Жаропрочная высокопластичная аустенитная сталь
Иллюстрации
Показать всеИзобретение относится к области металлургии, а именно к составам жаропрочной высокопластичной аустенитной стали, используемой для изготовления деталей и узлов энергетических установок, работающих длительное время при температурах до 650°С. Сталь содержит углерод, хром, марганец, никель, алюминий, бор, церий, кремний, вольфрам, ванадий, ниобий, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,02-0,06, кремний 0,10-0,40, марганец 16-19, хром 14-16, никель 5,5-7,0, вольфрам 0,5-0,9, ванадий 0,1-0,2, ниобий 0,1-0,2, алюминий 0,3-0,9, церий 0,05-0,20, бор 0,002-0,050, железо и неизбежные примеси остальное. Для компонентов стали выполняется условие: ([Ni]+0,5[Мn]+30[С])/([Сr]+0,5[W]+1,5[Si]+0,5[Nb])=0,8-1,0, а отношение содержания углерода к суммарному содержанию ванадия и ниобия составляет 0,06÷0,20. Повышается пластичность и стабильность аустенита при сохранении повышенной жаропрочности. 3 з.п. ф-лы, 4 табл.
Реферат
Изобретение относится к области металлургии стали и может быть использовано для длительной службы деталей и узлов энергетических установок, работающих при температурах до 650°С.
Для вышеуказанных условий работы в настоящее время широко применяются хромоникелевые аустенитные стали типа 1Х18Н9Т и Х16Н13М3 и др. (М.В.Приданцев, К.А.Ланская. Стали для котлостроения. Металлургиздат, Москва, 1959 г. С.Б.Масленков, Е.А.Масленкова. Стали и сплавы для высоких температур. Справочник. Металлургия, Москва, 1991 г.).
Эти стали содержат от 9 до 14% дефицитного никеля и имеют сравнительно низкие показатели сопротивления локальным разрушениям в околошовной зоне. Эти стали обладают низкой прочностью при комнатной и повышенных температурах (≤220 МПа, ≤132 МПа) и удовлетворительной жаропрочностью при температурах не выше 600°С. В результате длительного пребывания при температурах 600-700°С сталь 1Х18Н9Т приобретает склонность к охрупчиванию из-за образования σ-фазы. С нестабильностью структуры стали 1Х18Н9Т связан большой разброс по характеристикам ползучести. Например, при 593°С и напряжении 207 МПа время до разрушения образцов стали Х18Н10 составляло от 84 до 2580 часов. V.K.Sikka, H.E.McCoy. Heat-to heat variation in creep properties of types 304 and 316 stainless steels. Trans ASME. 1975,197, №4, p.243-251.
У стали Х16Н13М3 после длительной выдержки в течение 13913 часов при температуре 730°С относительное удлинение и сужение снижается от 65 до 25% (Ф.Эберле Некоторые результаты длительных испытаний трубных сталей. Сб. Исследование жаропрочных сталей и сплавов. М., Металлургиздат, 1960, с.307-316).
Наиболее близким аналогом к предлагаемому техническому решению является жаропрочная аустенитная сталь следующего состава в вес.%: С до 0,1, Сr 11-13, Mn 12-14, Ni 4.4-4,8, Al 1,2-1,6, Mo 0,4-0,6, Се 0,01-0,2, В 0,0005-0,007, S до 0,04, Р до 0,04, Si до 0,6 и Fe - остальное. При содержании углерода, марганца и никеля (аустенитообразующих элементов) на верхнем пределе указанного состава сталь - прототип имеет стабильную аустенитную структуру после различных режимов термической обработки и пластической деформации. Однако при длительных тепловых выдержках эта сталь имеет пониженные значения пластичности и вязкости в результате выделения карбидов хрома Сr23С6.
В стали - прототипе с содержанием углерода менее 0,03% достигается повышенная пластичность, но не обеспечивается сохранение стабильности аустенитной структуры. После холодной пластической деформации со степенями обжатия более 20% образуется мартенсит. При этом сталь - прототип становится магнитной и имеет низкую пластичность.
Задача, на решение которой направлено настоящее изобретение, заключается в создании жаропрочной высокопластичной стабильно аустенитной стали.
Технический результат изобретения заключается в повышении пластичности и стабильности аустенита при сохранении повышенной жаропрочности.
Технический результат достигается тем, что в жаропрочную аустенитную сталь, содержащую углерод, кремний, хром, марганец, никель, алюминий, церий, бор, железо и неизбежные примеси, согласно изобретению, дополнительно введены вольфрам, ванадий, ниобий при следующем соотношении компонентов, мас.%:
углерод | 0.02-0.06 | ванадий | 0.1-0.2 |
кремний | 0.10-0.40 | ниобий | 0.1-0.2 |
марганец | 16-19 | алюминий | 0.3-0.9 |
хром | 14-16 | церий | 0.05-0.20 |
никель | 5.5-7.0 | бор | 0.002-0.050 |
вольфрам | 0.5-0.9 |
железо и неизбежные примеси - остальное, при этом для значений концентраций легирующих элементов выполняется условие
а)
где [С], [Si], [Mn], [Cr], [W], [Nb] - концентрации в стали углерода, кремния, никеля, марганца, хрома, вольфрама и ниобия соответственно, выраженные в массовых процентах;
б) отношение содержания (мас.%) должно быть в пределах 0,06-0,20,
при этом в ней формируется развитая субзеренная структура в процессе горячей пластической деформации при температурах 900-1000°С с обжатием 50-70% и последующим охлаждением в воде до комнатной температуры, и сталь приобретает мелкозернистую структуру после закалки в воде от температуры в пределах 1030-1070°С, сталь может использоваться при температурах до 700 С.
Содержание в стали углерода С=0,02-0,06% достаточно для образования небольшого количества карбидов (V, Nb)C, которые обеспечивают получение после закалки мелкозернистой структуры. При содержании углерода более 0,06% трудно получить удовлетворительные показатели пластичности и ударной вязкости из-за образования при тепловых выдержках большого количества карбидов (V, Nb)C при суммарном содержании ванадия и ниобия на верхнем пределе заявляемого состава или образования карбидов хрома типа Сr23С6 при суммарном содержании ванадия и ниобия на нижнем пределе заявляемого состава стали. Для предотвращения карбидов хрома типа Сr23С6 отношение содержания углерода к суммарному содержанию ванадия и ниобия должно быть в пределах 0,06-0,20.
Введение в сталь ванадия и ниобия в количествах 0,1-0,2% каждого обеспечивает получение мелкозернистой структуры и повышение прочности за счет образования мелкодисперсных карбидов (V, Nb)C. При меньших концентрациях ванадия и ниобия положительный эффект от их введения незначителен. Увеличение содержания ванадия и ниобия более 0,2% приводит к снижению пластичности и ударной вязкости из-за образования большого количества карбидов (V, Nb)C.
Для повышения прочности при температурах до 650°С в предлагаемую сталь по сравнению со сталью прототипом введен вольфрам в количествах 0,5-0,9%. При содержании вольфрама более 0,9% возможно образование феррита. При концентрациях вольфрама менее 0,5% эффект упрочнения незначителен.
Для повышения длительной прочности в предлагаемую сталь введены добавки 0,002-0,05% бора, который в таких количествах повышает прочность границ зерен, замедляет диффузионные процессы выделения избыточных фаз по границам и в объеме зерен в процессе ползучести. Увеличение содержания бора более 0,05%, время до разрушения и длительная пластичность снижаются из-за образования крупных выделений фазы М3 В2 или боросодержащей эвтектики по границам зерен.
Добавки 0,05-0,2% церия в предлагаемую сталь вводили для повышения ее технологической пластичности при высоких температурах пластической деформации (ковкой или прокаткой).
Введение в заявляемую сталь 14-16% хрома необходимо для повышения коррозионной стойкости, окалиностойкости и длительной прочности. При содержании хрома более 16% и никеля менее 5,5% сталь будет иметь пониженную пластичность из-за образования феррита и σ-фазы.
Для повышения стабильности аустенита, пластичности и ударной вязкости в процессе изготовления и длительной эксплуатации изделий при температурах до 650°С в заявляемой стали по сравнению со сталью-прототипом увеличено содержание аустенитообразующих элементов никеля и марганца до 5,5-7% и 16-19% соответственно и снижено количество до 0,3-0,9% сильного ферритообразующего элемента - алюминия.
Выполнение условия
обеспечивает получение неферромагнитной стали. При уменьшении отношения менее 0,8 не удается получить аустенитную структуру без ферромагнитных фаз (мартенсита и феррита).
После нагрева и охлаждения в интервале температур 1200°С÷-196°С, холодной и горячей пластической деформации со степенями обжатия до 70%, а также длительных тепловых выдержек в заявляемой стали не образуются ферромагнитные фазы (феррит и мартенсит) или хрупкие фазы (типа σ-фазы и карбидов Сr23С6), т.е. сталь сохраняется немагнитной (µ≤1,01 гс/э) и имеет высокую пластичность.
Предлагаемая сталь не уступает по окалиностойкости и уровню прочности стали-прототипу и существенно превосходит по показателям пластичности и ударной вязкости при комнатной и повышенных температурах (таблица 2). Высокая стабильность аустенитной структуры стали обеспечивает практически постоянный уровень прочности, высокую пластичность при температурах до 700°С и незначительное снижение уровня ударной вязкости после длительных выдержек при температурах до 650°С. Высокая пластичность (δ и Ψ>70%) и ударная вязкость (KCU>2,2 МДж/м2) после закалки от температур 1000-1150°С этой стали обеспечивает получение различных видов кованых, прессованных, катаных полуфабрикатов и трубных заготовок. Химический состав и свойства стали, согласно изобретению и стали-прототипа приведены в таблице 1-4.
Использование заявляемой жаропрочной экономно легированной никелем стали со стабильной аустенитной структурой и высоким уровнем пластичности при температурах до 700°С позволяет:
1) по сравнению со сталью-прототипом разработать новые и усовершенствовать существующие конструкции с более высокими техническими характеристиками (по температуре, длительности эксплуатации и магнитной проницаемости);
2) по сравнению с применяющимися жаропрочными хромоникелевыми аустенитными сталями типа Х18Н12 и Х16Н13М3 снизить в 1,5-2 раза количество дефицитных элементов (никеля и молибдена) в результате изменения химического состава стали.
Таблица 1. | ||||||||||||||
Химический состав стали - прототипа и заявляемой стали после закалки от 1100°С | ||||||||||||||
Сталь | № плавки | Химический состав, мас.% | ||||||||||||
С | Cr | Mn | Ni | V | W | Al | В | Nb | Mo | Si | Се | Fe | ||
Прототип | 1 | 0.01 | 11 | 12 | 4.4 | - | - | 1.2 | 0.0005 | - | 0.4 | ≤0.6 | 0.01 | остальное |
2 | 0.10 | 13 | 14 | 4.8 | - | - | 1.6 | 0.007 | - | 0.6 | ≤0.6 | 0.2 | ||
Заявляемая | 3 | 0.02 | 14 | 16.1 | 5.5 | 0.1 | 0.5 | 0.3 | 0.002 | 0.1 | - | 0.1 | 0.05 | остальное |
4 | 0.03 | 14.7 | 16.9 | 6.2 | 0.17 | 0.6 | 0.8 | 0.007 | 0.1 | - | 0.2 | 0.1 | ||
5 | 0.06 | 16 | 18 | 7 | 0.21 | 0.9 | 0.9 | 0.05 | 0.2 | - | 0.4 | 0.2 |
Таблица 2. | |||||||||||
Механические свойства стали-прототипа и заявляемой стали после закалки от 1100°С. | |||||||||||
Сталь | № плавки | Механические свойства при температурах | |||||||||
20°С | 700°С | ||||||||||
σв | σ0,2 | δ | Ψ | KCU | σв | σ0,2 | δ | Ψ | KCU | ||
МПа | % | МДЖ/м2 | МПа | % | МДЖ/м2 | ||||||
Прототип | 1 | 570 | 240 | 61 | 68 | 2.3 | 270 | 110 | 31 | 37 | 1.2 |
2 | 590 | 260 | 64 | 68 | 2.7 | 280 | 120 | 32 | 41 | 1.4 | |
Заявляемая | 3 | 608 | 275 | 71 | 74 | 3.2 | 280 | 125 | 55 | 56 | 2.3 |
4 | 619 | 288 | 72 | 75 | 3.3 | 290 | 128 | 57 | 57 | 2.4 | |
5 | 631 | 297 | 74 | 76 | 3.3 | 300 | 130 | 59 | 58 | 2.4 |
1. Жаропрочная высокопластичная аустенитная сталь, содержащая углерод, хром, марганец, никель, алюминий, бор, церий, кремний, железо и неизбежные примеси, отличающаяся тем, она дополнительно содержит вольфрам, ванадий и ниобий при следующем соотношении компонентов, мас.%:
углерод | 0,02-0,06 |
кремний | 0,10-0,40 |
марганец | 16-19 |
хром | 14-16 |
никель | 5,5-7,0 |
вольфрам | 0,5-0,9 |
ванадий | 0,1-0,2 |
ниобий | 0,1-0,2 |
алюминий | 0,3-0,9 |
церий | 0,05-0,20 |
бор | 0,002-0,050 |
железо и неизбежные примеси | остальное, |
2. Сталь по п.1, отличающаяся тем, что она имеет развитую субзеренную структуру после горячей пластической деформации при температурах 900-1000°С с обжатием 50-70% и последующим охлаждением в воде до комнатной температуры.
3. Сталь по п.1 или 2, отличающаяся тем, что она имеет мелкозернистую структуру после закалки в воде от температуры 1030-1070°С.
4. Сталь по п.1 или 2, отличающаяся тем, что она используется при температурах до 700°С.