Микрооптическая система безопасности и воспроизведения изображения
Иллюстрации
Показать всеПредложенная группа изобретений относится к микрооптическим системам увеличения для подтверждения подлинности объектов повседневного пользования. Данная группа изобретений направлена на обеспечение возможности использования предложенных технических решений на объектах повседневного пользования, которые подвергаются многократным механическим воздействиям и деформациям, без разрушения и ухудшения характеристик микрооптической системы искусственного увеличения с обеспечением высокого качества увеличения и получения четкого изображения защитных микроструктурированных элементов. Предложенные микрооптические системы искусственного увеличения включают в себя матрицу пиктограмм и матрицу фокусирующих элементов пиктограмм (микролинз), где матрица фокусирующих элементов пиктограмм и матрица пиктограмм расположены по отношению одна к другой таким образом, чтобы обеспечивалось по меньшей мере одно искусственно увеличенное изображение, имеющее эффект движения. Каждая из указанных матриц пиктограмм и матриц фокусирующих элементов пиктограмм обладают своими отдельными конструктивными особенностями, например матрица фокусирующих элементов пиктограмм может иметь толщину менее 50 микрон и/или эффективный диаметр основания фокусирующих элементов пиктограмм может составлять менее 50 микрон. 21 н. и 82 з.п. ф-лы, 33 ил.
Реферат
Перекрестные ссылки к родственным заявкам
Эта заявка свидетельствует о преимуществе и предоставляет приоритет Предварительной заявке на патент США №60/524281, поданной 21 ноября 2003 года, Предварительной заявке на патент США №60/538392, поданной 22 января 2004 года, и Предварительной заявке на патент США №60/627234, поданной 12 ноября 2004 года, каждая из которых, будучи разрешенной, включена в Описание изобретения в полном объеме путем ссылок.
Область изобретения
Это изобретение касается искусственной увеличительной микрооптической системы, которая в воплощении, приведенном в качестве примера, выполнена как полимерная пленка. Необычные оптические эффекты, полученные благодаря разным вариантам воплощения изобретения, могут использоваться в качестве устройства безопасности для открытого и скрытого засвидетельствования действительности валюты, документов и продуктов, а также для визуального наблюдения за продуктами, упаковками, полиграфическими материалами, товарами потребления.
Уровень техники
Различные оптические материалы используются для установления подлинности валюты, документации, чтобы идентифицировать и отличить настоящие продукты от поддельных и обеспечить визуальное наблюдение за производимыми изделиями и их упаковкой. Примерами могут служить топографические изображения и другие системы изображения, включительно с линзообразными структурами и матрицами сферических микролинз. Голографические изображения все чаще используются для кредитных карточек, водительских прав и носимых на одежде этикеток (бейджей).
Пример линзообразной структуры для обеспечения защиты документа представлен в Патенте США 4892336 Kaule et al. касательно защитной нити, которая включается в документ, чтобы обеспечить меры против фальсификации.
Защитная нить является прозрачной и имеет печатный узор на одной стороне, на противоположной стороне ступенчатая линзообразная структура (на основе линзы Френеля) скоординирована с печатным узором. Линзообразная структура описывается как состоящая из множества параллельных цилиндрических линз или, в альтернативном варианте, сферических или ячеистых линз.
Патент США 5712731 Drinlwater et al. описывает устройство безопасности, включающее в себя матрицу микроизображений (пиктограмм) вместе с матрицей, состоящей в основном из сферических микролинз. Эти линзы также могут быть астигматическими. Каждая из линз, как правило, имеет размеры 50-250 микрон с типичным фокусным расстоянием в 200 микрон.
Все эти варианты воплощения имеют один и тот же недостаток. Они имеют относительно толстую структуру, которая не подходит для использования при проверке подлинности документов. Используемые в данных вариантах цилиндрические или сферические линзы обеспечивают узкое поле зрения, что приводит к размытому изображению и требует точной и сложной настройки фокальной точки линз относительно соответствующих изображений. Вдобавок, они проявили себя как особо эффективные в качестве мер безопасности или мер против фальсификации.
Из-за этого и других недостатков в промышленности существует необходимость в защищенных и визуально уникальных оптических материалах, позволяющих проводить открытое установление подлинности валюты, документов, промышленных изделий и продуктов, и в оптических материалах, обеспечивающих визуальное увеличение промышленных изделий, продуктов и упаковки.
Описание изобретения
Предложенная группа изобретений направлена на обеспечение возможности использования предложенных технических решений на объектах повседневного пользования, которые подвергаются многократным механическим воздействиям и деформациям, без разрушения и ухудшения характеристик микрооптической системы искусственного увеличения с обеспечением высокого качества увеличения и получения четкого изображения защитных микроструктурированных элементов.
Настоящее описание относится к пленочному материалу, использующему обычную двухмерную матрицу нецилиндрических линз, для увеличения микроизображений, называемых здесь пиктограммами или иконками (графическими образами), и формирования искусственно увеличенного изображения благодаря объединенной работе множества индивидуальных линзовых систем изображения или пиктограммных систем изображения. Искусственно увеличенные изображения и окружающий их фон могут быть либо бесцветными, либо цветными, и либо фон, либо изображения, либо и то и другое вместе могут быть прозрачными, просвечивающимися, пигментированными, флуоресцирующими, фосфоресцирующими, отображать оптически различные цвета, металлизированными или обладать значительными отражающими способностями. Материал, отображающий цветные изображения на прозрачном или окрашенном фоне, особенно подходит для комбинированного использования с соответствующей печатной информацией. Когда фрагмент такого материала накладывается на напечатанную информацию, то напечатанная информация и изображения видны одновременно, в пространственной или динамической связи друг с другом. Материалы такого рода также могут подкладываться под печатную информацию, т.е. иметь печать, нанесенную на верхнюю поверхность (линзу) данного материала. В качестве альтернативы, отображающий цветные изображения материал (любого цвета, включительно с белым и черным) на полупрозрачном или в значительной степени непрозрачном фоне любого цвета, особенно подходит для автономного использования или с нанесенной на него печатной информацией, а не в комбинации с расположенной ниже печатной информацией.
Достигнутые размеры искусственного увеличения могут регулироваться благодаря выбору различных факторов, включая градус наклона между осями симметрии линз и осями симметрии матрицы пиктограмм. Стандартные периодические матрицы обладают осями симметрии, определяющими линии, которые структура могла отразить в пространство без изменения базовой геометрии самой структуры и которых, для идеальной матрицы, существует бесконечное количество. Квадратная матрица, например, может отражаться вокруг любой диагонали или квадрата без изменения относительной ориентации матрицы: если стороны квадратов выровнены согласно осям х и у в плоскости, тогда эти стороны также будут совмещены с этими же осями, после отражения, принимая во внимание то, что все стороны являются идентичными и неразличимыми.
Вместо зеркального отражения квадратной матрицы матрица может быть повернута на угол, равный углу между осями симметрии одинакового типа. В случае квадратной матрицы матрица может быть повернута на угол 90 градусов, угол между диагоналями, чтобы получить ориентацию матрицы, которая не отличается от оригинальной матрицы. Подобно вышеизложенному, матрица правильных шестиугольников может отражаться или поворачиваться вокруг осей симметрии, включая "диагонали" шестиугольников (линии, соединяющие противоположные вершины) или "срединные делители" (линии, соединяющие центральные точки противоположных поверхностей шестиугольника). Угол между осями симметрии обоих типов, равный 60 градусам, приводит к ориентации матрицы, которая не отличается от оригинальной ориентации.
Если матрица линз и матрица пиктограмм первоначально согласованы с их плоскостными размерами, определяющими их соответствующую плоскость х-у, одна из осей симметрии выбирается для представления оси х в первой матрице, соответствующий тип оси симметрии (например, диагональная ось симметрии) выбирается для представления оси х во второй матрице, с двумя матрицами, разделенными, по сути, равномерным расстоянием в направлении оси z, тогда в данном случае матрицы имеют нулевой угол наклона, если оси х матрицы кажутся параллельными друг другу и если матрица просматривается с направления оси z. В случае шестиугольных матриц поворот матрицы на угол в 60 градусов или многократный поворот на угол в 60 градусов снова выравнивает матрицу, т.е. не существует угла наклона, как и в случае отсутствия наклона при повороте матрицы на 90 градусов или многократного поворота на угол в 90 градусов в случае с квадратной матрицей. Любые угловые расхождения между осями х, отличающиеся от этих "поворотов с нулевым углом наклона", называются углами наклона. Малый угол наклона, например 0,06 градуса, может создать значительное увеличение, более чем в 1000 раз, а большой угол наклона, например 20 градусов, создает значительно меньшее увеличение, потенциально в 1 раз. Другие факторы, такие как относительные масштабы двух матриц и фокусное расстояние линз, могут воздействовать как на степень искусственного увеличения изображения, так и на степень его поворота, ортопараллактическое движение и очевидную пространственную глубину.
Существует множество отчетливых визуальных эффектов, которые можно получить благодаря настоящему материалу (далее "Unison" для материала в общем, или по названиям "Unison Motion", "Unison Deep", "Unison SuperDeep", "Unison Float", "Unison SuperFloat", "Unison Levitate", "Unison Morph" и "Unison 3-D" для материала Unison, производящего данные эффекты) или его различным вариантам исполнения, производящим каждый из вышеизложенных эффектов, в общем описываемых следующим образом.
Unison Motion представляет эффект, показывающий ортопараллактическое движение (ОРМ): когда материал наклоненный, то изображения движутся в направлении наклона перпендикулярно ожидаемому при нормальном параллаксе направлению. Unison Deep и Unison SuperDeep представляют изображения, лежащие в пространственной плоскости, как правило, более глубокой, чем сама толщина материала. Unison Float и Unison SuperFloat представляют изображения, лежащие в пространственной плоскости, находящейся выше поверхности материала на некотором расстоянии; и Unison Levitate представляет изображение, превращающееся от Unison Deep или Unison SuperDeep до Unison Float или Unison SuperFloat по мере поворота материала на данный угол (т.е. 90 градусов), и наоборот, по мере поворота материала на тот же угол. Unison Morph представляет изображения, меняющие форму, вид, размер по мере поворота материала или рассмотрения его под разными углами зрения. Unison 3-D представляет изображения, показывающие большую трехмерную структуру, например изображение лица.
Многочисленные эффекты Unison могут объединяться в одной пленке, например в пленке, содержащей многочисленные плоскости изображения Unison Motion, которые могут отличаться по форме, цвету, направлению движения и увеличению. Иная пленка может содержать плоскость изображения Unison Deep и плоскость изображения Unison Deep, в то же время как другая пленка может быть сконструирована для объединения уровней "Unison Motion", "Unison Deep", "Unison Float", в одном и том же цвете или в нескольких цветах, изображений, имеющих одинаковые или различные графические элементы. Цвет, дизайн графики, оптические эффекты, увеличение и другие визуальные элементы многочисленных плоскостей изображения являются в значительной степени независимыми; с некоторыми исключениями, плоскости данных визуальных элементов, могут объединяться в произвольном порядке.
Для многих вариантов применения в области защиты валюты, документов и продуктов желательно иметь общую толщину пленки менее 50 микрон (также обозначаемую в данном документе как µ или um), например, менее 45 микрон, и, в качестве дальнейших примеров, в диапазоне от 10 до 40 микрон. Этого, например, можно достичь благодаря использованию фокусирующих элементов с эффективным базовым диаметром менее 50 микрон, и в последующих примерах менее 30 микрон, и далее в диапазоне от 10 до 30 микрон. В качестве последующего примера может использоваться фокусирующий элемент с фокусным расстоянием менее 40 микрон, далее с фокусным расстоянием в диапазоне от 10 до 30 микрон. В особенном примере может использоваться фокусирующий элемент с эффективным базовым диаметром менее 35 микрон и с фокусным расстоянием в 30 микрон. В качестве альтернативы, гибридный преломляющий/дифракционный вариант воплощения может быть реализован при толщине в 8 микрон.
Таким образом, пленка в значительной степени защищена от подделки из-за ее сложной многослойной структуры и из-за ее высоких характеристик в области форматного соотношения, не поддающихся воспроизведению с использованием широкодоступных производственных систем.
Таким образом, настоящая система предоставляет микрооптическую систему, в основном в виде полимерной пленки, имеющей толщину, которая при рассмотрении невооруженным взглядом в отраженном или переданном свете производит одно или более изображений, которые:
i. показывают ортопараллактическое движение ("Unison Motion");
ii. в пространственной плоскости кажутся более глубокими, чем толщина самой полимерной пленки ("Unison Deep" и "Unison SuperDeep");
iii. кажутся лежащими в пространственной плоскости над поверхностью полимерной пленки ("Unison Float" и "Unison SuperFloat");
iv. превращаются между пространственной плоскостью, которая глубже чем толщина самой полимерной пленки, и пространственной плоскостью над поверхностью полимерной пленки при азимутальном повороте пленки ("Unison Levitate");
v. трансформируются из одной формы, вида, размера, цвета (или некоторой комбинации данных свойств) - в другую форму, вид, размер, цвет (или некоторую комбинацию данных свойств) ("Unison Morph"); и/или
vi. кажутся реалистически трехмерными ("Unison 3-D").
Более конкретно, в данном описании представлена микрооптическая система искусственного увеличения и способ выполнения искусственного увеличения, включающий в себя:
(а) одну или более оптических прокладок;
(б) микроизображение, состоящее из периодической планарной (плоской) матрицы множества пиктограмм, с осью симметрии рядом, по меньшей мере, с одной из ее планарных осей симметрии и расположенной на или следом за оптической прокладкой; и
(в) периодическую планарную (плоскую) матрицу фокусирующих элементов пиктограмм, с осью симметрии рядом, по меньшей мере, с одной из ее планарных осей симметрии, и данная ось симметрии является той же самой осью симметрии, как и в случае с планарной матрицей пиктограмм (микроизображений), и каждый фокусирующий элемент является или многозонным фокусирующим элементом с многоугольной базой, т.е. линзой, и обеспечивает расширенное поле зрения по ширине соответствующей пиктограммы таким образом, что периферийные края соответствующей пиктограммы не выпадают из поля зрения, или асферическим фокусирующим элементом с эффективным диаметром менее 50 микрон.
Данная система может включить один или более вышеупомянутых эффектов. Обеспечивается способ для выборочного включения вышеупомянутых эффектов в систему.
Данное описание, в дальнейшем, представляет устройство защиты, подходящее для, по крайней мере, частичного внедрения в или на, или для использования на, или вместе с документом, для которого необходима защита, этикеткой, отрывной лентой, устройством индикации несанкционированного вмешательства, опечатывающим устройством, или другого определения подлинности защищенного устройства или средства, что содержит, минимум, одну микрооптическую систему, как определено выше. Более конкретно, данное описание представляет средство защиты документа и способ выполнения защиты, что включает в себя:
(а) одну или более оптических прокладок;
(б) микроизображение, что состоит из периодической планарной (плоской) матрицы множества пиктограмм, с осью симметрии рядом, по меньшей мере, с одной из ее планарных осей симметрии, и расположенной на или следом за оптической прокладкой; и
(в) периодическую пленарную (плоскую) матрицу фокусирующих элементов пиктограмм, с осью симметрии рядом, по меньшей мере, с одной из ее планарных осей симметрии, и данная ось симметрии является той же самой осью симметрии, как и в случае с планарной матрицей пиктограмм (микроизображений), и каждый фокусирующий элемент является либо многозонным фокусирующим элементом с многоугольной базой, т.е. линзой, и обеспечивает расширенное поле зрения по ширине соответствующей пиктограммы таким образом, что периферийные края соответствующей пиктограммы не выпадают из поля зрения, либо асферическим фокусирующим элементом с эффективным диаметром менее 50 микрон.
Дополнительно, данное описание представляет устройство или средство визуального увеличения, которое включает в себя минимум одну микрооптическую систему, описанную выше и обладающую вышеописанными эффектами, для визуального увеличения покрытия, защитного слоя, документов, печатных материалов, произведенных товаров, упаковки, штрихкодов, публикаций, рекламных лозунгов, спортивных товаров, финансовых документов и платежных карточек и других товаров.
Также представлен документ или этикетка безопасности, имеющие минимум одно средство защиты, как определено выше, по меньшей мере, частично внедренное в данный документ или этикетку или смонтированное на нем/ней.
Другие характеристики и преимущества данного описания будут очевидны для обычных пользователей из последующего детального описания и соответствующих чертежей.
Другие системы, средства, способы, характеристики и преимущества станут очевидными для опытных специалистов при изучении последующих чертежей и детального описания. Все такие дополнительные системы, средства, способы, характеристики и преимущества намеренно включены в данное описание, в рамках соответствующего писания, и защищены сопутствующей формулой изобретения.
Если только не определено иначе, все использованные здесь научные и технические термины имеют общепринятый смысл для обычных специалистов, в области, которой принадлежит данное изобретение. Все публикации, патентные заявки, патенты и другие ссылки, приведенные здесь, включены в их полной совокупности. В случае недоразумений следует обратиться к настоящей спецификации, включающей с приведенные определения. Дополнительно, материалы, способы и примеры являются только иллюстративными, и не следует ограничиваться только ими.
Краткое описание графических материалов
Многие аспекты описания понимаются лучше при ссылках на чертежи. Компоненты данных фигур не обязательно имеют реальный масштаб, а просто ясно иллюстрируют принципы данного изобретения. Более того, на чертежах номера ссылок обозначают соответствующие части в нескольких обзорах.
Фиг.1а - является поперечным сечением микрооптической системы, представляющей один из вариантов реализации или воплощения данного изобретения, обеспечивающего ортопараллактическое движение изображений системы.
Фиг.1б является изометрическим видом в разрезе варианта воплощения на Фиг.1а.
Фиг.2а описывает эффект ортопараллактического движения искусственного изображения варианта воплощения в соответствии с Фиг.1а, б.
Фиг.2б-в демонстрируют визуальные эффекты Deep и Float вариантов воплощений настоящей системы.
Фиг.2 г-е демонстрируют визуальные эффекты, полученные благодаря вращению Levitate варианта воплощения настоящей системы.
Фиг.3а-и являются горизонтальными проекциями, демонстрирующими различные варианты воплощения, с коэффициентами заполнения различных структур данной системы симметричных двумерных линзовых матриц.
Фиг.4 является графиком, демонстрирующим различные комбинации эффектов Deep, Unison Float и Levitate воплощений, созданных благодаря вариациям соотношения период элемента/ период линзы.
Фиг.5а-в являются горизонтальными проекциями, демонстрирующими, как искусственное увеличение пиктограмм (микроизображений) может контролироваться благодаря изменениям относительного угла между осями линзовой матрицы и матрицы пиктограмм данной системы.
Фиг.6а-в являются горизонтальными проекциями, демонстрирующими вариант воплощения эффекта трансформации искусственно увеличенных изображений данной системы.
Фиг.7а-в являются поперечными сечениями, демонстрирующими различные варианты воплощения уровня пиктограмм данного изобретения.
Фиг.8а-б являются горизонтальными проекциями, демонстрирующими и "положительное", и "отрицательное" воплощение элементов пиктограммы.
Фиг.9 является поперечным сечением, демонстрирующим вариант воплощения многоуровневого материала для создания областей искусственно увеличенного изображения, которые имеют различные свойства.
Фиг.10 является поперечным сечением, демонстрирующим другой вариант воплощения многоуровневого материала для создания областей искусственно увеличенного изображения, которые имеют различные свойства.
Фиг.11а-б являются поперечными сечениями, демонстрирующими отражательный оптический вариант воплощения и вариант воплощения оптики с точечной апертурой данной системы.
Фиг.12а-б являются поперечными сечениями, позволяющими сравнить структуры воплощения всепреломляющего материала с воплощением гибридного преломляющего/дифракционного материала.
Фиг.13 является поперечным сечением, демонстрирующим так называемый "отслоить-чтобы-показать" вариант воплощения индикации искажения (или фальсификации, или несанкционированного доступа).
Фиг.14 является поперечным сечением, демонстрирующим так называемый "отслоить-чтобы-изменить" вариант воплощения индикации несанкционированного доступа или искажения.
Фиг.15а-г являются поперечными сечениями, демонстрирующими различные варианты воплощения двусторонних систем.
Фиг.16а-е являются поперечными сечениями и соответствующими горизонтальными проекциями, демонстрирующими три различных способа создания полутоновых или тоновых картин элементов пиктограмм и последующих искусственно увеличенных изображений настоящей системы.
Фиг.17а-г являются поперечными сечениями, демонстрирующими использование данной системы вместе с печатной информацией.
Фиг.18а-е являются поперечными сечениями, демонстрирующими использование данной системы вместе с, или внедренной в, различные подложки (или подслои) и в комбинации с печатной информацией.
Фиг.19а-б являются поперечными сечениями для сравнения фокусного поля обзора сферической линзы с фокусным полем обзора асферической линзы с плоским полем, когда каждая из них внедряется в настоящую систему.
Фиг.20а-в являются поперечными сечениями, демонстрирующими два практических преимущества использования толстого слоя пиктограммы в настоящей системе.
Фиг.21 является горизонтальной проекцией, представляющей вариант применения настоящей системы в валюте в качестве "оконной" защитной нити.
Фиг.22 является вариантом воплощения ортопараллактического движения настоящей системы изображений, объединенного с "оконной" защитной нитью.
Фиг.23 показывает обработку полутонов искусственного изображения настоящей системы.
Фиг.24а показывает использование настоящей системы, чтобы создать объединенные искусственные изображения, меньшие по размерам, чем наименьшая характеристика или признак индивидуального искусственного изображения.
Фиг.24б показывает использование настоящей системы, чтобы создать узкие пробелы между элементами пиктограммы.
Фиг.25 показывает внедрение скрытой, спрятанной информации в пиктограммы настоящей системы.
Фиг.26 показывает создание полностью трехмерных изображений при помощи данной системы.
Фиг.27 представляет способ конструирования пиктограмм для трехмерного варианта воплощения, как на Фиг.26.
Фиг.28 представляет пиктограмму, как результат способа, продемонстрированного на Фиг.27.
Фиг.29 показывает, как продемонстрированный на Фиг.27 способ может быть применен в сложном трехмерном искусственном изображении.
Фиг.30 показывает фокальные свойства центральной зоны экспериментальной шестиугольной многозональной линзы с эффективным диаметром в 28 микрон.
Фиг.31 показывает фокальные свойства центральной зоны сферической линзы, с диаметром в 28 микрон.
Фиг.32 показывает работу боковых зон шестиугольной линзы на Фиг.30.
Фиг.33 показывает работу внешних зон сферической линзы на Фиг.31.
Детальное описание изобретения
Далее будет выполнено детальное описание вариантов воплощения данного изобретения в соответствии с чертежами. И хотя несколько вариантов воплощения данного изобретения описаны в соответствии с чертежами, это не ограничивает данное изобретение только этими, изложенными здесь вариантами его воплощения. Наоборот, авторы стараются охватить все альтернативы, модификации и эквиваленты.
На Фиг.1а представлен один из вариантов реализации или воплощения микрооптической системы 12, обеспечивающей ортопараллактическое движение изображений системы.
Микролинзы 1 микрооптической системы 12 имеют, по меньшей мере, две по сути одинаковых оси симметрии и включены в двухмерную периодическую матрицу. Диаметр линзы 2, предпочтительно, менее 50 микрон ("µ"), и промежуток между линзами, предпочтительно, 5 микрон или менее. (Авторы используют обозначения "µ" и "µm" для одних и тех же единиц измерения). Микролинза 1 фокусирует изображение элемента пиктограммы 4 и проектирует данное изображение в направлении наблюдателя. Эта система широко используется в ситуациях с наличием нормальных уровней общего освещения, поэтому свечение пиктограмм возникает благодаря отраженному или проходящему общему освещению. Элемент пиктограммы 4 - это один из элементов периодической матрицы пиктограмм, с периодами и размерами, в значительной степени похожими на периоды и размеры линзовой матрицы, включительно с линзой 1. Между линзой 1 и элементом пиктограммы 4 расположены оптическая прокладка 5, которая может соприкасаться с материалом линзы 1 или, на выбор, может быть отдельной подложкой 8 - в данном варианте линзы 9 отделены от данной подложки. Элементы пиктограммы 4, на выбор, могут быть защищены герметизирующим слоем 6, предпочтительно из полимерного материала. Герметизирующий слой 6 может быть прозрачным, полупрозрачным, окрашенным, пигментированным, матовым, металлическим, магнитным, с изменяющимися оптическими характеристиками или иметь любую комбинацию вышеперечисленных свойств, что обеспечивает желаемые оптические эффекты и/или дополнительные функции для целей защиты и установления подлинности, включительно с обеспечением систем автоматического установления подлинности валюты, подтверждения, отслеживания, подсчета и обнаружения, что используют обнаружение оптических эффектов, электрической проводимости или электрической емкости, магнитного поля.
Общая толщина 7 системы, как правило, менее 50 микрон; действительная толщина зависит от индекса диафрагмы линз 1 и диаметра линз 2 и толщины дополнительного признака защиты или уровней визуальных эффектов. Период повторения 11 из 20 элементов пиктограмм 4 - в значительной степени идентичен периоду повторения линз 1; "коэффициент пересчета" - это соотношения периода повторения пиктограмм к периоду повторения линз, используется для создания различных визуальных эффектов. Аксиально-симмегричные показатели коэффициента пересчета, равные, в основном, 1,000, приводят к ортопараллактическим эффектам Unison Motion, когда оси симметрии линз и пиктограмм смещены, аксиально-симметричные показатели коэффициента пересчета менее 1,000 приводят к эффектам Unison Motion и Unison SuperDeep, когда оси симметрии линз и пиктограмм, в значительной степени, совпадают, и аксиально-симметричные показатели коэффициента пересчета более 1,000 приводят к эффектам Unison Float и Unison SuperFloat, когда оси симметрии линз и пиктограмм, в значительной степени, совпадают. Аксиально-симметричные показатели коэффициента пересчета, такие как 0,995 в направлении оси Х и 1,005 в направлении оси Y, приводят к эффекту Unison Levitate.
Эффекты Unison Morph достигаются за счет масштабных искажений либо периода повторения линзы, либо периода повторения пиктограммы, или периодов повторения и линзы, и пиктограммы, или благодаря внедрению изменяющейся в пространственном отношении информации в структуру пиктограммы. Эффекты Unison 3-D также достигаются благодаря внедрению изменяющейся в пространственном отношении информации в структуру пиктограммы, но в данном варианте воплощения - информация представляет различные точки наблюдения за трехмерным объектом из специфического местоположения, в значительной степени соответствующего расположению пиктограмм.
Фиг.1б является изометрическим видом настоящей системы, как показано на поперечном сечении на Фиг.1а, имеющим структуры квадратных матриц линз 1 и пиктограмм 4, с периодами повторения 11 и толщиной оптических прокладок 5 (Фиг.1а не относится к структуре квадратной матрицы, но является поперечным сечением структур стандартных периодических матриц). Элементы пиктограмм 4 показаны как "$" изображения, ясно видимые во фронтальном сечении. И хотя, существует значительное взаимное однозначное соответствие между линзами 1 и элементами пиктограмм 4, оси симметрии матрицы линз, в общем, не будут точно выровнены с осями симметрии матрицы пиктограмм.
В случае варианта воплощения материала Unison (ортопараллактического движения), как на Фиг.1а-б, с коэффициентом пересчета 1,0000, когда оси симметрии линз 1 и элементов пиктограмм 4 в значительной степени совпадают, результирующие искусственные изображения элементов пиктограмм (в данном примере большой "$") "возникают" и увеличиваются благодаря фактору, теоретически приближающемуся к бесконечности. Небольшое угловое смещение осей линз 1 и осей элементов пиктограмм 4 уменьшает степень увеличения искусственных изображений элементов пиктограмм и приводит к повороту увеличенных искусственных изображений.
Фактор искусственного увеличения вариантов воплощения Unison Deep, Unison Float и Unison Levitate зависит от углового смещения осей линз 1 и осей элементов пиктограмм 4, также как и от коэффициента пересчета системы. Когда коэффициент пересчета не равен 1,0000, максимальное увеличение, полученное от значительного выравнивания данных осей, равно абсолютной величине 1/(1,0000-(коэффициента пересчета)). Таким образом, материал Unison Deep с коэффициентом пересчета 0,995 дал бы максимальное увеличение в 11/(1,0000-(0,995)1=200х. Похожий материал Unison Float с коэффициентом пересчета 1,005 дал бы максимальное увеличение в 11/(1,0000-(1,005)1=200х. Похожий вариант воплощения Unison Motion с небольшим угловым смещением осей линз 1 и осей элементов пиктограмм 4, вариантов воплощения Unison Deep, Unison Float и Unison Levitate уменьшает степень увеличения искусственных изображений элементов пиктограмм и приводит к повороту увеличенных искусственных изображений.
Созданное структурами пиктограмм Unison Deep или Unison SuperDeep искусственное изображение ориентировано вертикально в соответствии с ориентацией структур пиктограмм Unison Deep или Unison SuperDeep, в то время как созданное структурами пиктограмм Unison Float к Unison SuperFloat искусственное изображение перевернуто и повернуто на 180 градусов в соответствии с ориентацией структур пиктограмм Unison Float и Unison SuperFloat.
На Фиг.2а схематически изображены алогичные эффекты ортопараллактического движения, видимые в варианте воплощения Unison Motion. На левой стороне Фиг.2а показана часть материала Unison Motion 12 в горизонтальной проекции, колеблющаяся 18 вокруг горизонтальной оси 16. Если искусственно увеличенное изображение 14 движется в соответствии с параллаксом, оно будет казаться перемещаемым вверх-вниз (как показано на Фиг.2а), по мере того как деталь 12 колеблется вокруг горизонтальной оси 16. Такое очевидное параллактическое движение является типичным для изображений реальных объектов, классической печати и топографических изображений. Вместо представления параллактического движения искусственно увеличенное изображение 14 представляет ортопараллактическое движение 20 - движение, перпендикулярное нормальному ожидаемому направлению параллактического движения. На правой стороне Фиг.2а представлен перспективный вид части детали 12, с представлением ортопараллактического движения одного искусственно увеличенного изображения 14, по мере его колебания 18 вокруг горизонтальной оси 16. Точечная линия 22 показывает положение искусственно увеличенного изображения 14 после его движения вправо по ортопараллаксной оси, и точечная линия 24 показывает положение искусственно увеличенного изображения 14 после его движения влево по ортопараллаксной оси.
Визуальные эффекты вариантов воплощения Unison Deep и Unison Float изображены изометрически на Фиг.2б, в. На Фиг.2б часть материала Unison Deep 26 представляет собой искусственно увеличенное изображение 28, что кажется стереоскопически видимым внизу плоскости материала Unison Deep 26 при рассмотрении наблюдателем 30. На Фиг.2в часть данных Unison Float 32 представляет собой искусственно увеличенное изображение 34, появляющееся стереоскопически выше плоскости материала Unison Float 34 при рассмотрении наблюдателем 30. Визуальные эффекты Unison Deep и Unison Float являются видимыми со всех азимутальных точек зрения и в широком диапазоне различных углов от вертикальной проекции (например, линия прямого зрительного наблюдения от глаз наблюдателя 30 на материал Unison Deep 26 или материал Unison Float 32 перпендикулярна поверхности) вниз до угла поверхностной проекции, что, как правило, меньше 45 градусов. Видимость Unison Deep и Unison Float визуальных эффектов в широком диапазоне углов зрения и ориентации, обеспечивает простой и удобный способ дифференциации данных Unison Deep и Unison Float от подделок, использующих цилиндрическую линзообразную оптику или голографию.
Эффект варианта воплощения Unison Levitate иллюстрируется на Фиг.2в-д при помощи изометрических изображений, демонстрирующих воспринимаемое стереоскопически глубинное положение искусственно увеличенного изображения 38 при трех поворотах на азимутальные углы материала Unison Levitate 36, и соответствующую горизонтальную проекцию материала Unison Levitate 36, и искусственно увеличенное изображение 38, рассматриваемое наблюдателем 30. Фиг.2в изображает искусственно увеличенное изображение 38 (далее - "изображение"), кажущееся стереоскопически видимым внизу плоскости материала Unison Levitate 36 при ориентации вышеупомянутого материала, как показано в горизонтальной проекции. Крупная темная линия в горизонтальной проекции служит как опорная точка азимутальной ориентации 37 для большей ясности. Следует отметить, что опорная точка азимутальной ориентации 37 на Фиг.2в выровнена в вертикальном направлении и изображение 38 выровнено в горизонтальном направлении. Изображение 38 появляется в положении Unison Deep, поскольку коэффициент пересчета равен менее чем 1,000 вдоль первой оси материала Unison Levitate 36, которая практически параллельна линии, соединяющей зрачки глаз наблюдателя (далее стереоскопический коэффициент пересчета). Стереоскопический коэффициент пересчета материала Unison Levitate 36 больше, чем 1,000, вдоль второй оси, перпендикулярной первой оси, таким образом, приводит к Unison Float эффекту изображения 38, когда вторая ось выровнена практически параллельно линии, соединяющей зрачки глаз наблюдателя, как показано на Фиг.2е. Следует отметить, что опорная точка азимутальной ориентации 37 в горизонтальной проекции на данной Фиг.2д показывает промежуточную азимутальную ориентацию материала Unison Levitate 36, что создает эффект ортопараллактического изображения Unison Motion, поскольку стереоскопический коэффициент пересчета в данной азимутальной ориентации по сути равен 1,000.
Визуальный эффект Unison Levitate изображения 38, движущегося снизу материала Unison Levitate 36 (Фиг.2г), и вверх до уровня материала Unison Levitate 36 (Фиг.2д), и далее выше уровня материала Unison Levitate 36 (Фиг.2е), по мере поворота материала в азимутальной плоскости может усиливаться благодаря объединению материала Unison Levitate 36 с классической печатной информацией. Неизменяемая стереоскопическая глубина классической печатной информации служит в качестве базовой плоскости, чтобы лучше понять движение изображений 38 в стереоскопической глубине.
При освещении материала Unison, используя источник направленного света, такой как источник "точечного" света (то есть прожектор или светодиодный источник света) или коллимированный источник излучения (то есть солнечный свет), можно увидеть "теневые изображения" пиктограмм. Эти теневые изображения не являются обычными. В то время как искусственное, представленное Unison изображение не двигается по мере движения освещения, созданные теневые изображения реально двигаются. Более того, в то время как различные искусственные изображения Unison могут лежать в различных визуальных плоскостях, не являющихся плоскостью материала, теневые изображения всегда лежат в плоскости материала. Цветом теневого изображения является цвет