Способ получения диалкоксидов диалкилолова

Иллюстрации

Показать все

Изобретение относится к способу получения соединения диалкилолова, включающему реакцию перераспределения алкильных групп и/или реакцию деалкилирования композиции дезактивированной формы катализатора на основе диалкилолова, которая образуется при получении сложноэфирного производного с использованием катализатора на основе диалкилолова. При этом катализатор на основе диалкилолова представляет собой соединение по меньшей мере одного типа, выбранное из группы, состоящей из соединения диалкилолова, представленного формулой (1), и тетраалкилдистанноксана, представленного формулой (2):

(где каждый из R1 и R2 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода, каждый из X1 и X2 независимо представляет собой заместитель, по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена, а и b независимо представляют собой целое число от 0 до 2 и а+b=2, и с и d независимо представляют собой целое число от 0 до 2 и c+d=2;

(где каждый из R3, R4, R5 и R6 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода, каждый из X3 и X4 независимо представляет собой заместитель, по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена, и е, f, g и h независимо представляют собой целое число от 0 до 2, e+f=2 и g+h=2). Причем сложноэфирное производное представляет собой соединение по меньшей мере одного типа, выбранное из группы, состоящей из эфира карбоновой кислоты, эфира карбаминовой кислоты и изоцианата. Технический результат - способ позволяет регенерировать варианты соединений алкоксида диалкилолова в активную форму в виде соединений алкоксидов диалкилолова. 36 з.п. ф-лы, 7 ил.

Реферат

Область техники

Настоящее изобретение относится к способу получения соединений алкоксидов диалкилолова в качестве катализатора для применения в производстве сложных эфиров, сложных эфиров угольной кислоты и к способу получения сложных эфиров и сложных эфиров угольной кислоты с использованием соединений диалкоксидов диалкилолова.

Уровень техники

Диалкоксиды диалкилолова чрезвычайно полезны в качестве катализаторов, синтеза сложных эфиров, синтеза эфиров угольной кислоты, реакции переэтерификации сложных эфиров и сшивки силиконовых полимеров или уретанов. В частности, наряду с тем, что эфиры угольной кислоты используются в качестве добавок к бензину для повышения октанового числа и к дизельному топливу для уменьшения содержания частиц в выхлопных газах, эти полезные соединения используются также в качестве алкилирующих агентов, карбонилирующих агентов или растворителей и т.п. в синтезе поликарбонатов, уретанов, фармацевтических средств, химикатов сельскохозяйственного назначения и других органических соединений, или в качестве электролитов для литиевых батарей, сырья для смазочных масел и сырья для дезоксигенирующих агентов для защиты от коррозии труб теплосетей; все это привлекает внимание к диалкоксидам диалкилолова, в частности, как к катализаторам синтеза. Например, в публикации WO 2003/055840 раскрывается способ получения эфиров угольной кислоты, включающий взаимодействие металлорганического соединения, содержащего диалкоксид диалкилолова, с диоксидом углерода с последующим термическим разложением образовавшегося продукта присоединения.

Обычно применяемый известный способ получения диалкоксидов диалкилолова включает проведение реакции оксидов диалкилолова со спиртами и удаление из реакционной жидкости полученного низкокипящего компонента, который содержит воду (см., например, патент США № 5545600, публикацию международной заявки WO 2005/111049, опубликованную заявку на патент Японии № 2005-298433, Journal of Chemical Society, 23 (1971), 3972, и Journal of the Chemical Society of Япония - Industrial Chemistry, 72, 7 (1969), 1543-1549). Считается доказанным, что процессы получения диалкоксидов диалкилолова реакцией дегидратации оксидов диалкилолова и спиртов представляют собой равновесные реакции, сопровождающие дегидратацию, как показано следующей ниже формулой (1):

(где R и R' представляют собой алкильные группы).

Вышеуказанное равновесие в подавляющем большинстве случаев сдвигается в сторону взаимодействующих веществ и предполагается, что имеют место последующие реакции дегидратации через тетраалкилдистанноксан, как показано в следующих формулах (2) и (3):

(где R и R' представляют собой алкильные группы);

(где R и R' представляют собой алкильные группы).

Хотя диалкоксиды диалкилолова получают при удалении из системы воды, образующейся в каждой реакции дегидратации, указанная реакция имеет ряд недостатков с энергетической точки зрения, поэтому с целью получения диалкоксидов диалкилолова с высоким выходом реакцию требуется проводить при высокой температуре (например, 180°C) в течение длительного периода времени.

С другой стороны, когда соединения алкоксидов диалкилолова (например, диалкоксиды диалкилолова) нагревают, например, при приблизительно 180°С, как известно, образуются такие варианты, как алкоксиды триалкилолова, содержащие три алкильные группы на одном атоме олова (см., например, Journal of the Chemical Society of Japan - Industrial Chemistry, 72, 7 (1969), 1543-1549). Хотя не совсем понятен тип реакции, по которой образуются алкоксиды триалкилолова, предполагается, что имеет место перенос алкильных групп, например, и упомянутые алкоксиды триалкилолова образуются в результате реакции диспропорционирования, как показано в следующей формуле (4), в случае, когда алкоксид диалкилолова представляет собой тетраалкилдиалкоксидистанноксан, или упомянутые варианты образуются в результате реакции диспропорционирования, как показано в следующей формуле (5) в случае, когда упомянутый алкоксид диалкилолова представляет собой диалкоксид диалкилолова:

(где R и R' представляют собой алкильные группы).

Согласно вышеупомянутой формуле (4) предполагается, что алкоксид триалкилолова и соединение моноалкила, содержащее одну алкильную группу на одном атоме олова, являются продуктами превращения тетраалкилдиалкоксидистанноксана. В действительности, так как авторы настоящего изобретения подтверждают, что алкоксиды триалкилолова и высококипящие компоненты олова являются вариантами превращения тетраалкилдиалкоксидистанноксанов, предполагается, что высококипящий компонент олова соответствует моноалкильным соединениям.

Однако структура высококипящего компонента олова, который, как полагают, соответствует моноалкильному соединению, еще не идентифицирована. Аналогично, хотя предполагается, что варианты, которые образуются из диалкоксидов диалкилолова, представляют собой алкоксиды триалкилолова и моноалкилолова, структура этих вариантов не установлена.

Образование таких вариантов подтверждается также, например, в способе получения диалкоксидов диалкилолова, как описано выше, и в способах получения эфиров угольной кислоты взаимодействием металлорганического соединения, содержащего диалкоксиды диалкилолова, с диоксидом углерода с последующим термическим разложением образовавшегося продукта присоединения.

Как известно, способность алкоксидов триалкилолова образовывать эфиры угольной кислоты при их получении взаимодействием соединений олова с диоксидом углерода, чрезвычайно низкая (см., например, Journal of American Chemical Society, 121 (1999), 3793). Кроме того, высококипящие компоненты олова, входящие в указанные варианты с неидентифицируемой структурой, также имеют чрезвычайно низкую способность образовывать эфиры угольной кислоты при их получении взаимодействием соединений олова с диоксидом углерода (см., например, опубликованную заявку на патент Японии № 2005-298433).

Таким образом, так как упомянутые варианты не проявляют активность в реакциях получения эфиров угольной кислоты взаимодействием соединений олова с диоксидом углерода, если в процессе получения указанных эфиров угольной кислоты образуются такие варианты, то варианты соединений алкоксидов диалкилолова с низкой активностью накапливаются при повторном использовании соединений алкоксидов алкилолова, что приводит к уменьшению содержания активной формы в виде соединений диалкоксидов диалкилолова, это, в свою очередь, вызывает уменьшение скорости реакции или снижение выхода эфиров угольной кислоты. В таких случаях, хотя обычно используют способ, включающий прибавление небольшого количества свежеприготовленных соединений алкоксидов диалкилолова для того, чтобы сделать скорость реакции и выход постоянными, если неактивные варианты остаются в системе во время продолжения прибавления свежих порций соединений алкоксидов диалкилолова, может возникнуть проблема накопления в реакционной смеси большого количества продуктов деградации с низкой активностью. Кроме того, даже в случае удаления из реакционной системы части смеси соединений алкоксидов алкилолова, содержащей варианты соединений алкоксидов диалкилолова, при прибавлении свежих порций соединений алкоксидов диалкилолова для сохранения постоянной концентрации соединения алкоксида диалкилолова в реакционной системе имеют место значительные проблемы, относящиеся к затратам и переработке отходов, поскольку наряду с удаленными вариантами соединений алкоксида диалкилолова, которые становятся отходами, также удаляется и отбрасывается в отходы активная форма в виде соединения алкоксида диалкилолова.

Ранее было предложено несколько путей решений вышеуказанных проблем (см., например, публикацию международной заявки WO 2004/014840 и публикацию международной заявки WO 2007/097388). Более конкретно в международной публикации WO 2004/014840 предлагается способ, применяемый в производстве эфиров угольной кислоты, использующий соединения алкоксидов диалкилолова, содержащих продукты термического денатурирования соединений алкоксидов диалкилолова, для разделения компонентов соединений триалкилолова и алкоксидов диалкилолова, содержащих указанные продукты термического денатурирования, чтобы не допустить их накопления в реакционной системе. Однако так как невозможно удалить высококипящие соединения олова неидентифицируемой структуры, которые содержатся в вариантах соединений алкоксидов диалкилолова, указанным способом невозможно полностью предотвратить накопление соединений алкоксидов диалкилолова.

Кроме того, авторы настоящего изобретения описали способ разделения и извлечения продуктов, образующихся через соединения алкоксидов диалкилолова в виде диалкоксидов диалкилолова, путем предварительного взаимодействия соединения алкоксида диалкилолова и вариантов соединений алкоксида диалкилолова, экстрагируемых из реакционной системы спиртом и/или эфиром угольной кислоты (см. публикацию международной заявки WO 2007/097388). Согласно данному способу проблема попадания в отходы активной формы в виде соединения алкоксида диалкилолова вместе с вариантами решена, в этом способе только варианты соединений алкоксидов диалкилолова могут быть селективно отброшены в отходы. Однако так как варианты соединений алкоксидов диалкилолова не могут быть использованы повторно, остаются нерешенными проблемы затрат и переработки отходов.

На данном уровне техники существует потребность в разработке технологии, которая позволит вариантам соединений алкоксида диалкилолова регенерировать в активную форму в виде соединений алкоксидов диалкилолова и повторно использовать их для получения эфиров угольной кислоты.

Реакции пропорционирования, которые являются обратными для вышеупомянутых реакций диспропорционирования, используют в качестве способа получения соединений диалкилолова из смесей двух типов соединений, имеющих различное число алкильных групп на атоме олова. Например, в случае галогенсодержащих соединений олова диалкилхлоролово образуется в результате реакции пропорционирования триалкилхлоролова и алкилтрихлоролова, как показано в приведенной ниже формуле (6) (см., например, опубликованную заявку на патент Японии № H4-81999):

Как описано ранее, реакции диспропорционирования, которые превращают соединения алкоксидов диалкилолова в алкоксиды триалкилолова и соединения моноалкилолова, являются выгодными в случае соединений алкоксидов олова, а обратная реакция пропорционирования происходит с трудом. В то же время, в случае галогенсодержащих соединений олова выгодны реакции пропорционирования, они позволяют получать диалкилдихлоролово из триалкилхлоролова и алкилтрихлоролова.

Ранее было предложено несколько способов получения алкилтрихлоролова (см., например, опубликованную заявку на патент Японии № H4-81999 и опубликованную заявку на патент Японии № S44-8489). Более конкретно опубликованная заявка на патент Японии № H4-81999 раскрывает способ получения алкилтрихлоролова реакцией пропорционирования, как описано выше, из смеси тетраалкилолова и тетрахлоролова в конкретном соотношении. Опубликованная заявка на патент Японии № S44-8489 раскрывает способ получения алкилтрихлоролова реакцией алкилстанноата с хлористым водородом. Однако до сих пор не известна технология получения соединений алкилтрихлоролова, использующая в качестве сырья варианты соединений алкоксидов диалкилолова.

С другой стороны, реакции, в которых ацетоксиды триалкилолова и оксиды ацетоксидов алкилолова образуются при взаимодействии соединений алкоксидов диалкилолова с уксусной кислотой, описаны как реакции вариантов соединений алкоксидов диалкилолова (см., например, Journal of American Chemical Society, 121 (1999), 3793). Однако до сих пор не известен способ получения соединений алкоксидов диалкилолова реакцией пропорционирования ацетоксидов триалкилолова и соединений оксидов ацетоксида алкилолова.

Исходя из вышеизложенного, так как еще не разработаны технологии для регенерирования вариантов соединений алкоксидов диалкилолова в активные формы в виде соединений алкоксидов диалкилолова, остаются нерешенными проблемы затрат и переработки отходов в процессе производства эфиров угольной кислоты.

Описание изобретения

Цель настоящего изобретения состоит в создании способа получения соединений диалкилолова, который позволит варианты соединений алкоксидов диалкилолова регенерировать в соединения алкоксидов диалкилолова, а также в создании способа применения указанных соединений диалкилолова в производстве эфиров угольной кислоты.

В результате проведения широкомасштабных исследований вышеуказанных проблем авторы настоящего изобретения обнаружили, что эти проблемы могут быть решены получением соединения диалкилолова взаимодействием кислоты и/или ангидрида кислоты с композицией, содержащей вариант соединения алкоксида диалкилолова, с последующим нагреванием соединения диалкилолова, и регенерированием указанного соединения диалкилолова в алкоксид диалкилолова и его использованием в получении эфиров угольной кислоты, что приводит к завершению настоящего изобретения. Другими словами, настоящее изобретение представляет собой изобретение, описанное ниже.

Настоящее изобретение относится к:

[1] способу получения соединения диалкилолова, включающему

реакцию перераспределения алкильных групп и/или реакцию деалкилирования композиции дезактивированной формы катализатора на основе диалкилолова, которая образуется при получении сложноэфирного производного с использованием катализатора на основе диалкилолова,

[2] способу по пункту [1], где катализатор на основе диалкилолова представляет собой соединение по меньшей мере одного типа, выбранное из группы, состоящей из соединения диалкилолова, представленного формулой (1), и тетраалкилдистанноксана, представленного формулой (2):

(где каждый из R1 и R2 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X1 и X2 независимо представляет собой заместитель по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена,

a и b независимо представляют собой целое число от 0 до 2 и a+b=2, и

c и d независимо представляют собой целое число от 0 до 2 и с+d=2;

(где каждый из R3, R4, R5 и R6 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X3 и X4 независимо представляет собой заместитель по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена, и

e, f, g и h независимо представляют собой целое число от 0 до 2, e+f=2 и g+h=2),

[3] способу по пункту [2], где в формулах (1) и (2) количество атомов углерода, составляющих X1, X2, X3 и X4, представляет собой число, выбранное из целых чисел от 0 до 12,

[4] способ по любому одному из пунктов [1]-[3], где сложноэфирное производное представляет собой соединение по меньшей мере одного типа, выбранное из группы, состоящей из эфира карбоновой кислоты, эфира карбаминовой кислоты и изоцианата,

[5] способу по пункту [4], где эфир карбоновой кислоты представляет собой эфир угольной кислоты,

[6] способу по пункту [5], где композиция дезактивированной формы катализатора на основе диалкилолова представляет собой композицию, содержащую дезактивированную форму катализатора на основе диалкилолова, образованную на стадии получения эфира угольной кислоты из диоксида углерода и катализатора на основе диалкилолова,

[7] способу по любому одному из пунктов [1]-[6], где дезактивированная форма катализатора на основе диалкилолова представляет собой дезактивированную нагреванием форму катализатора на основе диалкилолова,

[8] способу по любому одному из пунктов [1]-[7], где дезактивированная форма катализатора на основе диалкилолова представляет собой дезактивированную форму катализатора на основе диалкилолова, образованную из катализатора на основе диалкилолова, в котором число алкильных групп, связанных с одним атомом олова, отличается от числа алкильных групп, связанных с одним атомом олова в катализаторе на основе диалкилолова,

[9] способу по любому одному из пунктов [1]-[8], где по меньшей мере один тип дезактивированной формы катализатора на основе диалкилолова представляет собой соединение триалкилолова,

[10] способу по любому одному из пунктов [1]-[9], где дезактивированная форма катализатора на основе диалкилолова представляет собой соединение триалкилолова и оловоорганическое соединение, содержащее атом олова, демонстрирующее химический сдвиг от -220 до -610 м.д. относительно тетраметилолова, при анализе 119Sn-ЯМР в растворе дейтерированного хлороформа,

[11] способу по пункту [10], дополнительно включающему разделение композиции дезактивированной формы катализатора на основе диалкилолова на композицию, содержащую соединение триалкилолова и композицию, содержащую атом олова, демонстрирующую химический сдвиг от -220 до -610 м.д. относительно тетраметилолова, при анализе 119Sn-ЯМР в растворе дейтерированного хлороформа,

[12] способу по пункту [11], где стадию разделения проводят по меньшей мере одним способом, выбранным из группы, состоящей из разделения дистилляцией, разделения экстрагированием и мембранного разделения,

[13] способу по любому одному из пунктов [1]-[12], где в случае, когда pKa кислоты, сопряженной с по меньшей мере одним заместителем из групп, связанных с атомами олова дезактивированной формы катализатора на основе диалкилолова и не являющихся алкильными группами, образующейся из катализатора на основе диалкилолова, составляет 0-6,8,

реакция перераспределения алкильных групп представляет собой реакцию перераспределения алкильных групп, в которой оловоорганическое соединение, содержащее связь Sn-Y (где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8), подвергают термообработке,

[14] способу по любому одному из пунктов [1]-[12], где в случае, когда pKa кислоты, сопряженной с по меньшей мере одним заместителем из групп, связанных с атомами олова дезактивированной формы катализатора на основе диалкилолова и не являющихся алкильными группами, образованной из катализатора на основе диалкилолова, составляет 6,8-25,

реакция перераспределения алкильных групп включает стадии:

(A) получения оловоорганического соединения, содержащего связь Sn-Y, путем замещения всех или части лигандов дезактивированной формы (за исключением алкильной группы, образующейся из катализатора на основе диалкилолова и связанной с оловом) заместителем Y; и

(B) термической обработки органического соединения, содержащего связь Sn-Y, и полученного на стадии (A) (где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8),

[15] способу по пункту [14], в котором стадия (A) включает получение оловоорганического соединения, содержащего связь Sn-Y, в котором три алкильные группы и одна группа Y, образованная из кислоты и/или ангидрида кислоты, связаны с одним атомом олова и оловоорганического соединения, содержащего связь Sn-Y, в котором одна алкильная группа и несколько групп Y, образованных из кислоты и/или ангидрида кислоты, причем число групп Y выбрано из целых чисел от 1 до 3, связаны с одним атомом олова путем взаимодействия композиции дезактивированной формы катализатора на основе диалкилолова с кислотой, представленной ниже формулой (3), и/или ангидридом кислоты, представленным ниже формулой (4):

(где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8);

(где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8, а О представляет собой атом кислорода),

[16] способу по пункту [15], где стадию (A) проводят при удалении воды, образующейся во время использования кислоты на стадии (A), по меньшей мере одним способом, выбранным из группы, состоящей из удаления воды дегидратирующим агентом, разделением дистилляцией и мембранного разделения,

[17] способу по любому одному из пунктов [1]-[12], в котором реакция деалкилирования включает образование связи Sn-Y путем элиминирования алкильной группы из дезактивированной формы катализатора на основе диалкилолова (где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8),

[18] способу по любому одному из пунктов [9]-[12], где в реакции деалкилирования образуется одна связь Sn-Y элиминированием одной алкильной группы из соединения триалкилолова, содержащегося в композиции дезактивированной формы катализатора на основе диалкилолова, и получают соединение диалкилолова, содержащее связь Sn-Y (где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8),

[19] способу по пункту [18], где стадия образования связи Sn-Y включает взаимодействие соединения триалкилолова, содержащегося в композиции дезактивированной формы катализатора на основе диалкилолова с кислотой, представленной формулой (5), и/или ангидридом кислоты, представленным формулой (6):

(где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8);

(где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8, а О представляет собой атом кислорода),

[20] способу по пункту [15] или [19], где кислота и/или ангидрид кислоты представляют собой жидкость или газ при 60°C,

[21] способу по пункту [20], где кислота представляет собой галогеноводородную кислоту,

[22] способу по пункту [20], где кислота представляет собой галогенид водорода,

[23] способу по пункту [20], где кислота представляет собой органическую кислоту,

[24] способу по пункту [23], где кислота представляет собой карбоновую кислоту,

[25] способу по пункту [20], где стандартная температура кипения ангидрида кислоты составляет 300°С или ниже,

[26] способу по пункту [25], где ангидрид кислоты представляет собой уксусный ангидрид или малеиновый ангидрид,

[27] способу по любому одному из пунктов [1]-[26], где соединение диалкилолова содержит две алкильные группы, образованные из катализатора на основе диалкилолова и связанные с одним атомом олова, и одновременно содержит по меньшей мере одну связь Sn-Y (где Y представляет собой Y, для которого pKa сопряженной с Y кислоты, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8),

[28] способ по пункту [27], где соединение диалкилолова представляет собой соединение по меньшей мере одного типа, выбранное из группы, состоящей из соединения диалкилолова, представленного формулой (7), и соединения тетраалкилдистанноксана, представленного формулой (8):

(где R7 и R8 представляют собой группу, образованную из катализатора на основе диалкилолова, и независимо представляют собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

Y представляет собой группу, образованную из катализатора на основе диалкилолова, или группу, образованную из кислоты (HY) и/или ангидрида кислоты (YOY), pKa кислоты, сопряженной с Y, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8, и

i и j независимо представляют собой целое число от 0 до 2 и i+j=2);

(где R9, R10, R11 и R12 представляют собой группу, образованную из катализатора на основе диалкилолова, и независимо представляют собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

Y представляет собой группу, образованную из катализатора на основе диалкилолова, или группу, образованную из кислоты (HY) и/или ангидрида кислоты (YOY), pKa кислоты, сопряженной с Y, в виде HY, где атом водорода присоединен к Y, составляет 0-6,8, и

k, l, m и n представляют собой соответственно целые числа от 0 до 2, k+l=2 и m+n=2),

[29] способу по любому одному из пунктов [14]-[26], дополнительно включающему после стадии (B) стадию (I) замещения заместителя Y соединения диалкилолова, содержащего связь Sn-Y, заместителем, по меньшей мере одного типа, выбранным из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена,

[30] способу по пункту [29], где стадия (I) включает:

стадию (I-1) получения композиции, содержащей оксид диалкилолова, гидролизом соединения диалкилолова, содержащего связь Sn-Y, путем прибавления водного раствора щелочи; и

стадию (I-2) взаимодействия композиции, содержащей оксид диалкилолова, полученной на стадии (I-1), с соединением, по меньшей мере одного типа, выбранным из группы, состоящей из спирта, карбоновой кислоты и галогенида водорода, с последующим удалением компонента, содержащего образовавшуюся воду, из реакционной жидкости,

[31] способу по пункту [30], где водный раствор щелочи представляет собой по меньшей мере один тип водного раствора щелочи, выбранный из группы, состоящей из водного раствора гидроксида натрия, водного раствора гидроксида калия, водного раствора карбоната калия и водного раствора карбоната натрия.

[32] способу по пункту [30] или [31], где стадия (I-2) представляет собой стадию, на которой соединение, взаимодействующее с композицией, содержащей оксид диалкилолова, представляет собой спирт, и получают соединение алкоксида диалкилолова,

[33] способу по пункту [6], где стадия получения эфира угольной кислоты включает:

стадию (1) получения реакционной жидкости, содержащей эфир угольной кислоты, путем взаимодействия диоксида углерода и катализатора на основе диалкилолова;

стадию (2) получения остаточной жидкости путем отделения эфира угольной кислоты от реакционной жидкости;

стадию (3) регенерирования катализатора на основе диалкилолова путем взаимодействия остаточной жидкости со спиртом и удаления образовавшейся воды из системы; и

стадию (4) рециклинга катализатора на основе диалкилолова, полученного на стадии (3), на стадии (1),

[34] способу по пункту [33], где стадию регенерирования катализатора на основе диалкилолова из композиции дезактивированной формы катализатора на основе диалкилолова, образующейся во время стадии получения эфира угольной кислоты реакцией перераспределения алкильных групп и/или реакцией деалкилирования, проводят после стадии (2) и/или стадии (3), и регенерированный катализатор на основе диалкилолова подвергают рециклингу и повторно используют в качестве катализатора на основе диалкилолова на стадии (4) и/или на стадии (1),

[35] способу по пункту [34], где стадия регенерирования катализатора на основе диалкилолова представляет собой стадию, на которой используют стадии по любому одному из пунктов [29]-[32], и где заместитель Y представляет собой ацилоксигруппу,

[36] способу по любому одному из пунктов [1] и [33]-[35], где катализатор на основе диалкилолова представляет собой соединение алкоксида диалкилолова,

[37] способу по любому одному из пунктов [33]-[36], где катализатор на основе диалкилолова представляет собой соединение алкоксида диалкилолова, и X1, X2, X3 и X4 соединения, представленного формулой (1) и/или формулой (2), представляют собой алкоксигруппы:

(где каждый из R1 и R2 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X1 и X2 независимо представляет собой заместитель, по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена,

a и b независимо представляют собой целое число от 0 до 2 и a+b=2, и

c и d независимо представляют собой целое число от 0 до 2 и c+d=2;

(где каждый из R3, R4, R5 и R6 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X3 и X4 независимо представляет собой заместитель, по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена,

e, f, g и h представляют собой соответственно целое число от 0 до 2, e+f=2 и g+h=2),

[38] способу по пункту [37], где катализатор на основе диалкилолова представляет собой алкоксид диалкилолова, и R1, R2, R3, R4, R5 и R6 соединения, представленного формулой (1) и/или формулой (2), одновременно представляют собой н-бутильную группу или н-октильную группу,

[39] способу по любому одному из пунктов [33]-[38], где спирт представляет собой спирт, представленный формулой (9):

(где R13 представляет собой линейную или разветвленную алкильную группу, содержащую 4-8 атомов углерода).

Согласно настоящему изобретению полезный компонент в виде соединения диалкилолова может быть получен из композиции, содержащей варианты соединений алкоксидов диалкилолова, и соединение диалкилолова может быть повторно использовано для получения эфира угольной кислоты после превращения в соединения алкоксида диалкилолова, это делает настоящее изобретение чрезвычайно полезным для промышленных целей.

Краткое описание чертежей

На фиг.1 представлена схема способа получения эфиров угольной кислоты, усовершенствованного в результате объединения со способом получения по варианту осуществления настоящего изобретения.

На фиг.2 представлена схема, показывающая устройства для непрерывного производства эфиров угольной кислоты, использующего композицию катализатора на основе диалкилолова, в настоящем варианте осуществления.

На фиг.3 показан спектр 119Sn-ЯМР три-н-октил(3-метилбутилокси)олова, отделенного на стадии (23-1) примера 23 настоящего изобретения.

На фиг.4 показан спектр 119Sn-ЯМР высококипящего компонента от -240 до -605 м.д., отделенного на стадии (23-1) примера 23 настоящего изобретения.

На фиг.5 показан спектр 119Sn-ЯМР три-н-октилацетоксиолова, полученного на стадии (23-2) примера 23 настоящего изобретения.

На фиг.6 показан спектр 119Sn-ЯМР смеси, содержащей н-октилтриацетоксиолово, полученной на стадии (23-2) примера 23 настоящего изобретения.

На фиг.7 показан спектр 119Sn-ЯМР раствора, содержащего 1,1,3,3-тетра-н-октил-1,3-бис(3-метилбутилокси)дистанноксан, полученного на стадии (23-4) примера 23 настоящего изобретения.

Описание цифровых обозначений:

101, 107: дистилляционная колонна;

102: реакционный сосуд колонного типа;

103, 106: тонкопленочный испаритель;

104: автоклав;

105: резервуар для декарбонизации;

111, 112, 117: ребойлер;

121, 123, 126, 127: конденсатор;

1, 9: линия подачи;

2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14: линия переноса;

3, 15: линия возврата;

16: линия экстрагирования;

17: линия подачи.

Предпочтительный вариант осуществления изобретения

Ниже приводится подробное объяснение предпочтительных вариантов осуществления настоящего изобретения (далее - варианты осуществления). К тому же настоящее изобретение не ограничено следующими ниже вариантами осуществления, оно, конечно, может быть осуществлено, не выходя за рамки сущности и объема изобретения.

Сначала предоставляется пояснение соединений, используемых в вариантах осуществления настоящего изобретения.

Катализатор на основе диалкилолова

Используемые в вариантах осуществления настоящего изобретения термины «соединение диалкилолова», «катализатор на основе диалкилолова» и «диалкилолово» относятся к оловоорганическим соединениям, в которых две алкильные группы связаны с одним атомом олова.

Термин «катализатор на основе диалкилолова» в вариантах осуществления настоящего изобретения относится к оловоорганическому соединению, которое проявляет каталитическую активность в получении соединений сложных эфиров и в которых две алкильные группы связаны с одним атомом олова.

Примеры указанного катализатора на основе диалкилолова включают соединения, выбранные из соединения, по меньшей мере одного типа, выбранного из группы, состоящей из соединения диалкилолова, представленного следующей формулой (18), и соединения тетраалкилдистанноксана, представленного следующей формулой (19):

(где каждый из R1 и R2 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X1 и X2 независимо представляет собой заместитель по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена,

a и b представляют собой соответственно целое число от 0 до 2 и a+b=2, и

c и d представляют собой соответственно целое число от 0 до 2 и c+d=2);

(где каждый из R3, R4, R5 и R6 независимо представляет собой линейную или разветвленную алкильную группу, содержащую 1-12 атомов углерода,

каждый из X3 и X4 независимо представляет собой заместитель по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигруппы, ацилоксигруппы и атома галогена, и

e, f, g и h представляют собой соответственно целое число от 0 до 2, e+f=2 и g+h=2).

Примеры R1 и R2 в катализаторе на основе диалкилолова, представленного формулой (18) в вариантах осуществления настоящего изобретения, и R3, R4, R5 и R6 в тетраалкилдистанноксане, представленном формулой (19) в вариантах осуществления настоящего изобретения, включают алкильные группы в виде алифатических углеводородных групп, в которых число атомов углерода, входящих в состав указанных групп, представляет собой число, выбранное из целых чисел от 1 до 12, такие группы как метил, этил, пропил (изомеры), бутил (изомеры), пентил (изомеры), гексил (изомеры), гептил (изомеры), октил (изомеры), нонил (изомеры), децил (изомеры), додецил (изомеры) и им подобные. Предпочтительные примеры включают линейные или разветвленные алкильные группы, в которых число атомов углерода, входящих в состав указанных групп, представляет собой число, выбранное из целых чисел от 1 до 8, и хотя можно использовать катализатор на основе диалкилолова, в котором алкильные группы представляют собой группы, в которых число атомов углерода, составляющих указанные группы, может не входить в указанный интервал, в таком случае, возможно, снижение текучести и уменьшение производительности. Более предпочтительные примеры алкильных групп включают н-бутильные группы или н-октильные группы, принимая во внимание легкость получения в промышленности.

X1 и X2 катализатора на основе диалкилолова, представленного формулой (18) в вариантах осуществления настоящего изобретения, и X3 и X4 соединения тетраалкилдистанноксана, представленного формулой (19) в вариантах осуществления настоящего изобретения, представляют собой заместитель по меньшей мере одного типа, выбранный из группы, состоящей из алкоксигрупп, ацилоксигрупп и атомов галогена, и в случае, когда указанная группа представляет собой алкоксигруппу и/или ацилоксигруппу, число атомов углерода, составляющих указанную группу, предпочтительно является числом, выбранным из целых чисел от 0 до 12. Примеры таких групп включают алкоксигруппы, состоящие из линейны