Способ адсорбционно-контактной очистки мазута
Изобретение относится к нефтеперерабатывающей промышленности, в частности к очистке тяжелого нефтяного сырья от асфальтенов, смол и тяжелых металлов нефти. Изобретение касается способа очистки мазута от асфальтенов, смол и тяжелых металлов путем контактирования пропитанного мазутом широкопористого адсорбента (донора) с узкопористым адсорбентом (акцептором), при этом пропитанный мазутом широкопористый адсорбент-донор приводят в контакт с узкопористым адсорбентом-акцептором при температуре 460-560°С в псевдоожиженном слое, при весовом отношении адсорбент-донор к адсорбенту-акцептору 1,0:1,4-1,0:4,0 и времени контакта 1-5 мин, причем в качестве адсорбента-донора используют адсорбент с объемом пор 0,5-1,0 см3/г, средним диаметром пор 200-1000 Å и размером частиц 0,5-1,0 мм, а в качестве адсорбента-акцептора используют катализатор крекинга с размером частиц 0,02-0,16 мм, с получением на выходе газа, бензина, легкого газойля, тяжелого газойля и кокса. Технический результат - повышение эффективности процесса переработки мазута в моторные топлива и сырье для нефтехимии. 1 табл.
Реферат
Изобретение относится к нефтеперерабатывающей промышленности, в частности к очистке тяжелого нефтяного сырья от асфальтенов, смол и тяжелых металлов нефти.
Известен способ переработки мазута путем разделения вакуумной ректификацией на вакуумный газойль и гудрон с последующей раздельной переработкой полученных фракций (Справочник нефтепереработчика, под ред. Г.А.Ластовкина, Л. Химия, 1986, стр.195-198). Недостатками известного способа являются высокие энергетические затраты на разделение мазута на фракции и трудности в квалифицированной переработке гудрона.
Известен способ прямой переработки мазута каталитическим крекингом (Химия и технология топлив и масел, №5, стр.41-44, 1982). Недостатками указанного способа являются отравление катализатора тяжелыми металлами нефти и, как следствие, высокий удельный расход свежего катализатора, а также низкий выход моторных топлив.
Известен способ очистки мазута от асфальтенов, смол и тяжелых металлов путем деасфальтизации мазута пропаном или бутаном в сырье для дальнейшей переработки (Справочник нефтепереработчика, под ред. Г.А.Ластовкина, Л. Химия, 1986, стр.199-207). Недостатками указанного способа являются высокие энергетические затраты на процесс деасфальтизации и низкий выход сырья для дальнейшей переработки.
Известен способ получения синтетической нефти, включающий контактирование нефти или мазута с нагретым пористым инертным по отношению к реакции крекинга материалом при температуре 350-500°С и последующее отделение образовавшихся паров от пропитанного тяжелыми нефтяными остатками частиц пористого адсорбента (Hydrocarbon Process, v.62, №9, p.139, 1984). В известном способе минеральный пористый адсорбент после контактирования с мазутом и заполнения его пор нефтяными остатками направляют в специальный регенератор для выжигания либо газификации нефтяных остатков и нагрева адсорбента, после чего адсорбент рециркулируют на контактирование с мазутом. Недостатками известного способа являются его низкая эффективность в использовании тяжелых остатков, а также накопление на поверхности адсорбента тяжелых металлов, которые катализируют реакции дегидрирования и крекинга и ухудшают качество полученных продуктов.
Известен способ облагораживания нефтяного сырья при контактировании пропитанного мазутом макропористого адсорбента-донора с микро- мезопористым адсорбентом-акцептором при 200-300°С в течение 1-7 мин и при весовом соотношении донор/акцептор, равном 1,0-4,0. Недостатком процесса является сложность осуществления процесса (заявка на изобретение №94019466, 10.01.1996, прототип).
Целью настоящего изобретения является повышение эффективности процесса переработки мазута в моторные топлива и сырье для нефтехимии.
Поставленная цель достигается тем, что в способе очистки мазута от асфальтенов, смол и тяжелых металлов путем контактирования пропитанного мазутом широкопористого адсорбента (донора) с узкопористым адсорбентом (акцептором) пропитанный мазутом широкопористый адсорбент-донор приводят в контакт с узкопористым адсорбентом-акцептором при температуре 460-560°С в псевдоожиженном слое, при весовом отношении адсорбент-донор к адсорбенту-акцептору 1,0:1,4-1,0:4,0 и времени контакта 1-5 мин, причем в качестве адсорбента-донора используют адсорбент с объемом пор 0,5-1,0 см3/г, средним диаметром пор 200-1000 Å и размером частиц 0,5-1,0 мм, а в качестве адсорбента-акцептора используют катализатор крекинга с размером частиц 0,02-0,16 мм, с получением на выходе газа, бензина, легкого газойля, тяжелого газойля и кокса.
При этом за счет сил капиллярного всасывания происходит перераспределение нефтяного остатка между донором и акцептором. За счет сил адсорбции асфальтены и смолы с содержащимися в них тяжелыми металлами остаются на доноре, а свободная от данных соединений часть мазута переходит в акцептор. Движущей силой данного процесса перераспределения нефтяных фракций между донором и акцептором является разность капиллярных давлений в доноре и акцепторе за счет различия в размерах пор донора и акцептора. Существенным отличием от прототипа является использование в качестве адсорбента-акцептора промышленного катализатора крекинга, содержащего ультрастабильный цеолит Y и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину (патент на изобретение №2300420, 10.06.2007). Контактирование ведут при температурах осуществления каталитического крекинга, то есть при 460-560°С, при этом исключается стадия экстракции растворителем нефтепродуктов, перешедших в акцептор. В качестве адсорбента-донора используют композитный алюмосиликатный материал, состоящий из монтмориллонита и/или его натриевой формы и термодиспергированного оксида алюминия при весовом соотношении компонентов от 1:1 до 1:5 (патент на изобретение №2205685, 10.06.2003).
Пример 1. Использовался мазут Ноябрьского месторождения нефти со следующими характеристиками:
- плотность мазута - 0,948 г/см3;
- содержание серы - 1,38 мас.%;
- содержание общего азота - 0,26 мас.%;
- содержание ванадия - 3,6 ppm;
- содержание асфальтенов - 6,1 мас.%;
- коксуемость по Конрадсону - 9,0 мас.%;
- начало кипения мазута - 283°С;
- 50% точка отгона - 547°С.
5 г адсорбента-донора, имеющего средний диаметр пор 200 Å, общий объем пор 0,6 см3/г и размер частиц 0,6 мм, пропитывают 2,8 г мазута Ноябрьской нефти, подогретого до 280°С. Пропитанный адсорбент-донор приводят в контакт с 7,2 г адсорбента-акцептора (катализатора крекинга) в условиях интенсивного перемешивания в псевдоожиженном слое при температуре 460°С. Диаметр пор адсорбента-акцептора (катализатора крекинга) составляет 80 Å, общий объем пор 0,4 см3/г, размер частиц 0,05 мм. Весовое соотношение адсорбент-донор : адсорбент-акцептор составляет 1,0:1,4. Среднее время контактирования составляет 3 мин. Материальный баланс процесса приведен в таблице.
Пример 2. Аналогичен примеру 1, отличие заключается в том, что контактирование осуществляют при температуре 520°С. Материальный баланс процесса приведен в таблице.
Пример 3. Аналогичен примеру 1, отличие заключается в том, что контактирование осуществляют при температуре 540°С. Материальный баланс процесса приведен в таблице.
Пример 4. Аналогичен примеру 1, отличие заключается в том, что контактирование осуществляют при температуре 560°С. Материальный баланс процесса приведен в таблице.
Пример 5. 5 г адсорбента-донора, имеющего средний диаметр пор 600 Å, общий объем пор 0,64 см3/г и размер частиц 0,8 мм, пропитывают 3,0 г мазута Ноябрьской нефти, подогретого до 280°С. Пропитанный адсорбент-донор приводят в контакт с 10,0 г адсорбента-акцептора (катализатора крекинга) в условиях интенсивного перемешивания в псевдоожиженном слое при температуре 520°С. Диаметр пор адсорбента-акцептора (катализатора крекинга) составляет 80 Å, общий объем пор 0,4 см3/г, размер частиц 0,12 мм. Весовое соотношение адсорбент-донор : адсорбент-акцептор составляет 1,0:2,0. Среднее время контактирования составляет 3 мин. Материальный баланс процесса приведен в таблице.
Пример 6. Аналогичен примеру 5, отличие заключается в том, что весовое соотношение донор : акцептор составляет 1,0:4,0. Материальный баланс процесса приведен в таблице.
Данные таблицы показывают, что предлагаемый способ обеспечивает повышение выхода бензина и легкого газойля.
Таблица | ||||||
Материальный баланс процесса (в мас.% на мазут) | ||||||
Продукты процесса | Пример 1 | Пример 2 | Пример 3 | Пример 4 | Пример 5 | Пример 6 |
Остаток мазута на доноре | 31,2 | 16,4 | 11,2 | 8,9 | 12,4 | 8,2 |
Газ | 6,2 | 9,8 | 12,6 | 14,9 | 12,2 | 13,6 |
Бензин (н.к. - 205°С) | 34,5 | 38,3 | 41,1 | 43,2 | 44,6 | 48,2 |
Легкий газойль | 13,1 | 18,7 | 19,8 | 20,3 | 19,3 | 19,8 |
Тяжелый газойль | 12,1 | 12,0 | 8,4 | 4,4 | 6,9 | 5,9 |
Кокс | 2,9 | 4,8 | 6,9 | 8,3 | 4,6 | 4,3 |
Способ очистки мазута от асфальтенов, смол и тяжелых металлов путем контактирования пропитанного мазутом широкопористого адсорбента (донора) с узкопористым адсорбентом (акцептором), отличающийся тем, что пропитанный мазутом широкопористый адсорбент-донор приводят в контакт с узкопористым адсорбентом-акцептором при температуре 460-560°С в псевдоожиженном слое, при весовом соотношении адсорбент-донор к адсорбенту-акцептору 1,0:1,4-1,0:4,0 и времени контакта 1-5 мин, причем в качестве адсорбента-донора используют адсорбент с объемом пор 0,5-1,0 см3/г, средним диаметром пор 200-1000 Å и размером частиц 0,5-1,0 мм, а в качестве адсорбента-акцептора используют катализатор крекинга с размером частиц 0,02-0,16 мм, с получением на выходе газа, бензина, легкого газойля, тяжелого газойля и кокса.