 1150°F) и, более типично, имеет более узкий интервал температур кипения от 343°С до 551°С (от 650° до 1025°F). Тяжелое или мазутное сырье, т.е. углеводородные фракции, кипящие при температурах выше 499°С (930°F), также является подходящим сырьем. Каталитический крекинг в псевдоожиженном слое, соответствующий настоящему изобретению, как правило, больше всего подходит для такого сырья, которое тяжелее, чем углеводороды из ряда, относящегося к нафте, кипящие при температуре выше 177°С (350°F).
Выходящий поток продуктов или, по меньшей мере, выделенные его части направляют из псевдоожиженной реакционной зоны 214 по трубопроводу 216 в систему 220 разделения углеводородов, например, включающую основную секцию 222 колонны и секцию 224 ступенчатого сжатия. Секция 222 с основной колонной может желательным образом включать основной сепаратор колонного типа и соединенный с ним ресивер высокого давления. В указанной секции 222 поток продуктов, выходящий из псевдоожиженной реакционной зоны, может быть разделен на желательные фракции, включающие паровой поток из основной колонны, например, проходящий через трубопровод 226 и жидкостный поток из основной колонны, например, проходящий по трубопроводу 230.
Для упрощения иллюстрации и описания трубопроводы для других фракций, например, включающие поток тяжелого бензина, поток легкого газойля (ЛГО), поток тяжелого газойля (ТГО), поток осветленного масла (ОМ), например, могут быть здесь не показаны и далее не описаны подробно.
Трубопровод 226 для потока пара, отведенного из основной колонны, проходит в секцию 224 ступенчатого сжатия, например, включающую двухступенчатое сжатие. В секции 224 ступенчатого сжатия получают жидкостный поток высокого давления, направляемый по трубопроводу 232, и потока пара высокого давления, транспортируемого по трубопроводу 234. Хотя давление такой жидкости высокого давления и пара высокого давления может изменяться, на практике такие потоки обычно имеют давление в интервале от 1375 до 2100 кПа. Секция 224 сжатия, кроме того, может обеспечить создание потока рециркулирующих материалов, состоящих главным образом из материалов, включающих тяжелые углеводороды, которые могут быть возвращены в секцию 222 с основной колонной посредством трубопровода 235.
Жидкостный поток высокого давления, отведенный из сепаратора, включает углеводороды С3+ и по существу не содержит двуокиси углерода. Поток пара высокого давления из сепаратора включает углеводороды С3- и некоторое количество двуокиси углерода.
Трубопровод 234 для потока пара, отведенного из сепаратора, направляет поток в зону абсорбции, обозначенную в целом ссылочным номером позиции 236, посредством соединенного с ним трубопровода 237. Зона 236 абсорбции включает первичный абсорбер 240, в котором поток пара из сепаратора контактирует с материалом, содержащим дебутанизированный бензин, подводимым по трубопроводу 242, и потоком жидкости из основной колонны, подводимым по трубопроводу 230, с абсорбированием углеводородов С3+ и отделяет фракции с низкими температурами кипения от газа, направляемого к первичному абсорберу 240. В целом зона 236 абсорбции включает первичный абсорбер, который надлежащим образом содержит несколько ступеней, по меньшей мере, с одним и предпочтительно двумя или более промежуточными охладителями, размещенными между ступенями для обеспечения желательной абсорбции. На практике такой первичный абсорбер может надлежащим образом включать пять ступеней абсорбции между каждой парой промежуточных охладителей. Таким образом первичный абсорбер для обеспечения желательной абсорбции в соответствии с одним предпочтительным воплощением подходящим образом включает, по меньшей мере, 15 условно выделенных ступеней, по меньшей мере, с двумя промежуточными охладителями, размещенными между ними соответствующим образом. В другом предпочтительном воплощении подходящий предпочтительный первичный абсорбер для достижения желательной абсорбции надлежащим образом включает, по меньшей мере, 20 условно выделенных ступеней, по меньшей мере, с тремя промежуточными охладителями, размещенными между ними соответствующим образом. Ещё в одном предпочтительном воплощении подходящий предпочтительный первичный абсорбер для достижения желательной абсорбции включает от 20 до 25 условно выделенных ступеней с четырьмя промежуточными охладителями, размещенными между ними соответствующим образом. Хотя более широкая практика осуществления изобретения не обязательно ограничена вышеуказанным, по меньшей мере, в определенных предпочтительных воплощениях, было установлено, что выгодно использовать пропилен в качестве хладагента в одном или большем количестве таких первичных абсорберах с промежуточными охладителями для достижения желательной абсорбции.
Углеводороды С3+, абсорбированные в дебутанизированный бензин или с помощью дебутанизированного бензина, и жидкость из основной колонны по трубопроводу 243 могут быть направлены для дальнейшей переработки в соответствии с изобретением так, как описано ниже.
Отходящий газ из первичного абсорбера 240 протекает по трубопроводу 244 во второй абсорбер или абсорбер 246 с губчатым материалом. Второй абсорбер 246 осуществляет контакт отходящего газа с легким газойлем, поступающим из трубопровода 250. Легкий газойль абсорбирует большую часть оставшегося углеводорода С4 и высших углеводородов и по трубопроводу 252 возвращается в основной перегонный аппарат. Поток углеводородов С2- отводят в качестве отходящего газа из второго абсорбера или абсорбера 246 с губчатым материалом по трубопроводу 254 для дальнейшей обработки или переработки, известной в уровне техники. В соответствии с предпочтительным воплощением поток, отводимый из второго абсорбер или абсорбера 246 с губчатым материалом по трубопроводу 254, желательно представляет собой поток, содержащий углеводороды, богатые этиленом, как это было здесь отмечено.
Поток жидкости из сепаратора по трубопроводу 232 и содержимое из трубопровода 243 направляют через трубопровод 260 в отгонную колонну 262, в которой извлекают большую часть углеводородов С2 и легких газов, направляемых в трубопровод 264. На практике такая отгонная колонна может желательным образом работать при давлении в интервале от 1650 до 1800 кПа с молярным отношением С2/С3 в нижней части отгонной колонны, составляющем менее 0,001 и предпочтительно не более 0,0002 - 0,0004.
Как показано, более легкие газы и углеводороды С2, протекающие по трубопроводу 264, могут быть объединены с паром, полученным в сепараторе высокого давления, отводимым по трубопроводу 234, с образованием трубопроводной линии 237, которая транспортирует объединенный поток в первичный абсорбер 240. Отгонная колонна 262 обеспечивает жидкостный поток углеводородов С3+, направляемый по трубопроводу 266 в дебутанизатор 270. Такой подходящий дебутанизатор в соответствии с одним предпочтительным воплощением включает конденсатор (здесь не показан), который, желательно, работает под избыточном давлением в интервале от 965 до 1105 кПа, при содержании углеводородов С5 в верхнем отборе колонны не более 5 мол.% и не более чем 5 мол.% углеводородов С4 в кубовом продукте. Более предпочтительно относительное количество углеводородов С5 в верхнем отборе составляет менее 1-3 мол.%, и относительное количество углеводородов С4 в кубовом продукте также составляет менее чем 1-3 мол.%
Поток углеводородов С3 и С4, отводимый из дебутанизатора 270, отбирают с верха колонны в трубопровод 272 для дальнейшей обработки или переработки, известной в уровне техники.
Трубопровод 274 отводит поток дебутанизированного бензина из дебутанизатора 270. Часть потока дебутанизированного продукта возвращают в первичный абсорбер 240 по трубопроводу 242 для его использования в качестве растворителя первого абсорбента. Другую часть потока дебутанизированного бензина (нафты) направляют по трубопроводу 276 в отгонную колонну 280 для нафты.
В соответствии с одним предпочтительным воплощением желательной является отгонная колонна 280 для нафты в виде разделительной колонны с разделительной перегородкой, например с разделительной перегородкой 281, размещенной внутри колонны. Такая отгонная колонна 280 для нафты в виде разделительной колонны с разделительной перегородкой является достаточно эффективной для разделения введенного в неё дебутанизированного бензина на поток легкой фракции, включающей соединения, содержащие от пяти до шести атомов углерода, поток промежуточной фракции, включающей соединения, содержащие от семи до восьми атомов углерода, и поток тяжелой фракции, включающей соединения, содержащие более восьми атомов углерода. Более конкретно, такая разделительная колонна с разделительной перегородкой может обычно работать при избыточном давлении в конденсаторе в интервале от 34 до 104 кПа и в соответствии с одним воплощением работать при избыточном давлении в интервале от 55 до 85 кПа.
Указанная разделительная колонна с разделительной перегородкой, как правило, работает с низким энергопотреблением по сравнению с обычной колонной с отбором бокового погона и, кроме того, может желательным образом производить более резко выраженную фракцию продукта по сравнению с получаемой с помощью известной колонны с боковым погоном.
Кроме того, в соответствии с предпочтительным воплощением продукты, производимые или образованные с помощью разделительной колонны с разделительной перегородкой, могут желательным образом включать дистиллят, имеющий температуру кипения, соответствующую 95% от границы отделения фракции дистиллята, в интервале от 72° до 78°С (от 162° до 172°F), в частности 75°С (167°F), и побочный продукт, имеющий температуру кипения, соответствующую 5% от границы отделения фракции, в интервале 72° до 78°С (от 162° до 172°F), в частности 75°С (167°F), и абсолютную температуру кипения, соответствующую 95% от границы отделения фракции, в интервале от 167° до 173°С (от 333° до 343°F) в частности 170°С (338°F).
Специалистам в данной области техники, которые будут руководствоваться раскрытыми здесь идеями, будет понятно, что такие потоки легкой, промежуточной и тяжелой фракций могут быть надлежащим образом направлены через соответствующие трубопроводы 282, 284 и 286 соответственно для последующей переработки или с целью извлечения продукта, в зависимости от желания.
Например, в иллюстрируемом воплощении поток, содержащий углеводороды С5-С6, направляют по трубопроводу 282 в зону 283 крекинга соединений, включающих легкую фракцию, где, по меньшей мере, часть соединений легкой фракции, содержащих от пяти до шести атомов углерода, например олефины C5-С6, подвергают крекингу, например, известным в уровне техники образом с образованием выходящих продуктов - крекированных олефинов, включающих олефины С2 и С3, показанные протекающими в трубопроводе 288, а также, возможно, протекающего в трубопроводе 289 потока для продувки парафина.
Поток с углеводородами C7-C8, протекающий по трубопроводу 284, может быть, при необходимости, направлен для дальнейшей желательной переработки, например, в зону 285 извлечения ароматических углеводородов, в которой, например, ароматические углеводороды могут быть известным в уровне техники способом извлечены надлежащим образом из соединений промежуточной фр