Составление резиновой смеси, армированной диоксидом кремния, с низким уровнем выделения летучих органических соединений (лос)

Иллюстрации

Показать все

Изобретение относится к производным алкоксимодифицированных силсесквиоксанов и к их использованию в качестве диспергаторов в вулканизируемых эластомерных смесях, содержащих диоксид кремния в качестве армирующего наполнителя. Предложен алкоксимодифицированный силсесквиоксан, включающий одно или несколько соединений, выбираемых из алкоксимодифицированных силсесквиоксанов, которые описываются формулой

и их смесей, где w, x и у представляют собой мольные доли, у не равен нулю, либо w, либо x, но не оба сразу, могут быть равны нулю, a w+x+y=1,00; R1, R2 и R3 идентичные или различные, выбранные из группы, состоящей из (i) Н или алкильных С120групп, (ii) циклоалкильных С320групп, (iii) алкиларильных С720групп и (iv) R5X, где X выбирают из группы, состоящей из Cl, Br, SH, SaR6, NR62, OR6, CO2H, SCOR6, CO2R6, ОН, олефинов, эпоксидов, аминогрупп, винильных групп, акрилатов и метакрилатов, где a=1-8, R5 выбирают из алкиленовых С120групп и циклоалкиленовых С320групп, и R4 и R6 выбирают из алкильных C1-C5групп, циклоалкильных С320групп и алкиларильных С720групп. Предложены также способ получения указанных алкоксимодифицированных силсесквиоксанов, содержащая их вулканизируемая резиновая смесь и способ ее получения, а также пневматическая шина, полученная из указанной вулканизируемой резиновой смеси. Технический результат - уменьшение выделения летучих органических соединений при составлении и переработке вулканизируемых резиновых смесей, составленных с использованием заявленного алкоксимодифицированного силсесквиоксана; улучшенное армирование резины, повышенная степень взаимодействия полимер-наполнитель и пониженная вязкость указанной вулканизируемой резиновой смеси, приводящие к получению пневматических шин с улучшенными эксплуатационными характеристиками. 5 н. и 75 з.п. ф-лы, 4 ил., 36 табл.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка заявляет приоритет предварительной заявки США с регистрационным номером 60/664757, поданной 24 марта 2005 года, которая посредством ссылки включается в настоящий документ.

ОБЛАСТЬ ТЕХНИКИ

Данная технология в общем случае относится к производным алкоксимодифицированных силсесквиоксанов и к использованию таких соединений в качестве диспергаторов в вулканизуемых эластомерных смесях, содержащих диоксид кремния в качестве армирующего наполнителя.

УРОВЕНЬ ТЕХНИКИ

При получении эластомерных композиций, предназначенных для использования в резиновых изделиях, таких как шины, приводные ремни и тому подобное, желательно, чтобы данные эластомерные композиции были легкоперерабатывающимися во время составления смеси и характеризовались высокой молекулярной массой при регулируемых молекулярно-массовом распределении, температуре стеклования (Tg) и уровне содержания винила. Также желательно, чтобы армирующие наполнители, такие как диоксид кремния и/или технический углерод, были хорошо диспергированы по всему каучуку в целях улучшения различных физических свойств, таких как вязкость по Муни, модуль упругости, величина тангенса дельты (tan δ) смеси и тому подобное. Резиновые изделия, в особенности шины, полученные из вулканизованных эластомеров, обладающих данными улучшенными свойствами, будут характеризоваться пониженным гистерезисом, лучшими сопротивлением качению, силой сцепления со снежной и ледяной поверхностями дороги, силой сцепления с мокрой поверхностью дороги и улучшенной экономией топлива на транспортных средствах, оборудованных такими шинами.

Однако примешивание диоксида кремния к смесям на основе каучука проводить трудно, поскольку частицы диоксида кремния, имеющие на поверхности полярные силанольные группы, имеют тенденцию в значительной мере претерпевать самоассоциацию и повторную агломерацию после составления смеси, что приводит к получению неудовлетворительной дисперсии диоксида кремния и высокой вязкости смеси. Прочная сетка из наполнителя в виде диоксида кремния в результате приводит к получению жесткой неотвержденной смеси, которую трудно перерабатывать в операциях по экструдированию и формованию.

Для улучшения диспергирования диоксида кремния и вязкости смеси в целях ослабления роли данной проблемы использовали различные аппреты для диоксида кремния, включающие нижеследующее, но не ограничивающиеся только им: хорошо известные бис(триалкоксисилилоргано)полисульфиды (например, тетрасульфиды и дисульфиды) и комбинации октилтриэтоксисилана и меркаптоалкилтриалкоксисиланов. Данные аппреты содержат фрагмент (например, алкоксисилильную группу), который способен вступать в реакцию с поверхностью диоксида кремния, и фрагмент (например, меркапто- или другую серусодержащую группу), который связывается с полимером.

В качестве добавок, которые вступают в реакцию с поверхностью диоксида кремния в качестве экранирующих или гидрофобизирующих добавок для улучшения диспергирования и вязкости смеси, также использовали и производные органоалкоксисилана. Алкоксисилильные группы данных соединений вступают в реакцию с поверхностью диоксида кремния, но данные соединения не содержат фрагмента, который связывается с полимером. Хорошо известные примеры данных добавок включают нижеследующие, но не ограничиваются только ими: алкилтриалкоксисиланы, такие как октилтриэтоксисиланы, децилтриэтоксисиланы, додецилтриэтоксисиланы и их триметоксисилановые партнеры и тому подобное. В дополнение к этому, в целях улучшения свойств смеси известно введение в эластомеры концевой функциональной группы, которая имеет алкоксисилановую группу, способную вступать в реакцию с диоксидом кремния.

Признаком всех вышеупомянутых диспергаторов диоксида кремния и функционализованных эластомеров является присутствие одной или нескольких алкоксисилановых групп, которые вступают в реакцию с силанольными группами на поверхности диоксида кремния (реакция алкоксисилан-диоксид кремния) во время перемешивания резиновой смеси с выделением и высвобождением в окружающую среду спирта. В частности, при проведении перемешивания при высоких температурах переработки спирт высвобождается и вносит свой вклад в летучие органические соединения (ЛОС), образующиеся и потенциально высвобождающиеся во время переработки резиновых смесей. При пониженных температурах переработки продукт операции составления смеси может сохранять значительное количество не вступивших в реакцию алкоксисилильных групп, которые доступны для последующего вступления в реакцию с диоксидом кремния и влагой во время хранения, экструдирования, сборки шины и/или отверждения, что в результате приводит к нежелательному увеличению вязкости смеси и сокращению долговечности при хранении. Данная продолжающаяся реакция в продукте операции составления смеси приводит к выделению дополнительного количества спирта, что может ухудшить последующую переработку смеси. В результате необходимо выдерживать низкую скорость вытяжки протекторной ленты для того, чтобы обеспечить соответствие продукта вытяжки техническим условиям, что в результате приводит к уменьшению выработки продукции и одновременному увеличению затрат.

Поскольку современная тенденция в технологии изготовления резины сохраняет свою ориентацию на использование повышенных загрузок в резиновые смеси диоксида кремния, существует проблема ограничения уровней выделения спирта в окружающую среду. В дополнение к этому, при увеличении выработки продукции и уменьшении затрат существует потребность в уменьшении количества спирта, удерживаемого в продукте операции составления смеси. Поэтому существует потребность в значительном уменьшении или устранении выделения спирта во время составления смеси, переработки, отверждения и хранения резин, армированных диоксидом кремния.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем документе описываются производные алкоксимодифицированного силсесквиоксана. Производные алкоксимодифицированного силсесквиоксана имеют алкоксисилановую группу, которая принимает участие в реакции алкоксисилан-диоксид кремния в качестве диспергатора диоксида кремния в каучуке с высвобождением от нуля до приблизительно 0,1%, при расчете на массу резины, летучих органических соединений (ЛОС), в особенности спирта, во время составления смеси последующей переработки. Кроме того, описываются способы получения алкоксимодифицированных силсесквиоксанов, способы получения вулканизуемых резиновых смесей, содержащих алкоксимодифицированные силсесквиоксаны, вулканизуемые резиновые смеси, содержащие алкоксимодифицированные силсесквиоксаны, и пневматические шины, содержащие компонент, который содержит алкоксимодифицированные силсесквиоксаны.

В частности, описанные алкоксимодифицированные силсесквиоксаны выбирают из группы, состоящей из алкоксимодифицированных силсесквиоксанов, которые описываются формулой

и их смесей, где w, x и y представляют собой мольные доли, y не равен нулю, либо w, либо х, но не оба сразу, может быть равен нулю, а w+x+y=1,00, где R1, R2 и R3 являются идентичными или различными, и их выбирают из группы, состоящей из (i) Н или алкильных групп, содержащих от одного до приблизительно 20 атомов углерода, (ii) циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, (iii) алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода, и (iv) R5X, где Х выбирают из группы, состоящей из Cl, Br, SH, SaR6, NR62, OR6, CO2H, SCOR6, CO2R6, OH, олефинов, эпоксидов, аминогрупп, винильных групп, акрилатов и метакрилатов, где а = от 1 до приблизительно 8, R5 выбирают из группы, состоящей из алкиленовых групп, содержащих от одного до приблизительно 20 атомов углерода, циклоалкиленовых групп, содержащих от 3 до приблизительно 20 атомов углерода, и R4 и R6 выбирают из группы, состоящей из алкильных групп, содержащих от одного до приблизительно 5 атомов углерода, циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, и алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода.

Вулканизованные резиновые смеси, содержащие алкоксимодифицированные силсесквиоксаны, характеризуются улучшенным армированием резины, повышенной степенью взаимодействия полимер-наполнитель и пониженной вязкостью смеси, что позволяет получать шины, демонстрирующие улучшенную силу сцепления с мокрой и снежной поверхностями дороги, уменьшенное сопротивление качению, повышенное упругое восстановление и пониженный гистерезис.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 иллюстрирует результаты анализа по методу ядерного магнитного резонанса (ЯМР) уровня содержания 29Si в чистой структуре POSS с замкнутыми участками, которые свидетельствуют о наличии определенного пика в области приблизительно 68 (миллионных долей (м.д.)). Проиллюстрированная структура POSS представляет собой смесь замкнутых полиэдрических структур Si8O12 (Ts), Si10O15 (T10) и Si12O8 (T12). Данная структура относится к предшествующему уровню техники и не иллюстрирует алкоксимодифицированные силсесквиоксаны, соответствующие настоящему изобретению.

Фиг.2 иллюстрирует результаты анализа по методу ЯМР уровня содержания 29Si в примере смеси алкоксимодифицированных силсесквиоксанов, соответствующих настоящему изобретению, демонстрирующие широкий спектральный диапазон от приблизительно 47 м.д. до приблизительно 71 м.д. Данные результаты анализа по методу ЯМР относятся к образцу 2L, приведенному в таблице 6 в примерах.

Фиг.3 иллюстрирует результаты анализа по методу ЯМР уровня содержания 29Si в еще одном примере смеси алкоксимодифицированных силсесквиоксанов, соответствующих настоящему изобретению, демонстрирующие широкий спектральный диапазон от приблизительно 47 м.д. до приблизительно 71 м.д. Данные результаты анализа по методу ЯМР относятся к образцу 3, приведенному в таблице 6 в примерах.

Фиг.4 иллюстрирует результаты анализа по методу ЯМР уровня содержания 29Si в еще одном примере смеси со-алкоксимодифицированных силсесквиоксанов, соответствующих настоящему изобретению, демонстрирующие широкий спектральный диапазон от приблизительно 47 м.д. до приблизительно 71 м.д. Данные результаты анализа по методу ЯМР относятся к образцу 4, приведенному в таблице 6 в примерах.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Производное или производные алкоксимодифицированного силсесквиоксана (AMS или co-AMS) изобретения и их смеси описываются следующей формулой

где w, x и y представляют собой мольные доли, y не равен нулю, либо w, либо х, но не оба сразу, может быть равен нулю, а w+x+y=1,00, где R1, R2 и R3 являются идентичными или различными, и их выбирают из группы, состоящей из (i) Н или алкильных групп, содержащих от одного до приблизительно 20 атомов углерода, (ii) циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, (iii) алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода, и (iv) R5X, где Х выбирают из группы, состоящей из Cl, Br, SH, SaR6, NR62, OR6, CO2H, SCOR6, CO2R6, OH, олефинов, эпоксидов, аминогрупп, винильных групп, акрилатов и метакрилатов, где а = от 1 до приблизительно 8, R5 выбирают из группы, состоящей из алкиленовых групп, содержащих от одного до приблизительно 20 атомов углерода, циклоалкиленовых групп, содержащих от 3 до приблизительно 20 атомов углерода, и R4 и R6 выбирают из группы, состоящей из алкильных групп, содержащих от одного до приблизительно 5 атомов углерода, циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, и алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода.

В общем случае соединение (соединения) AMS можно получать, подвергая алкилтриалкоксисилан или алкилтрихлорсилан гидролизу и конденсации в водном спиртовом растворе в присутствии катализатора конденсации. Реакция протекает в течение периода времени, достаточного для по существу полного превращения алкилтриалкоксисилана или алкилтрихлорсилана в соединение (соединения) AMS. Было обнаружено, что в результате регулирования количеств воды в реакционной смеси можно увеличить скорость превращения реагентов в конечный продукт. После этого продукт AMS удаляют из реакционной смеси в результате разделения фаз, а любой остаточный продукт AMS в реакционной смеси можно экстрагировать водой и органическим растворителем, таким как нижеследующие, но не ограничивающимся только ими: циклогексан и тому подобное. Затем продукт AMS можно высушивать в теплом вакуумном сушильном шкафу для удаления по существу любого количества спирта и воды, остающегося в реакционной смеси. Получающийся в результате продукт является жидкостью или твердым телом, предпочтительно высоковязкой жидкостью, по существу не содержащей влаги и свободного спирта.

Подходящий для использования способ получения соединения (соединений) AMS описывается в приведенных далее примерах. И исходя из положений данного описания, специалистам в соответствующей области техники станут очевидными и другие способы получения соединения (соединений).

Катализаторы гидролиза и конденсации, подходящие для использования при получении соединений AMS, известны и включают нижеследующие, но не ограничиваются только ими: сильные кислоты, такие как хлористоводородная кислота, серная кислота, фосфорная кислота и тому подобное, сильные основания, такие как гидроксид натрия, гидроксид калия, гидроксид лития и тому подобное, и сильные органические кислоты и основания, такие как (1,8-диазабицикло[5.4.0]ундец-7-ен), имидазолы, гуанидины и тому подобное, известные специалистам в соответствующей области техники. В особенности подходящими для использования при получении соединений AMS являются катализаторы в виде сильных кислот. Количество использованного катализатора базируется на желательной эффективной скорости реакции. Необходимо понимать то, что в случае использования в качестве реагента алкилтрихлорсилана добавление воды к реакционной смеси будет в результате приводить к получению хлористоводородной кислоты, так что никакого дополнительного катализатора для реакции не потребуется.

Температура, при которой реакция имеет место, не является критическим фактором. Например, почти идентичные выходы продукта AMS могут быть получены в диапазоне температур от температуры окружающей среды (приблизительно 25°С) до приблизительно 60°С и до приблизительно 100°С. Продукт AMS можно наблюдать в виде мутного осадка, который при желании можно последовательно удалять из реакционной смеси в течение определенного периода времени до тех пор, пока не будет достигнуто по существу полное превращение реагентов в продукт AMS. Кроме того, для непрерывного получения продукта в ходе проведения реакции можно добавлять дополнительные количества алкилтриалкоксисилановых или алкилтрихлорсилановых реагентов вместе с водой.

Период времени, необходимый для полного превращения реагентов в продукт AMS, зависит от первоначальной концентрации реагентов и необязательного добавления реагентов и/или подвода тепла во время реализации способа. Однако если дополнительные количества реагентов использоваться не будут, то тогда время может находиться в диапазоне от приблизительно 0,5 часа до приблизительно 200 часов, зачастую от приблизительно 0,75 часа до приблизительно 120 часов или от приблизительно одного часа до приблизительно 72 часов. Время, необходимое для полного превращения, определяют как время, прошедшее вплоть до того момента, когда в результате разделения фаз никакого дополнительного количества продукта удалить уже будет нельзя, и никакого дополнительного количества продукта нельзя будет извлечь из реакционной смеси в результате экстрагирования водой и органическим растворителем, как это описывается выше.

Примеры алкилтриалкоксисилановых реагентов при получении продуктов AMS могут включать нижеследующее, но не ограничиваются только им: октилтриэтоксисилан, октилтриметоксисилан, циклогексилтриэтоксисилан, изобутилтриэтоксисилан, этилтриметоксисилан, циклогексилтрибутоксисилан, метилтриэтоксисилан, пропилтриэтоксисилан, гексилтриэтоксисилан, гептилтриэтоксисилан, нонилтриэтоксисилан, децилтриэтоксисилан, н-додецилтриалкоксисилан, октадецилтриэтоксисилан, метилтриметоксисилан, пропилтриметоксисилан, гексилтриметоксисилан, гептилтриметоксисилан, нонилтриметоксисилан, октадецилтриметоксисилан, 2-этилгексилтриэтоксисилан и тому подобное и их смеси.

Примеры алкилтрихлорсилановых реагентов, подходящих для получения соединений AMS, могут включать нижеследующее, но не ограничиваются только им: октилтрихлорсилан, циклогексилтрихлорсилан, изобутилтрихлорсилан, этилтрихлорсилан, метилтрихлорсилан, пропилтрихлорсилан, гексилтрихлорсилан, гептилтрихлорсилан, нонилтрихлорсилан, октадецилтрихлорсилан и тому подобное и их смеси.

Соединения co-AMS можно получить в результате проведения по механизму гидролиза и конденсации совместной реакции между любыми алкилтриалкоксисиланом или алкилтрихлорсиланом и другим соединением, которое может обеспечить наличие у соединения AMS функциональной группы (XR5, определенной ранее). Например, желательным для использования в резиновых смесях может оказаться получение соединения co-AMS, содержащего атом серы, который может связываться с эластомером. Поэтому подходящее соединение co-AMS можно получать в результате проведения совместного гидролиза или совместной конденсации между алкилтриалкоксисиланом или алкилтрихлорсиланом и, например, меркаптоалкилтриалкоксисиланом для введения меркаптоалкильной функциональности или блокированным меркаптоалкилтриалкоксисиланом для введения блокированной меркаптоалкильной функциональности.

В данном описании использование термина «блокированный меркаптоалкилтриалкоксисилан» определяют как относящееся к меркаптосилановому аппрету для диоксида кремния, который содержит блокирующий фрагмент, который блокирует меркапточасть молекулы (то есть меркаптоатом водорода замещен другой группой, далее в настоящем документе называемой «блокирующей группой»), не оказывая одновременно неблагоприятного воздействия на меркаптосилановый фрагмент, способный вступать в реакцию с диоксидом кремния. Подходящие для использования блокированные меркаптосиланы могут включать нижеследующее, но не ограничиваются только им: те из них, что описываются в патентах США №№ 6127468; 6204339; 6528673; 6635700; 6649684; 6683135; описания которых посредством ссылки включаются в настоящий документ в связи с описанными примерами. Для целей данного описания «меркаптосилановый фрагмент», способный вступать в реакцию с диоксидом кремния, определяют как эквивалент по молекулярной массе для молекулярной массы γ-меркаптопропилтриэтоксисилана. Для обеспечения быстрого связывания атома серы меркаптосилана с каучуком позднее, после прохождения реакции диоксид кремния-силан, в производственный технологический процесс можно добавлять деблокирующую добавку. Деблокирующую добавку можно добавлять в виде индивидуального компонента в любой момент времени в ходе проведения технологического процесса составления смеси во время любой стадии перемешивания, на которой желательно снятие блокирования. Зачастую снятие блокирования желательно проводить при составлении смеси во время стадии отверждения, и добавление деблокирующей добавки проводят на конечной стадии перемешивания. Деблокирующую добавку можно включать в комплект реагентов для серного отверждения, и зачастую она может исполнять функцию ускорителя отверждения, в особенности в комбинации с солью цинка. Примеры деблокирующих добавок хорошо известны специалистам в соответствующей области техники.

Получающиеся в результате продукты AMS или co-AMS обычно представляют собой смесь олигомеров всех размеров, где из данной смеси одно или несколько соединений с конкретными размером или молекулярной массой можно выделить при использовании известных способов, таких как хроматография и тому подобное. В подходящем случае данные один или несколько продуктов представляют собой алкоксимодифицированные силсесквиоксаны. Например, такие алкоксимодифицированные силсесквиоксаны могут включать нижеследующее, но не ограничиваются только им: октилалкоксимодифицированные силсесквиоксаны, фенилалкоксимодифицированные силсесквиоксаны, 3-хлорпропилалкоксимодифицированные силсесквиоксаны, 3-меркаптопропилалкоксимодифицированные силсесквиоксаны, тиоацилпропилалкоксимодифицированные силсесквиоксаны и тому подобное и смеси любых из них. В подходящем случае алкоксимодифицированный силсесквиоксан может включать алкил-со-меркаптоалкоксимодифицированный силсесквиоксан.

Признак каждого из полученных продуктов AMS или co-AMS заключается в присутствии реакционноспособной алкоксисилильной группы «у», присоединенной к одной или нескольким группам «w» и/или «x» алкоксимодифицированного силсесквиоксана. В соединении AMS либо w, либо x, но не оба сразу, может быть равен нулю. В co-AMS w и x не равны нулю. Мольную долю одной или нескольких групп w или x рассчитывают в виде мольной доли w или x, поделенной на сумму мольных долей w+x. В подходящем случае соотношения между мольной долей w (или соотношение между мольной долей x) и суммой доли w+x могут находиться в диапазоне от приблизительно 0,01 до приблизительно 0,5. Мольные доли x, y и z также можно измерить при использовании мольных долей R1, R2 и R3, если можно будет измерить относительные уровни содержания данных групп. Сумма мольных долей w, x и y всегда равна единице, а y никогда не равен нулю.

Индивидуальные массовые доли w, x и y можно рассчитать из мольной доли каждого из них, помноженной на его соответствующую молекулярную массу по формуле соединения (FW) и поделенной на сумму индивидуальных массовых долей w, x и y. Например, массовый процент х (W%(x)) рассчитывают следующим образом

Массовое процентное содержание спирта (HOR4) можно рассчитать в соответствии с формулой

Алкоксимодифицированные силсесквиоксаны, полученные при использовании данных способов, состоят по существу из «незамкнутых» структур, имеющих реакционноспособную алкоксисилильную группу, и по существу не содержат чистых структур полиэдрических органосилсесквиоксанов (POSS) с замкнутыми участками, которые известны своей применимостью в качестве наночастиц наполнителей в различных смесях. Например, результаты анализа по методу ядерного магнитного резонанса (ЯМР) уровня содержания 29Si в примере смеси олигомеров проиллюстрированы на фиг.2, где продемонстрирован широкий диапазон (в миллионных долях, м.д.) от приблизительно Al м.д. до приблизительно 71 м.д. В порядке сравнения результаты анализа по методу ЯМР уровня содержания 29Si в чистой структуре POSS с замкнутыми участками (фиг.1) свидетельствуют о наличии определенного пика в области приблизительно 68 м.д. На фиг.1 структура POSS представляет собой смесь замкнутых полиэдрических структур Si8O128), Si10O15 (T10) и Si10O18 (T12), полученную в компании Hybrid Plastics, Фаунтин-Вэлли, Калифорния. В таблице 6, обсуждающейся далее, диапазоны в м.д. в анализе по методу 29Si ЯМР, проведенном для примеров полученных олигомерных продуктов AMS и co-AMS, демонстрируют наличие незначительных пиков в пределах от 67 м.д. до 77 м.д., которые могут возникать в результате сдвига для атомов кремния, обусловленного присутствием различных групп R, присоединенных к структурам. Однако, не связывая себя теорией, можно предположить, что описанный выше способ получения продуктов AMS и co-AMS исключает или сводит к минимуму образование чистых структур POSS вследствие наличия мириадов вариантов присоединений с различными геометриями, к получению которых приводит быстрая конденсация триалкоксисилана. Также можно определить и диапазоны спектров ЯМР для количества 1Н и/или 13С в продуктах, но данные спектры будут различаться в зависимости от различных групп R, присоединенных к структурам, и не иллюстрируются в настоящем документе.

Еще один важный признак каждого из полученных продуктов AMS или co-AMS заключается в том, что реакционноспособная алкоксисилильная группа присутствует в таком небольшом количестве, что в результате прохождения гидролиза продукта может выделиться только небольшое количество спирта. То есть алкоксисилильная группа у при проведении обработки продукта с по существу полным кислотным гидролизом приводит к образованию спирта только в количестве в диапазоне от приблизительно 0,05% до приблизительно 10 мас.%. В подходящем случае количество образовавшегося спирта находится в диапазоне от приблизительно 0,5% до приблизительно 8 мас.%, и в подходящем случае количество образовавшегося спирта находится в диапазоне от приблизительно 1% до приблизительно 6 мас.%.

Поэтому полученные продукты AMS или co-AMS очень хорошо подходят для использования в резиновых композициях, в которых в качестве армирующего наполнителя используют диоксид кремния. В частности, реакционноспособные алкоксисилановые группы (группа), присоединенные к продуктам AMS или co-AMS, могут принимать участие в реакции алкоксисилан-диоксид кремния и могли бы улучшить диспергирование диоксида кремния в каучуке. Как обсуждалось ранее, реакция алкоксисилан-диоксид кремния в качестве побочного продукта приводит к получению спирта в случае использования алкилтриалкоксисиланов и/или групп полимера с концевыми алкоксисилановыми звеньями для диспергирования диоксида кремния в резиновых смесях. Обычно используемый триалкоксисилан представляет собой триэтоксисилан или триметоксисилан, а образующийся спирт представляет собой этанол или метанол, соответственно. Поскольку данные выделения спирта вносят свой вклад в выделения ЛОС, возникающие в результате переработки других компонентов резиновых шин, количество армирующего диоксида кремния и сопутствующее количество используемого триалкоксисилана определяются и ограничиваются правительственными предписаниями по охране окружающей среды.

Не связывая себя теорией, можно предположить, что ограниченное количество спирта, которое доступно в продукте (продуктах) AMS или co-AMS, может сделать данные соединения очень хорошо подходящими для использования в резиновых смесях, поскольку они демонстрируют наличие потенциала по значительному снижению уровня содержания потенциальных ЛОС, выделяющихся в виде спирта во время составления смеси и последующей переработки. Кроме того, представляется, что ограниченное количество доступных алкоксисилановых групп, не вступивших в реакцию во время и после перемешивания, могло бы серьезно ограничить степень образования вздутий для вулканизованных резиновых смесей и шин, изготовленных из них. Кроме того, представляется, что использование продуктов изобретения могло бы сделать возможным значительное увеличение количества диоксида кремния, используемого для армирования.

Использование продуктов AMS и/или co-AMS в резиновых смесях не только сводит к минимуму выделения спирта во время составления смеси и последующей переработки резины, но, кроме того, данные продукты демонстрируют и хорошие эксплуатационные характеристики в качестве диспергаторов диоксида кремния, что приводит к получению улучшенных физических свойств смесей, содержащих соединения. В частности, как описывается в приведенных далее примерах, смеси на основе каучука, содержащие AMS и никакого другого диспергатора диоксида кремния, характеризуются пониженной величиной tan δ при 50°С по сравнению со сравнительными смесями, содержащими в качестве диспергатора или аппрета для диоксида кремния алкилтриалкоксисилан или бис(триалкоксисилилоргано)дисульфид или меркаптотриалкоксисилан, что свидетельствует о пониженном гистерезисе и улучшенном сопротивлении качению у протекторов шин, изготовленных из смесей, содержащих данные AMS. По сравнению со сравнительными смесями приемлемыми были и другие механические и динамические вязкоупругие физические свойства смесей, содержащих AMS, что свидетельствует о том, что улучшенные свойства получали без оказания значительного неблагоприятного воздействия на другие физические свойства. Подобные результаты получали и при использовании в резиновых смесях в качестве добавки, способствующей диспергированию диоксида кремния, продукта co-AMS, имеющего меркаптогрупппу.

Кроме того, использование катализатора в виде сильного основания для реакции алкоксисилан-диоксид кремния в резиновых смесях, содержащих AMS и co-AMS, приводило к получению смесей на основе каучука, характеризующихся улучшенным армированием резины, повышенной степенью взаимодействия полимер-наполнитель и пониженной вязкостью смеси. Кроме того, использование катализатора дополнительно приводило к уменьшению величины tan δ при 50°С и величины G' при -20°С (показатель улучшенной силы сцепления со снежной поверхностью дороги). Поэтому комбинирование катализатора с экранирующими диоксид кремния добавками в виде AMS или co-AMS приводит к получению резиновых смесей, которые обеспечивают достижение улучшенных дисперсий диоксида кремния, силы сцепления с мокрой и снежной поверхностями дороги, уменьшенного сопротивления качению и пониженного гистерезиса у протекторов шин, содержащих такие соединения.

Также было обнаружено и то, что количество спирта, высвобождающегося из резиновых смесей в виде ЛОС во время составления смеси и последующей переработки, находится в диапазоне от нуля до приблизительно 0,1 мас.%, зачастую от нуля до приблизительно 0,05 мас.%, при расчете на массу резиновой смеси.

Вулканизуемая резиновая смесь, описанная в настоящем документе, содержит (а) эластомер; (b) армирующий наполнитель, включающий диоксид кремния или его смесь с техническим углеродом; (с) добавку, способствующую диспергированию диоксида кремния, содержащую алкоксимодифицированный силсесквиоксан, который включает одно или несколько соединений, выбираемых из группы, состоящей из алкоксимодифицированных силсесквиоксанов, описывающихся формулой

и их смесей, где w, x и y представляют собой мольные доли, y не равен нулю, либо w, либо х, но не оба сразу, может быть равен нулю, а w+x+y=1,00, где R1, R2 и R3 являются идентичными или различными, и их выбирают из группы, состоящей из (i) Н или алкильных групп, содержащих от одного до приблизительно 20 атомов углерода, (ii) циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, (iii) алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода, и (iv) R5X, где Х выбирают из группы, состоящей из Cl, Br, SH, SaR6, NR62, OR6, CO2H, SCOR6, CO2R6, OH, олефинов, эпоксидов, аминогрупп, винильных групп, акрилатов и метакрилатов, где а = от 1 до приблизительно 8, R5 выбирают из группы, состоящей из алкиленовых групп, содержащих от одного до приблизительно 20 атомов углерода, циклоалкиленовых групп, содержащих от 3 до приблизительно 20 атомов углерода, и R4 и R6 выбирают из группы, состоящей из алкильных групп, содержащих от одного до приблизительно 5 атомов углерода, циклоалкильных групп, содержащих от 3 до приблизительно 20 атомов углерода, и алкиларильных групп, содержащих от 7 до приблизительно 20 атомов углерода; (d) необязательно от приблизительно 0,05 до приблизительно 3% серусодержащего аппрета диоксида кремния; (е) необязательно катализатор реакции алкоксисилан-диоксид кремния; и (f) отвердитель.

Поскольку производные алкоксимодифицированного силсесквиоксана содержат такое небольшое количество алкоксисилановых групп y и, таким образом, характеризуются значительным уменьшением количества спирта, который может выделиться во время прохождения реакции алкоксисилан-диоксид кремния, количество диоксида кремния, присутствующего в смеси, при желании можно значительно увеличить по сравнению с количествами, используемыми в настоящее время. То есть диоксид кремния может присутствовать в количестве в диапазоне от приблизительно 15 частей на сто частей каучука (phr) до приблизительно 200 phr или более. Диоксид кремния также может присутствовать в количестве в диапазоне от приблизительно 15 phr до приблизительно 150 phr, от приблизительно 15 phr до приблизительно 120 phr, от приблизительно 30 phr до приблизительно 90 phr, от приблизительно 60 phr до приблизительно 80 phr и тому подобное. Алкоксимодифицированный силсесквиоксан может присутствовать в количестве в диапазоне от приблизительно 0,1% до приблизительно 20 мас.% при расчете на массу диоксида кремния. Алкоксимодифицированный силсесквиоксан также может присутствовать и в количестве в диапазоне от приблизительно 0,2 до приблизительно 15%, от приблизительно 0,5 до приблизительно 10% или от приблизительно 1 до приблизительно 6 мас.% при расчете на массу диоксида кремния.

Может оказаться желательным, хотя это и не является необходимым для улучшения свойств резины, чтобы, по меньшей мере, одна из групп R1, R2 и R3 алкоксимодифицированного силсесквиоксана представляла собой группу, которая связывается с эластомером. Такие группы включают нижеследующие, но не ограничиваются только ими: акрилаты, метакрилаты, группы амино-, винильная, меркапто-, атома серы и сульфидная и тому подробное. Необязательная реакция с живым концом полимера по завершении анионной полимеризации может позволить присоединить алкоксимодифицированный силсесквиоксан к полимеру по механизму реакции сочетания. Кроме того, по меньшей мере, одна из групп R1, R2 и R3 алкоксимодифицированного силсесквиоксана может представлять собой нижеследующее, но не ограничивается только им: меркаптоалкильная группа, блокированная меркаптоалкильная группа и органическая группа, включающая цепь, содержащую от приблизительно 2 до приблизительно 8 атомов серы, и тому подобное.

В альтернативном варианте или в дополнение к одной или нескольким группам, которые связываются с эластомером, резиновая смесь необязательно может содержать добавленный серусодержащий аппрет, такой как нижеследующие, но не ограничивающийся только ими: меркаптоалкилтриалкоксисиланы, блокированные меркаптоалкилтриалкоксисиланы, меркаптоалкилсиланы, связанные с диоксидом кремния, блокированные меркаптоалкилсиланы, связанные с диоксидом кремния, бис(триалкоксисилилоргано)тетрасульфиды или -дисульфиды и тому подобное, в количестве в диапазоне от приблизительно 0,05 до приблизительно 3% при расчете на количество диоксида кремния. В особенности подходящий для использования коммерческий продукт, содержащий меркаптосилан, нанесенный на носитель диоксид кремния, доступен от компании PPG Industries под наименованием Ciptane® 255LD, который представляет собой меркаптосилан, зафиксированный на диоксиде кремния, по существу не содержащий триалкоксисилана. Для того, чтобы в случае использования данного продукта получить желательное совокупное количество диоксида кремния, количество диоксида кремния в резиновой смеси можно скорректировать на добавленное количество диоксида кремния, обусловленное присутствием продукта Ciptane®.

Необязательный катализатор реакции алкоксисилан-диоксид кремния может включать сильные органические и неорганические основания. Сильные органические основания, подходящие для использования в изобретении в качестве катализатора, предпочтительно характеризуются величиной рКа в водных средах, большей, чем приблизительно 10, более предпочтительно большей, чем приблизительно 11, и оптимально большей, чем приблизительно 12. Сильное основание может присутствовать в смеси в количестве в диапазоне от приблизительно 0,01% до приблизительно 10%, обычно от приблизительно 0,1% до приблизительно 5%, при ра