Пространственно-временное кодирование с формированием луча на основе обратной связи о качестве канала
Иллюстрации
Показать всеИзобретение относится к технике связи. Технический результат состоит в увеличении пропускной способности от разнесения в приемнике путем применения формирования луча к сигналам передачи, кодированным по схеме разнесения передачи/пространственно-временного кодирования. Для этого сигнал передачи подвергается пространственно-временному кодированию по множеству пространственно-временных антенных групп, причем каждая пространственно-временная антенная группа связана с конкретным пространственно-временным кодом. Сигнал в каждой пространственно-временной антенной группе подвергается формированию луча по множеству антенн в пространственно-временной антенной группе. Каждой антенне из множества антенн в пространственно-временной антенной группе присваивается отдельный весовой коэффициент относительно другой антенны в данной пространственно-временной группе. Весовые коэффициенты формирования луча могут варьировать в зависимости от индикации качества канала, получаемой из приемника. Амплитуда, фаза или комбинация амплитуды и фазы каждого весового коэффициента или вектора множества весовых коэффициентов может варьировать как функция от индикации качества канала, чтобы улучшить качество принимаемого сигнала. 9 н. и 23 з.п. ф-лы, 10 ил.
Реферат
Настоящая патентная заявка испрашивает приоритет предварительной заявки №60/870,654 "Пространственно-временное кодирование с формированием луча на основе обратной связи о качестве канала", поданной 19 декабря 2006 г., права на которую переуступлены настоящему заявителю и которая включена в данный документ посредством ссылки.
Уровень техники
Устройства беспроводной связи сконфигурированы так, чтобы работать в различных условиях и средах эксплуатации. Мобильное беспроводное устройство может испытывать радикальные изменения качества сигнала в зависимости от расположения этого устройства относительно передающего сигнал источника. Изменения качества сигнала могут быть охарактеризованы изменениями беспроводного канала, связывающего передатчик с беспроводным приемником.
Существует множество факторов, влияющих на беспроводной канал. Например, уровень принятого сигнала падает при увеличении расстояния между передатчиком и приемником. Кроме того, местность с переменным рельефом и наличие препятствий и отражающих поверхностей обуславливают многолучевое распространение. Сигналы, проходящие по множеству трактов от передатчика к приемнику, могут конструктивно или деструктивно комбинироваться. Деструктивное комбинирование сигналов из-за, например, вращения фазы в компоненте многолучевого сигнала, может привести к значительному снижению качества сигнала в приемнике. Снижение качества сигнала часто называют замиранием сигнала или просто замиранием.
В системах беспроводной связи могут применяться различные способы для компенсации вероятности работы при глубоком замирании. Для способствования компенсации замираний в системах беспроводной связи может использоваться разнесение сигнала. Разнесение относится к реализации некоторого рода избыточности для предоставления или разрешения независимых трасс распространения сигнала.
Передатчик может обеспечить разнесение путем введения явного разрешимого сигнала, так что в приемнике обеспечивается большая вероятность приема и разрешения переданного сигнала. Передатчик может ввести разнесение путем использования множества передающих антенн, множества частот передачи, множества временных моментов передачи или некоторой комбинации перечисленного.
Например, разнесение передачи может быть достигнуто путем передачи исходного информационного символа с одной антенны и передачи модифицированной версии этого символа с другой антенны. Модифицированная версия исходного символа может представлять собой исходный сигнал, который был подвергнут задержке, сопряжению, инвертированию, вращению и т.п., или некоторой комбинации некоторых или всех перечисленных приемов. Термин «вращение сигнала» относится к комплексному вращению фазы сигнала относительно опоры. Приемник обрабатывает общий принятый сигнал в течение одного или более периодов передачи символа, чтобы восстановить переданный символ.
Аналогично, приемник может обеспечить ограниченную степень разнесения путем использования множества приемных антенн, которые пространственно разнесены. Предпочтительно, множество приемных антенн разнесены друг от друга на некоторое расстояние, которое позволяет каждой антенне воспринимать характеристики канала, которые не зависят от характеристик канала, воспринимаемых другими приемными антеннами.
Сущность изобретения
Предоставлены способы и устройство для увеличения выигрыша от разнесения в приемнике путем применения формирования луча к сигналам, кодированным по схеме разнесения передачи/пространственно-временного кодирования. Сигнал передачи подвергается пространственно-временному кодированию по множеству пространственно-временных антенных групп, причем каждая пространственно-временная антенная группа ассоциируется с конкретным пространственно-временным кодом. Сигнал в каждой пространственно-временной антенной группе испытывает формирование луча по множеству антенн в пространственно-временной антенной группе. Каждой антенне, из множества антенн в пространственно-временной антенной группе, присваивается отдельный весовой коэффициент относительно другой антенны в данной пространственно-временной группе. Весовые коэффициенты формирования луча могут варьировать в зависимости от индикации обратной связи по качеству канала из приемника. Амплитуда, фаза или комбинация амплитуды и фазы каждого весового коэффициента или вектора множества весовых коэффициентов может варьировать как функция от индикации качества канала, чтобы улучшить качество принимаемого сигнала.
Аспекты настоящего раскрытия включают в себя способ предоставления разнесения передачи. Способ включает в себя этапы, на которых генерируют из сигнала передачи множество сигналов пространственно-временного кодирования, принимают индикацию качества канала, генерируют, по меньшей мере, один весовой вектор на основе упомянутой индикации качества канала и формируют луч по, по меньшей мере, одному из множества сигналов, кодированных по схеме пространственно-временного кодирования, используя соответствующий весовой вектор.
Аспекты настоящего раскрытия включают в себя способ предоставления разнесения передачи. Способ включает в себя этапы, на которых генерируют из сигнала передачи множество сигналов, кодированных по схеме пространственно-временного кодирования, принимают индикацию качества канала и формируют луч по каждому из сигналов, кодированных по схеме пространственно-временного кодирования, причем упомянутый, по меньшей мере, один весовой вектор определяется частично на основании индикации качества канала.
Аспекты настоящего раскрытия включают в себя способ оптимизации разнесения передачи. Способ включает в себя этапы, на которых принимают множество сигналов, каждый из которых принимается в соответствующем луче сигнала, определяют оценку канала для каждого луча сигнала, определяют индикацию качества канала на основании оценок канала и передают индикацию качества канала как информацию обратной связи в источник передачи лучей сигналов.
Аспекты настоящего раскрытия включают в себя устройство для предоставления разнесения передачи, которое включает в себя передатчик, сконфигурированный так, чтобы генерировать поток сигналов передачи, кодер разнесения передачи, сконфигурированный так, чтобы принимать поток сигналов передачи и генерировать из потока сигналов передачи множество G потоков передачи, кодированных по схеме разнесения передачи/пространственно-временного кодирования, генератор весовой матрицы, сконфигурированный так, чтобы принимать индикацию качества канала и генерировать, по меньшей мере, один весовой вектор из набора весовых векторов на основании индикации качества канала, множество кодеров формирования луча, каждый из которых сконфигурирован так, чтобы принимать один из множества потоков передачи, кодированных по схеме разнесения передачи/пространственно-временного кодирования, и генерировать множество K взвешенных субпотоков на основании одного весового вектора из набора весовых векторов, чтобы формировать луч по одному из множества потоков передачи, кодированных по схеме разнесения передачи/пространственно-временного кодирования.
Аспекты настоящего раскрытия включают в себя устройство для предоставления разнесения передачи, которое включает в себя приемник, сконфигурированный так, чтобы принимать множество сигналов передачи, кодированных по схеме пространственно-временного кодирования, во множестве лучей, причем каждый сигнал передачи, кодированный по схеме пространственно-временного кодирования, передается внутри отдельного луча, модуль извлечения пилот-сигнала, соединенный с приемником и сконфигурированный так, чтобы извлекать из каждого луча, по меньшей мере, один пилот-сигнал, модуль оценки канала, соединенный с модулем извлечения пилот-сигнала и сконфигурированный так, чтобы определять оценку канала для каждого из множества лучей на основании, по меньшей мере, одного пилот-сигнала, генератор индикации качества канала, сконфигурированный так, чтобы определять индикацию качества канала на основании оценок канала, передатчик, сконфигурированный так, чтобы генерировать сообщение обратной связи, включающее в себя индикацию качества канала, и передавать это сообщение обратной связи в источник сигналов передачи, кодированных по схеме пространственно-временного кодирования.
Краткое описание чертежей
Отличительные признаки, цели и преимущества вариантов осуществления настоящего раскрытия будут очевидны из следующего подробного описания и сопутствующих чертежей, в которых одинаковые элементы обозначены одинаковыми ссылочными номерами.
Фиг.1 - упрощенная функциональная структурная схема одного варианта осуществления системы беспроводной связи.
Фиг.2 - упрощенная функциональная структурная схема одного варианта осуществления передатчика и приемника в системе беспроводной связи с множественным доступом.
Фиг.3 - упрощенная функциональная структурная схема одного варианта осуществления системы передатчика с разнесением передачи, реализуемым путем пространственно-временного кодирования и формирования луча.
Фиг.4 - упрощенная функциональная структурная схема одного варианта осуществления системы передатчика с разнесением передачи, реализуемым путем пространственно-временного кодирования и формирования луча.
Фиг.5 - пример диаграммы констелляции весовых коэффициентов формирования луча.
Фиг.6 - упрощенная функциональная структурная схема одного варианта осуществления приемника, сконфигурированного так, чтобы генерировать индикацию качества канала на основании принятых сигналов, кодированных по схеме пространственно-временного кодирования с формированием луча.
Фиг.7 - упрощенная схема последовательности операций одного варианта осуществления способа предоставления разнесения передачи путем использования кодирования разнесения передачи/пространственно-временного кодирования с формированием луча.
Фиг.8 - упрощенная схема последовательности операций одного варианта осуществления способа генерации информации обратной связи из сигналов, кодированных по схеме разнесения передачи/пространственно-временного кодирования с формированием луча.
Фиг.9 - упрощенная функциональная структурная схема одного варианта осуществления системы передатчика с разнесением передачи, реализуемым путем пространственно-временного кодирования и формирования луча.
Фиг.10 - упрощенная функциональная структурная схема одного варианта осуществления приемника, сконфигурированного так, чтобы генерировать индикацию качества канала на основании принятых сигналов, кодированных по схеме пространственно-временного кодирования с формированием луча.
Подробное описание вариантов осуществления изобретения
Ниже описаны способы и устройство для генерации и передачи беспроводных сигналов, которые сочетают преимущества кодирования по схеме разнесения передачи/пространственно-временного кодирования и формирования луча. Передатчик снабжен N передающими антеннами. N передающих антенн разделяются на G групп антенн, где G<N. В каждой группе антенн, антенны взвешиваются посредством весового вектора wg=[wg1 wg2 … wg,N/G], чтобы сформировать луч.
Информационный поток, который требуется передать, сначала кодируется на G субпотоков по схеме разнесения передачи/пространственно-временного кодирования. По каждому субпотоку формируется луч и передается посредством одной группы антенн. Передатчик может оптимизировать весовые коэффициенты весового вектора на основании обратной связи, предоставляемой приемником.
Приемник может обрабатывать сигналы, принятые из субпотоков, по которым сформирован луч, и генерировать величину Индикации Качества Канала (CQI) на основе обработанных субпотоков. Приемник может независимым образом генерировать индикацию качества канала на основе сигнала из каждого субпотока, по которому сформирован луч, или на основании качества совокупного сигнала. Приемник может передавать в передатчик одну или более величин CQI в сообщении обратной связи или через некоторую другую линию связи. Приемник может генерировать величины CQI, например, на основании пилот-сигнала, передаваемого передатчиком.
Передатчик или, более конкретно, приемный блок передатчика может принимать величины CQI от приемника. Передатчик может корректировать весовые коэффициенты формирования луча, применяемые к одному или более субпотокам, на основании величин CQI. Передатчик может также принимать одну или более метрик, которые являются показателем помех в нисходящей линии связи, которые приписываются сигналу, соответствующему конкретному терминалу доступа. Метрика помех нисходящей линии связи может быть определена, например, одним или более приемниками в терминалах доступа, для которых сигнал передатчика не оптимизирован, или одним или более приемниками, расположенными в других точках доступа. Передатчик независимым образом регулирует весовые коэффициенты в каждом субпотоке, чтобы максимизировать качество сигнала в приемнике, регулирует весовые коэффициенты множества субпотоков, чтобы максимизировать качество сигнала в приемнике, регулирует весовые коэффициенты в каждом из субпотоков, чтобы улучшить качество сигнала в приемнике, между тем минимизируя межячейковые помехи, испытываемые в других ячейках или зонах покрытия, либо реализует некоторую комбинацию перечисленных операций. Передатчик может быть сконфигурирован так, чтобы выбирать весовой коэффициент из предопределенной сетки весовых коэффициентов или чтобы непрерывно варьировать амплитуду и/или фазу одного или более отдельных весовых коэффициентов.
Фиг.1 представляет собой упрощенную функциональную структурную схему одного варианта осуществления системы 100 беспроводной связи с множественным доступом. Система 100 беспроводной связи с множественным доступом включает в себя множество ячеек, например ячейки 102, 104 и 106. В варианте осуществления по фиг.1 каждая из ячеек 102, 104 и 106 может включать в себя точку 150 доступа, которая включает в себя множество секторов.
Множество секторов формируются группами из антенн, каждая из которых ответственна за связь с терминалами доступа в части заданной ячейки. В ячейке 102 каждая из антенных групп 112, 114 и 116 соответствует разным секторам. Например, ячейка 102 разделана на три сектора: 120a, 120b и 102c. Первая антенна 112 обслуживает первый сектор 102a, вторая антенна 114 обслуживает второй сектор 102b, а третья антенна 116 обслуживает третий сектор 102c. В ячейке 104 каждая из антенных групп 118, 120 и 122 соответствует разным секторам. В ячейке 106 каждая из антенных групп 124, 126 и 128 соответствует разным секторам.
Каждая ячейка и сектор ячейки сконфигурированы так, чтобы поддерживать или иным образом обслуживать несколько терминалов доступа, которые находятся в связи с одним или более секторами соответствующей точки доступа. Например, терминалы 130 и 132 доступа находятся в связи с точкой 142 доступа, терминалы 134 и 136 находятся в связи с точкой 144 доступа, а терминалы 138 и 140 находятся в связи с точкой 146 доступа. Несмотря на то, что согласно данной иллюстрации каждая из точек 142, 144 и 146 доступа находится в связи с двумя терминалами доступа, каждая точка 142, 144 и 146 доступа может поддерживать любое количество терминалов доступа, причем это количество ограничивается некоторым физическим лимитом или лимитом, налагаемым стандартом связи.
В использованном здесь значении термин "точка доступа" может обозначать фиксированную станцию, используемую для связи с терминалами, и на нее также могут ссылаться как на базовую станцию, Узел B (Node B) и т.п. На терминал доступа также могут ссылаться как на Пользовательское Оборудование (UE), пользовательский терминал, устройство беспроводной связи, терминал, мобильный терминал, мобильную станцию, абонентскую станцию и т.п.
Согласно фиг.1 каждый из терминалов 130, 132, 134, 136, 138 и 140 доступа расположен в разных частях соответствующей ячейки. Сверх того, каждый терминал доступа может находиться на разном расстоянии от антенных групп, соответствующих точке доступа, с которой он осуществляет связь. Оба этих фактора, в добавление к состоянию среды и иным состояниям в ячейке, обуславливают различные ситуации, в которых между каждым терминалом доступа и антенной группой, соответствующей терминалу доступа, с которым он осуществляет связь, формируются различные состояния канала.
Каждый терминал доступа, например терминал 130 доступа, испытывает уникальные характеристики канала, которые отличаются от характеристик, испытываемых любым другим терминалом доступа, из-за меняющихся состояний канала. Сверх того, характеристики канала меняются в течение времени и варьируют из-за изменений местоположения терминала доступа.
Точки 142, 144 и 146 доступа могут реализовывать разнесение передачи путем пространственно-временного кодирования, чтобы смягчить некоторые эффекты падения качества сигнала, возникающего, частично, из-за изменения состояний канала. Точки 142, 144 и 146 доступа могут быть сконфигурированы так, чтобы генерировать множество отдельных субпотоков, кодированных по схеме пространственно-временного кодирования. Кроме того, точки 142, 144 и 146 доступа могут быть сконфигурированы так, чтобы формировать луч по каждому отдельному субпотоку, кодированному по схеме пространственно-временного кодирования. Таким образом, по каждому субпотоку в каждой из точек 142, 144 и 146 доступа может быть сформирован луч посредством множества антенн. Каждый из субпотоков, которые кодированы по схеме пространственно-временного кодирования и по которым сформирован луч, может быть принят в терминалах 130, 132, 134, 136, 138 и 140 доступа после прохождения, по существу, неправильных состояний канала. Это улучшает способность терминалов 130, 132, 134, 136, 138 и 140 доступа в части приема сигнала во всех рабочих условиях, а также минимизирует вероятность того, что терминалы 130, 132, 134, 136, 138 и 140 доступа буду испытывать замирание сигнала, которое приводит к неспособности поддержания связи с обслуживающей точкой доступа.
Точки 142, 144 и 146 доступа могут формировать луч по субпотокам путем взвешивания каждого из сигналов, подаваемых на соответствующее множество антенн. Каждый субпоток, кодированный по схеме пространственно-временного кодирования, разделяется или иным образом преобразуется во множество копий, и множество копий взвешиваются посредством весового вектора, размер которого соответствует количеству копий.
Точки 142, 144 и 146 доступа могут использовать обратную связь из каждого из терминалов доступа, например 130, чтобы оптимизировать весовые коэффициенты, применяемые к одному или более субпотокам. Точки 142, 144 и 146 доступа могут передавать пилот-сигналы, которые не подвергаются формированию луча или по которым формируется луч с известными весовыми векторами, чтобы облегчить анализ канала, выполняемый терминалами 130, 132, 134, 136, 138 и 140 доступа. Пилот-сигналы могут представлять собой один или более известных сигналов, которые передаются периодически по времени, по частоте или по комбинации времени и частоты. В других вариантах осуществления пилот-сигналы не являются периодическими, а передаются согласно предопределенному алгоритму. Например, передача пилот-сигналов может планироваться псевдослучайным образом, и терминалы 130, 132, 134, 136, 138 и 140 доступа могут иметь способность предсказывать положение и наличие пилот-сигналов. В других вариантах осуществления точки 142, 144 и 146 доступа могут планировать передачу пилот-сигналов по запросу одного или более терминалов доступа, например терминала 130 доступа.
Каждый из терминалов доступа, например 130, может принимать пилот-сигналы из своей обслуживающей точки 142 доступа и может оценивать канал для каждого из независимых субпотоков. Если точка доступа формирует луч по субпотокам пилот-сигналов, то терминал 130 доступа может компенсировать предопределенные весовые коэффициенты формирования луча, применяемые к субпотокам пилот-сигналов, в процессе оценки канала.
Терминал 130 доступа генерирует величину CQI на основании оценок канала. В одном варианте осуществления терминал 130 доступа генерирует величину CQI, являющуюся показателем оценки канала для каждого из субпотоков. В еще одном варианте осуществления терминал 130 доступа генерирует величину CQI на основании оценок множества каналов.
Терминал 130 доступа может генерировать величину CQI, которая представляет оценку канала, или он может генерировать величину CQI, которая представляет изменение оценки канала. Например, терминал 130 доступа может генерировать величину CQI, которая только указывает, улучшилось или ухудшилось совокупное качество канала относительно предыдущей оценки канала. В еще одном варианте осуществления терминал 130 доступа генерирует величины CQI для каждой оценки канала, и величина CQI представляет величину оценки канала.
Терминал 130 доступа генерирует одно или более сообщений обратной связи, содержащих одну или более величин CQI, и передает эти сообщения CQI обратно в точку доступа, соответствующую пилот-сигналам, использованным для генерации этих величин CQI.
Точка доступа, например 142, может также принимать одну или более оценок помех нисходящей линии связи. Например, терминал доступа из другого сектора, например терминал 132 доступа, или терминал доступа из другой ячейки, например терминал 140 доступа, может оценивать уровень помех нисходящей линии связи, генерируемых сигналами, по которым сформирован луч, из некоторого другого сектора 120c или ячейки 102. Альтернативно, приемник в точке доступа, например 146, может оценивать помехи нисходящей линии связи, генерируемые в другой точке доступа, например 142. Оценка помех нисходящей линии связи может быть передана в точку 142 доступа, которая является предполагаемым источником помех.
Точка доступа, например 142, принимает величины CQI и оценки помех нисходящей линии связи и регулирует весовые коэффициенты весовых векторов формирования луча, чтобы улучшить качество сигнала, испытываемое в терминале 130 доступа, и может регулировать весовые коэффициенты, чтобы одновременно уменьшать помехи нисходящей линии связи, испытываемые в других ячейках или секторах. Точка 142 доступа может оптимизировать весовые коэффициенты формирования луча для каждого из субпотоков, по которым сформирован луч. Точка 142 доступа может менять весовые коэффициенты формирования луча согласно предопределенному алгоритму и может, например, менять весовые коэффициенты непрерывно, с предопределенными приращениями или путем выбора весового коэффициенты из предопределенного набора весовых коэффициентов. Точка 142 доступа может менять амплитуду, фазу или комбинацию амплитуды и фазы весового коэффициента.
Вышеописанные варианты осуществления могут быть реализованы посредством процессора 220 и 260 передачи, процессора 230 или 270, а также памяти 232 или 272, как показано на фиг.2. Процессы могут быть реализованы в любом процессоре, контроллере или другом устройстве обработки, и они могут храниться как машиночитаемые инструкции на машиночитаемом носителе в виде исходного кода, объектного кода или иным образом.
Фиг.2 представляет собой упрощенную функциональную структурную схему одного варианта осуществления передатчика и приемника в системе 200 беспроводной связи с множественным доступом. В системе 210 передатчика данные потока обмена для некоторого количества потоков данных предоставляются из источника 212 данных в процессор 214 данных передачи. В одном варианте осуществления каждый поток данных передается через соответствующую передающую антенну. Чтобы предоставить кодированные данные, процессор 214 данных передачи форматирует, кодирует и перемежает данные потока обмена для каждого потока данных на основании определенной схемы кодирования, выбранной для этого потока данных. В некоторых вариантах осуществления процессор 214 данных кодирования применяет весовые коэффициенты пространственно-временного кодирования и формирования луча к символам потоков данных на основании пользователя, которому передаются эти символы, и антенны, с которой передаются эти символы. В некоторых вариантах осуществления весовые коэффициенты формирования луча могут быть сгенерированы на основании информации характеристики канала, которая является показателем состояния трактов передачи между точкой доступа и терминалом доступа. Сверх того, в случае запланированных передач процессор 214 данных передачи может выбрать формат пакета на основании информации ранга, которая передается от пользователя.
Кодированные данные для каждого потока данных могут быть мультиплексированы с данными пилот-сигнала по способу OFDM. Данные пилот-сигнала, как правило, представляют собой известный шаблон данных, который обрабатывается известным образом и который может быть использован в приемнике для оценки характеристики канала. Далее, для предоставления модулированных символов мультиплексированные данные пилот-сигнала и кодированные данные для каждого потока данных модулируются (например, выполняется сопоставление символов) на основании определенной схемы модуляции (например, BPSK, QPSK, M-PSK и M-QAM), выбранной для этого потока данных. Скорость передачи данных, кодирование и модуляция для каждого потока данных могут быть определены инструкциями, предоставляемыми процессором 230. В некоторых вариантах осуществления некоторое количество параллельных пространственных потоков могут варьировать согласно информации ранга, которая передается от пользователя.
Далее, модулированные символы для всех потоков данных предоставляются в процессор 220 MIMO-передачи, который может дополнительно обработать модулированные символы (например, для OFDM). Процессор 220 MIMO-передачи, далее, передает N T потоков символов в N T передатчиков 222a~222t. Процессор 220 MIMO-передачи применяет весовые коэффициенты формирования луча к символам потоков данных на основании пользователя, которому передаются эти символы, и антенны, с которой передаются эти символы.
Каждый из передатчиков 222a~222t принимает и обрабатывает соответствующий поток символов, чтобы предоставить один или более аналоговых сигналов, и дополнительно обрабатывать (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы, чтобы предоставить модулированный сигнал, подходящий для передачи по MIMO-каналу. Далее, N T модулированных сигналов из передатчиков 222a~222t передаются с N T антенн 224a~224t соответственно.
Система 210 передатчика также может быть сконфигурирована так, чтобы принимать сигналы от одной или более антенн 224a~224t. Соответствующие приемники 223a~223t принимают и обрабатывают сигналы. Каждый из приемников 223a~223t может быть сконфигурирован так, чтобы усиливать, фильтровать и обрабатывать с преобразованием частоты соответствующие принимаемые сигналы в сигнал, который подается на демодулятор 240.
Демодулятор 240 может демодулировать принятые сигналы, чтобы восстановить принятые данные и информацию. Вывод демодулятора 240 подается на процессор 242 данных приема. Процессор 242 данных приема может быть сконфигурирован так, чтобы извлекать различные информационные элементы, которые содержатся в принятых сигналах. Некоторая часть этой информации может представлять собой служебную информацию, которая используется системой 210 передатчика, тогда как другая часть этой информации может представлять собой пользовательские данные, которые могут быть обработаны для их вывода пользователю или в другое устройство назначения (не показано) через приемник 244 данных.
Служебная информация может включать в себя величины CQI, которые генерируются системой 250 приемника и передаются в систему 210 передатчика. Процессор 242 данных приема подает величины CQI или сообщения, содержащие величины CQI, в процессор 230. Процессор 230 в сочетании с исполняемым кодом, хранимым в памяти 232, действует, чтобы на основании принятых величин CQI определить изменения, которые необходимо внести в весовые коэффициенты формирования луча, применяемые к различным субпотокам сигналов либо в процессоре 214 данных передачи, либо в процессоре 220 данных MIMO-передачи.
В системе 250 приемника переданные модулированные сигналы принимаются N R антеннами 252a~252r и принятый сигнал с каждой антенны 252 предоставляется в соответствующий приемник 254. Каждый приемник 254 обрабатывает (например, фильтрует, усиливает и преобразует с понижением частоты) соответствующий принятый сигнал, оцифровывает обработанный сигнал, чтобы предоставить выборки, и дополнительно обрабатывает выборки, чтобы предоставить соответствующий поток "принятых" символов.
Процессор 260 данных приема, далее, принимает и обрабатывает N R потоков принятых символов из N R приемников 254 на основании конкретного способа обработки, чтобы предоставить номер ранга потоков "детектированных" символов. Обработка, выполняемая процессором 260 данных приема, более подробно описана ниже. Каждый поток детектированных символов включает в себя символы, которые являются оценками модулированных символов, передаваемых для соответствующего потока данных. Далее, процессор 260 данных приема демодулирует, выполняет обратное перемежение и декодирует каждый поток детектированных символов, чтобы восстановить данные потока обмена для этого потока данных. Обработка, выполняемая процессором 260 данных приема, дополняет обработку, выполняемую процессором 220 MIMO-передачи и процессором 214 данных передачи в системе 210 передатчика.
Оценка характеристики канала, сгенерированная процессором 260 данных приема, может быть использована для выполнения пространственной, пространственно/временной обработки в приемнике, для регулирования уровней, изменения частот или схем модуляции и для других действий. Процессор 260 данных приема может дополнительно оценить Отношения Сигнала к Шуму и Помехам (SNR) потоков детектированных символов и предоставить эти величины в процессор 270.
Процессор 270 в сочетании с исполняемым кодом, хранимым в памяти 272, может генерировать одну или более величин CQI на основе оценок канала. При генерации текущей величины CQI процессор 270 также может выполнять доступ к одной или более сохраненным величинам CQI, соответствующим предшествующим оценкам канала, которые хранятся в памяти 270. Процессор 270 передает одну или более величин CQI в процессор 278 данных передачи.
Процессор 278 данных передачи форматирует величины CQI для их передачи в систему 210 передатчика. Процессор 278 данных передачи может, например, генерировать одно или более сообщений обратной связи, содержащих величины CQI. Процессор 278 данных передачи подает сообщения обратной связи на модулятор 280, в котором сообщения модулируются в соответствии с предопределенным форматом. Модулированные сообщения подаются на один или более передатчиков 255a~255r, где модулированные сообщения обратной связи преобразуются с повышением частоты и передаются обратно в систему 210 передатчика.
В приемнике различные способы обработки могут быть использованы для обработки N R принятых сигналов, чтобы детектировать N T потоков переданных символов. Эти способы обработки могут быть классифицированы на две основные категории: (i) способы пространственной и пространственно-временной обработки в приемнике (которые также называют способами выравнивания); и (ii) способ "последовательного обнуления/выравнивания и подавления помех" (который также называют "последовательным подавлением помех" или "последовательным подавлением").
MIMO-канал, формируемый N T передающими антеннами и N R приемными антеннами, может быть разложен на N s независимых каналов, где N s ≤min {N T , N R }. Каждый из N s независимых каналов также называют пространственным подканалом (или каналом передачи) MIMO-канала и он соответствует одному измерению.
Фиг.3 представляет собой упрощенную функциональную структурную схему одного варианта осуществления системы 300 передатчика, реализующей формирование луча по сигналам, кодированным по схеме пространственно-временного кодирования, причем весовые коэффициенты формирования луча оптимизируются посредством обратной связи CQI из приемника. Упрощенная функциональная структурная схема по фиг.3 ограничена частью системы передатчика, которая относится к формированию луча сигналов, кодированных по схеме пространственно-временного кодирования. Другие части системы передатчика не показаны в целях простоты и ясности. Система 300 передатчика может быть интегрирована, например, в точку доступа системы связи по фиг. 1 и может представлять собой вариант осуществления системы передатчика по фиг.2.
Система 300 передатчика включает в себя передатчик 310, соединенный с кодером 320 разнесения передачи/пространственно-временного кодирования. Кодер 320 разнесения передачи/пространственно-временного кодирования передает кодированные сигналы во множество кодеров 3300-330G формирования луча. Кодеры 3300-330G формирования луча передают сигналы, по которым сформирован луч, на множество антенн 34000-340GK. Модуль 350 определения временных характеристик (хронирования) и синхронизации соединен с генератором 360 весовой матрицы, который соединен со множеством кодеров 3300-330G формирования луча.
Передатчик 310 сконфигурирован так, чтобы обрабатывать выборки для генерации потока модулированных сигналов. Например, передатчик 310 может быть сконфигурирован так, чтобы генерировать множество выборок OFDM-символа из множества информационных битов. Передатчик 310 может быть сконфигурирован так, чтобы сопоставлять информационные биты различным поднесущим OFDM-символа и модулировать информационные биты в поднесущие согласно предопределенному формату модуляции. Передатчик 310 может преобразовывать частоту OFDM-символа до желаемой радиочастоты передачи. Вывод передатчика 310 в подобном варианте осуществления представляет собой последовательный поток выборок OFDM-символа на желаемой радиочастоте передачи.
Вывод передатчика 310 подается на кодер 320 временного разнесения/пространственно-временного кодирования. Кодер 320 временного разнесения/пространственно-временного кодирования сконфигурирован так, чтобы разделять поток сигналов из передатчика 310 на множество G потоков сигналов, на которые также ссылаются как на субпотоки. Кодер 320 временного разнесения/пространственно-временного кодирования обрабатывает множество потоков сигналов, чтобы произвести модифицированные версии потоков сигналов. Например, кодер 320 временного разнесения/пространственно-временного кодирования может быть сконфигурирован так, чтобы пропускать один, по существу, немодифицированный поток сигналов и модифицировать каждый из остальных G-1 потоков сигналов. В целом, один поток сигналов может рассматриваться как немодифицированный, поскольку все потоки сигналов могут быть нормированы к определенному потоку сигналов.
Кодер 320 временного разнесения/пространственно-временного кодирования может быть сконфигурирован так, чтобы, например, подвергать каждый из G-1 потоков сигналов задержке, инвертированию, сопряжению, вращению и т.п., либо некоторой комбинации перечисленных операций. Кодер 320 временного разнесения/пространственно-временного кодирования может вводить задержку в конкретный поток сигналов, используя переменную задержку, линию задержки с отводами, цифровую задержку и т.п., либо некоторую комбинацию перечисленных элементов задержки. Кодер 320 временного разнесения/пространственно-временного кодирования может быть сконфигурирован так, чтобы инвертировать поток сигналов, используя, например, инвертирующий усилитель. Кодер 320 временного разнесения/пространственно-временного кодирования может быть сконфигурирован так, чтобы сопрягать поток сигналов, используя, например, ротатор, инвертер, соединенный с компонентом квадратурной составляющей сигнала и т.п., либо некоторую комбинацию перечисленных. В доб