Способ модификации неорганического кислородсодержащего зернистого материала, полученный из него продукт и их применение

Изобретение может быть использовано в химической промышленности. Способ получения модифицированного неорганического кислородсодержащего зернистого материала включает следующие стадии: а) получение смеси водной суспензии неорганического кислородсодержащего зернистого материала и алкоксилированного спирта согласно формуле

, где R1 представляет собой С18-алкил или фенил, С48-циклоалкил или фенил, R2 представляет собой атом водорода или метил, и n представляет собой целое число от 1 до 5; b) необязательное добавление первой смолы и/или предшественника первой смолы; с) добавление к смеси одного или нескольких сшивающих агентов, содержащих один или более элементов, выбранных из группы, состоящей из Si, Al, Ti, Zr, В, Zn, Sn и V; d) необязательное добавление второй смолы и/или предшественника второй смолы к полученной смеси. При этом воду из смеси необязательно удаляют по меньшей мере частично до или в течение стадий b), с) или d) или после стадии d). Кроме того, может быть проведена конверсия предшественника первой смолы в первую смолу до, в течение или после стадии с) и/или конверсия предшественника второй смолы во вторую смолу после стадии d). Изобретение позволяет повысить экологическую безопасность и упростить получение модифицированного неорганического кислородсодержащего зернистого материала, хорошо совместимого со смолами. 8 н. и 4 з.п. ф-лы, 4 табл.

Реферат

Изобретение относится к способу получения модифицированного неорганического кислородсодержащего зернистого материала.

Такие способы известны из патента США 4330446, который описывает водно-дисперсионные композиции на основе комплекса оксид кремния-органический полимер, состоящие из водно-дисперсионного коллоидного оксида кремния, водорастворимой или воднодисперсионной смолы органического полимера и ди- или триалкокси- (или алкоксиалкокси) силанового соединения. На первой стадии смолу получают в изопропиловом спирте (IPA), после чего добавляют воду для получения водной дисперсии смолы акрилового полимера. К водной дисперсии добавляют водную дисперсию коллоидного оксида кремния, затем при перемешивании и нагревании до 85°С добавляют γ-метакрилоксипропилтриметоксисилан.

В заявке США 2001/0027223 описаны жидкие силико-акриловые композиции, содержащие оксид кремния, силан и полифункциональный акриловый мономер. Эти композиции могут быть получены путем смешения кислого водного золя кремниевой кислоты, содержащего оксид кремния, винилсилана, алкоксилированного метакрилового мономера и изопропилового спирта, где мономер полимеризуют для образования смолы, после чего смесь перегоняют для удаления воды и спирта.

ЕР 1366112 описывает дисперсию диоксида кремния, включающую полимер или полимеризуемые мономеры/олигомеры; и дисперсную фазу, включающую аморфный диоксид кремния. В качестве примера получали смесь золя оксида кремния, силана и изопропанола и перемешивали при 40°С и 85 мбар. Затем к смеси добавляли гидроксилсодержащий полиакрилат. Полученную смесь затем перегоняли при 40°С под уменьшенным давлением.

GB 2047721 описывает водную покрывную композицию, включающую меламинформальдегидную смолу, коллоидный оксид кремния и моноорганотриалкокси- или триалкоксиалкоксисилан в системе растворителей, состоящей из воды и смешивающегося с водой органического растворителя. Эта заявка описывает получение двух дисперсий: первой, включающей коллоидный оксид кремния и силан; второй, включающей меламиновую смолу, которую растворяют в смеси растворителей изопропанол/н-бутанол. На следующей стадии две дисперсии смешивают.

US 2003/0035888 впервые описывает способ получения гидрофобного коллоидного оксида кремния сначала замещением значительного количества воды в водном коллоидном оксиде кремния, с применением мембраны, на один или несколько гидрофильных органических растворителей, таких как метанол; с последующей реакцией коллоидного оксида кремния с гидролизуемым соединением кремния, имеющим по меньшей мере одну алкоксигруппу или гидролизуемую группу. Гидрофильный органический растворитель из полученной дисперсии затем замещали на гидрофобный органический растворитель.

Способы предшествующего уровня техники в целом применяют большое количество органического растворителя, что означает, что процесс проводится при относительно низком выходе продукта на единицу объема. Это большое количество растворителя далее требует специфических мер для обработки или рециклизации потока отходов, что, кроме прочего, делает способы предшествующего уровня техники менее привлекательными экономически.

Целью настоящего изобретения являлось предоставить улучшенный способ получения модифицированного неорганического кислородсодержащего зернистого материала.

Эта цель достигается в способе получения модифицированного неорганического кислородсодержащего зернистого материала, включающего стадии:

а) получения смеси водной суспензии неорганического кислородсодержащего зернистого материала и алкоксилированного спирта согласно формуле

где R1 представляет собой C1-C8-алкил, С48-циклоалкил или фенил, предпочтительно R1 представляет собой С14-алкил, R2 представляет собой атом водорода или метил, предпочтительно R2 представляет собой метил и n представляет собой целое число от 1 до 5;

b) необязательно добавления первой смолы и/или предшественника первой смолы;

c) добавления одного или нескольких сшивающих агентов к смеси;

d) необязательно добавления второй смолы и/или предшественника второй смолы к полученной смеси; и где

необязательно удаляли воду по меньшей мере частично из смеси до или в течение стадий b), с) или d) или после стадии d);

и необязательно конвертировали предшественник первой смолы в первую смолу до, в течение или после стадии с) и/или предшественника второй смолы во вторую смолу после стадии d).

Способ по изобретению предоставляет модифицированный неорганический кислородсодержащий зернистый материал, имеющий хорошую совместимость со смолами. Таким образом, может быть получена стабильная дисперсия зернистого материала в смоле. Следующим преимуществом способа по изобретению является то, что в способе в целом требуется меньшее количество стадий и меньше растворителя, что делает возможным более высокий выход неорганического зернистого материала на единицу объема, делая способ более эффективным, чем традиционные способы. Применение алкоксилированного спирта приводит к более эффективному удалению воды из смеси, включающей неорганический кислородсодержащий зернистый материал, алкоксилированный спирт и воду. Далее алкоксилированный спирт имеет преимущество в том, что он совместим с большинством смол, делая излишним применение других растворителей, в которых смола растворяется более легко. Следовательно, способ по изобретению в целом является более простым, более привлекательным экономически и более приемлемым с экологической точки зрения, чем традиционные способы.

Вариантом осуществления изобретение является способ получения модифицированного коллоидного неорганического кислородсодержащего зернистого материала, включающий стадии:

а) получения смеси водной суспензии неорганического кислородсодержащего зернистого материала и алкоксилированного спирта согласно формуле

где R1 представляет собой C1-C8-алкил, С48-циклоалкил или фенил, предпочтительно R1 представляет собой C1-C4-алкил, R2 представляет собой атом водорода или метил, предпочтительно R2 представляет собой метил и n представляет собой целое число от 1 до 5;

b) добавления первой смолы и/или предшественника первой смолы;

c) добавления одного или нескольких сшивающих агентов к смеси;

d) необязательно добавления второй смолы и/или предшественника второй смолы к полученной смеси; и где

воду необязательно удаляли по меньшей мере частично из смеси до или в течение стадий b), с) или d) или после стадии d); и

необязательно конвертировали предшественник первой смолы в первую смолу до, в течение или после стадии с) и/или предшественник второй смолы во вторую смолу после стадии d).

Если первая смола или предшественник первой смолы реагирует с водой и повреждается в присутствии воды на стадии b) или с) процесса, воду удаляли до начала стадии b).

Этот вариант осуществления имеет дополнительное преимущество в том, что коллоидный неорганический кислородсодержащий зернистый материал функционализируется сшивающим агентом, в то время как смола присутствует, приводя к включению полученного неорганического зернистого материала в смолу за одну стадию. Способ этого варианта осуществления является даже более простым и, таким образом, более дешевым, чем способы по изобретению, где первая смола или предшественник первой смолы не добавляются на стадии а). Следующий вариант осуществления изобретения представляет собой способ получения модифицированного коллоидного неорганического кислородсодержащего зернистого материала, включающий стадии:

а) получения смеси водной суспензии неорганического кислородсодержащего зернистого материала и алкоксилированного спирта согласно формуле

где R1 представляет собой C1-C8-алкил, С48-циклоалкил или фенил, предпочтительно R1 представляет собой С14-алкил, R2 представляет собой атом водорода или метил, предпочтительно R2 представляет собой метил и n представляет собой целое число от 1 до 5;

b) добавления одного или нескольких сшивающих агентов к смеси;

c) необязательно добавления первой смолы и/или предшественника первой смолы к полученной смеси; и где

воду необязательно удаляли по меньшей мере частично из смеси до или в течение стадии b) или с) или после стадии с);

и необязательно конвертировали предшественник первой смолы в первую смолу после стадии с). Предпочтительно воду удаляли после стадии b) и/или после стадии с). Это имеет преимущество в том, что размер реактора может быть уменьшен, так как в стадиях а) и b) присутствует только неорганический кислородсодержащий зернистый материал и модифицируется сшивающим агентом. Кроме того, способ приводит к модифицированному неорганическому кислородсодержащему зернистому материалу в алкоксилированном спирте, который может быть добавлен отдельно ко второй смоле или предшественнику второй смолы, делая возможным получать в одном месторасположении модифицированный неорганический зернистый материал, транспортировать его и в другом месторасположении добавлять его к смоле.

В контексте настоящего изобретения формулировка "водная суспензия неорганического кислородсодержащего зернистого материала" относится к суспензии, в которой по меньшей мере часть твердых частиц неорганического кислородсодержащего зернистого материала, имеющего размер между 1 и 1000 нм в по меньшей мере одном направлении, диспергирована в водной среде.

В способе по изобретению вода, в частности вода, происходящая из водной суспензии, может быть удалена в любой момент времени в течение процесса. Она может быть удалена до или в течение стадий b), с) или d) или после стадии d). Удаление может быть проведено любым способом, известным в технике, таким как вакуумирование, дистилляция, дистилляция в комбинации с вакуумированием, и применением мембраны, например мембраны ультрафильтрования, которая способна селективно удалять воду из смеси.

В определенных применениях присутствие воды может повреждать смолу. В таких применениях количество воды в продукте, полученном способом по изобретению, составляет обычно менее, чем 5 процентов по массе (мас.%) воды, основываясь на общей массе продукта, предпочтительно менее, чем 2 мас.%, и наиболее предпочтительно менее чем 1 мас.% воды.

В целом, в способе по изобретению применяются различные исходные компоненты в следующих количествах:

0,1-80 мас.%, предпочтительно 0,2-65 мас.% водной суспензии неорганического кислородсодержащего зернистого материала;

0,1-90 мас.%, предпочтительно 0,2-70 мас.% алкоксилированного спирта;

0,01-25 мас.%, предпочтительно 0,05-15 мас.% сшивающего агента;

1-99 мас.%, предпочтительно 5-95 мас.% первой и/или второй смолы и/или предшественника первой и/или второй смолы,

считая на общую массу водной суспензии неорганического кислородсодержащего зернистого материала, спирта, сшивающего агента, первой и/или второй смолы и/или предшественника первой и/или второй смолы, где общая масса исходных компонентов составляет до 100 мас.%.

Если неорганический кислородсодержащий зернистый материал является выбранным из группы, состоящей из оксида кремния, окиси алюминия, тригидрат алюминия, диоксида титана, оксида олова, оксида индия-олова и оксида цинка, различные исходные компоненты обычно применяются в следующих количествах:

0,1-65 мас.%, предпочтительно 0,2-50 мас.% водной суспензии неорганического кислородсодержащего зернистого материала;

0,1-90 мас.%, предпочтительно 0,2-70 мас.% алкоксилированного спирта;

0,01-25 мас.%, предпочтительно 0,05-15 мас.% сшивающего агента;

1-99 мас.%, предпочтительно 5-95 мас.% первой и/или второй смолы и/или предшественника первой и/или второй смолы,

считая на общую массу водной суспензии неорганического кислородсодержащего зернистого материала, спирта, сшивающего агента, первой и/или второй смолы и/или предшественника первой и/или второй смолы, где общая масса исходных компонентов составляет до 100 мас.%.

Стадия b) способа по изобретению проводится так, что по меньшей мере часть сшивающего агента реагирует с неорганическим кислородсодержащим зернистым материалом. Обычно стадия b) проводится при температуре, которая равна или меньше, чем температура кипения азеотропа алкоксилированный спирт/вода. В целом, температура в течение стадии b) находится между 0°С и 140°С, более предпочтительно между 10°С и 120°С и наиболее предпочтительно между 20°С и 90°С.

Способ по изобретению может быть проведен в реакторе периодического действия или непрерывно. В одном варианте осуществления способ по изобретению проводится в непрерывном реакторе, включающем мембрану, позволяющую воде и газообразным побочным продуктам удаляться из реакционной среды, в то время как сшивающий агент реагирует с неорганическим кислородсодержащим зернистым материалом. Таким образом, могут быть получены продукты, содержащие желаемое количество воды и не нуждающиеся в любой дополнительной обработке для удаления воды, такой как дистилляция.

Неорганический кислородсодержащий зернистый материал может представлять собой любой зернистый материал, известный специалисту в области техники, способный к образованию суспензии, которая применяется в способе по настоящему изобретению, то есть где по меньшей мере часть твердого зернистого материала диспергирована в водной среде. Можно представить, что неорганический зернистый материал по настоящему изобретению уже может быть модифицирован, например, он может содержать органические компоненты или быть инкапсулирован частично или полностью во втором неорганическом материале до того, как зернистый материал модифицируется согласно способам по изобретению. Также рассматривается применение неорганического кислородсодержащего зернистого материала, включающего ядро металла, такого как медь, и оболочку оксида металла, как иллюстрировано ниже. Неорганический кислородсодержащий зернистый материал обычно является выбранным из оксидов, гидроксидов, глин, соединений кальция, цеолитов и талька.

Примерами пригодных оксидов и гидроксидов являются оксид кремния (то есть диоксид кремния), окись алюминия, тригидрат алюминия, диоксид титана, оксид цинка, оксид железа, оксид циркония, оксид церия, оксид мышьяка, оксид висмута, оксид кобальта, оксид диспрозия, оксид эрбия, оксид европия, оксид индия, гидроксид индия, оксид индия-олова, оксид магния, оксид неодима, оксид никеля, оксид самария, оксид тербия, оксид олова, оксид вольфрама и оксид иттрия.

Глины типично являются катионными или анионными глинами. Примерами катионных глин являются сукновальные глины, такие как монтмориллонит. Примерами анионных глин являются слоистые двойные гидроксиды (LDHs), такие как гидротальцит и гидротальцитподобные LDHs.

Примерами соединений кальция являются карбонат кальция и фосфат кальция.

Предпочтительными неорганическими кислородсодержащими зернистыми материалами являются оксиды и гидроксиды и в частности оксид кремния, окись алюминия, тригидрат алюминия, диоксид титана, оксид олова, оксид индия-олова и оксид цинка.

Наиболее предпочтительным зернистым материалом является оксид кремния. Примерами водного коллоидного оксида кремния являются Nyacol® от Akzo Nobel N.V., Snowtex® от Nissan Chemicals Ltd. и Klebosol® от Clariant.

Настоящее изобретение также включает модификации смесей двух или более из вышеупомянутых неорганических зернистых материалов. Типично, неорганические кислородсодержащие зернистые материалы по изобретению имеют значение среднего диаметра частицы между 1 и 1000 нм, который был определен с применением способа динамического рассеивания света, содержание твердых веществ от 10 до 50 мас.%. Предпочтительно значение среднего диаметра частицы находится между 1 и 150 нм. Предполагается, что суспензия неорганического кислородсодержащего зернистого материала по изобретению может включать двухвершинные или поливершинные распределения размера частиц.

В более предпочтительном варианте осуществления настоящего изобретения водная суспензия неорганического кислородсодержащего зернистого материала, и в частности водный оксид кремния, применяется деионизированным. "Деионизированный" обозначает, что любые свободные ионы, такие как анионы, подобные Cl", и катионы, такие как Mg2+ и Са2+, удаляют из водной суспензии до желательной концентрации с применением методик, известных специалисту в области техники, таких как ионообменные методики. Термин "свободные ионы" относится к ионам, которые растворены в растворителе(ях) и могут свободно перемещаться по смеси. Количество свободных ионов типично менее 10000 частей на миллион (ч./млн), предпочтительно менее 1000 ч./млн и наиболее предпочтительно менее 500 ч./млн.

В способе по изобретению удобно применять алкоксилированный спирт согласно формуле

где R1 представляет собой С18-алкил, С48-циклоалкил или фенил, предпочтительно R1 представляет собой С14-алкил, R2 представляет собой атом водорода или метил, предпочтительно R2 представляет собой метил и n представляет собой целое число от 1 до 5. Примеры таких алкоксилированных спиртов представляют собой монометиловый эфир этиленгликоля, моноэтиловый эфир этиленгликоля, моно-н-пропиловый эфир этиленгликоля, моноизопропиловый эфир этиленгликоля, монобутиловый эфир этиленгликоля, монотретбутиловый эфир этиленгликоля, моногексиловый эфир этиленгликоля, циклогексиловый эфир этиленгликоля, монофениловый эфир этиленгликоля, 2-этилгексиловый эфир этиленгликоля, монометиловый эфир диэтиленгликоля, моноэтиловый эфир диэтиленгликоля, моно-н-пропиловый эфир диэтиленгликоля, моноизопропиловый эфир диэтиленгликоля, монобутиловый эфир диэтиленгликоля, монометиловый эфир пропиленгликоля, моноэтиловый эфир пропиленгликоля, монопропиловый эфир пропиленгликоля, моноизопропиловый эфир пропиленгликоля, монобутиловый эфир пропиленгликоля, монотретбутиловый эфир пропиленгликоля, моногексиловый эфир пропиленгликоля, циклогексиловый эфир пропиленгликоля, монофениловый эфир пропиленгликоля, монометиловый эфир дипропиленгликоля, моноэтиловый эфир дипропиленгликоля, моно-н-пропиловый эфир дипропиленгликоля, моноизопропиловый эфир дипропиленгликоля и монобутиловый эфир дипропиленгликоля. Из этих спиртов монометиловый эфир этиленгликоля и моноэтиловый эфир этиленгликоля являются менее предпочтительными, так как они являются тератогенными и могут вызывать проблемы со здоровьем.

Наиболее предпочтительными алкоксилированными спиртами являются монометиловый эфир пропиленгликоля и моноэтиловый эфир пропиленгликоля. Растворители доступны, например, от Shell (Окситол/Прокситол) и от Dow (Dowanol) и Union Carbide (Карбитол/Целлозольв).

Также возможно представить применение двух или более алкоксилированных спиртов в способе по изобретению. Кроме того, возможно применение смеси растворителей из одного или нескольких алкоксилированных спиртов и другого растворителя, такого как любые из растворителей, представленных ниже. Можно заметить, что состав этой смеси растворителей должен быть выбран так, чтобы смесь являлась совместимой с водной суспензией и смолой или предшественником смолы, применяемым в способе по изобретению.

Далее, возможно заместить алкоксилированный спирт по меньшей мере частично на другой приемлемый растворитель, особенно на растворители, которые являются более совместимыми с первой и/или второй смолой или предшественником первой и/или второй смолы и/или которые не реагируют при применении, таком как в покрывной композиции, включающей компоненты, способные реагировать с гидроксильной группой алкоксилированного спирта. Такие растворители известны специалисту в области техники и включают кетоны, такой как метиламилкетон, метилэтилкетон, метилизобутилкетон и циклогексанон; эфиры, такие как этилацетат и бутилацетат; ненасыщенные акриловые эфиры, такие как бутилакрилат, метилметакрилат и триакрилаттриметилолпропана; ароматические углеводороды, такие как толуол и ксилол; и простые эфиры, такие как дибутиловый простой эфир.

Любой сшивающий агент, способный реагировать с неорганическим кислородсодержащим зернистым материалом, может быть применен в способе по изобретению; пригодные сшивающие агенты известны специалисту в данной области техники. Обычно сшивающий агент по изобретению включает один или несколько элементов, выбранных из группы, состоящей из Si, Al, Ti, Zr, В, Zn, Sn и V. Предпочтительно сшивающий агент включает один или несколько элементов, выбранных из группы, состоящей из Si, Al, Ti, Zr и В.

Сшивающий агент по изобретению обычно представляет собой сшивающий агент согласно формуле:

где M1 и M2 являются независимо выбранными из группы, состоящий из Si, Al, Ti, Zr и В, и по меньшей мере один из R1-R6 является независимо выбранным из гидроксила, хлора, ацетокси, имеющего 1-10 атомов углерода, алкокси, имеющего 1-20 атомов углерода, органофосфата, включающего две углеводородных группы, имеющих 1-20 атомов углерода, и органопирофосфата, включающего две углеводородных группы, имеющих 1-20 атомов углерода, где ацетокси, алкокси, органофосфат или органопирофосфат необязательно включает по меньшей мере одну функциональную группу, и остающиеся R1-R6 являются независимо выбранными из гидроксила, хлора, углеводорода, имеющего 1-10000 атомов углерода, где углеводород необязательно включает по меньшей мере одну функциональную группу, ацетокси, имеющего 1-5 атомов углерода, и алкокси, имеющего 1-20 атомов углерода, где алкокси необязательно включает по меньшей мере одну функциональную группу, силоксан и силазан, где силоксан и/или силазан необязательно представляют собой циклическую структуру, лестничную структуру или структуру, подобную клетке, или образует цикл, лестницу или подобную клетке структуру с любой из остающихся групп R1-R6; и X представляет собой кислород или, если M1 и/или М2 представляют собой Si, X представляет собой О, N, S, дисульфид, полисульфид, R7-S4-R8 и/или R7-S2-R8, где R7 и R8 являются независимо выбранными из углеводорода, имеющего от 1 до 6 атомов углерода, и р представляет собой целое число от 0 до 50 при условии, что если M1 представляет собой Al или В, R3 отсутствует и/или, если М2 представляет собой Al или В, R5 отсутствует. Функциональная группа может быть любой функциональной группой, известной специалисту в данной области техники. Примерами таких функциональных групп являются гидроксил, эпоксигруппа, изоцианат, тиол, олигосульфиды, амин и галоген.

Возможно применять комбинацию двух или более сшивающих агентов в способе по изобретению. Сшивающие агенты могут контактировать с неорганическим кислородсодержащим зернистым материалом в виде смеси или по отдельности. Отношение сшивающих агентов может варьироваться, как желательно. Также возможно изменять соотношение сшивающих агентов в течение времени добавления сшивающих агентов к зернистому материалу.

В следующем варианте осуществления изобретения сшивающий агент включает по меньшей мере одну функциональную группу, способную реагировать с первой и/или второй смолой. Примеры таких функциональных групп включают гидроксил, эпоксигруппу, изоцианат, тиол, олигосульфиды, фенол, винил, простой тиоэфир, тиоэфир, (мет)акрилат, эписульфид, тиофосфат, аллил, амин и галоген.

В одном варианте осуществления способа по изобретению неорганический кислородсодержащий зернистый материал, который был модифицирован по меньшей мере одним из вышеупомянутых сшивающих агентов, затем модифицировали дополнительным сшивающим агентом или соединением, способным реагировать со сшивающим агентом, присоединенным к зернистому материалу. Например, модифицированный зернистый материал обрабатывали гексаметилдисилазаном (HMDS), что приводит к модифицированному кислородсодержащему зернистому материалу, который являются более гидрофобным и, следовательно, более совместимым с гидрофобными матрицами.

Если неорганический кислородсодержащий зернистый материал представляет собой оксид кремния, предпочтительный сшивающий агент представляет собой соединение, основанное на кремнии. Соединение, основанное на кремнии, типично является выбранным из группы, состоящей из силанов, дисиланов, олигомеров силана, силазана, силанфункционализированных силиконов, силанмодифицированных смол, и силсесквиоксанов. Предпочтительные соединенения, основанные на кремнии, представляют собой силаны и силазаны. Силаны, пригодные для применения в способе по изобретению, представляют собой соединения согласно формулам I-VI:

где каждый R1, R2, R3, R4 являются независимо выбранными из водорода или углеводорода, имеющего 1-20 атомов углерода, где углеводород необязательно включает один или несколько функциональных групп. Если силан согласно любой из формул IV-VI применяется в способе по изобретению, ионы, в частности, Cl", предпочтительно удалять из смеси, например, путем применения ионообменых методик. Для того чтобы избежать добавочной стадии удаления иона, силаны согласно любой из формул I-III являются предпочтительными.

Примеры силанов по изобретению представляют собой трибутилметоксисилан, дибутилдиметоксисилан, бутилтриметоксисилан, додецилтриметоксисилан, триметилхлорсилан, трибутилхлорсилан, диметилдихлорсилан, дибутилдихлорсилан, метилтрихлорсилан, бутилтрихлорсилан, октилтрихлорсилан, додецилтрихлорсилан, метилтриметоксисилан (Dynasylan® MTMS), метилтриэтоксисилан (Dynasylan® MTES), пропилтриметоксисилан (Dynasylan® PTMO), пропилтриэтоксисилан (Dynasylan® РТЕО), изобутилтриметоксисилан (Dynasylan® IBTMO), изобутилтриэтоксисилан (Dynasylan® IBTEO), октилтриметоксисилан (Dynasylan® OCTMO), октилтриэтоксисилан (Dynasylan® OCTEO), гексадецилтриметоксисилан (Dynasylan® 9116), фенилтриметоксисилан (Dynasylan® 9165), фенилтриэтоксисилан (Dynasylan® 9265), 3-глицидилоксипропилтриметоксисилан (Dynasylan® GLYMO), глицидилоксипропилтриэтоксисилан (Dynasylan® GLYEO), 3-меркаптопропилтриметоксисилан (Dynasylan® MTMO), 3-меркаптопропилметилдиметоксисилан (Dynasylan® 3403), 3-метакрилоксипропилтриметоксисилан (Dynasylan® MEMO), винилтриэтоксисилан (Dynasylan® VTEO), винилтриметоксисилан (Dynasylan® VTMO), винил-трис(2-метоксиэтокси)силан (Dynasylan® VTMOEO), ацетоксипропилтриметоксисилан, метилтриацетоксисилан, 3-акрилоксипропилтриметоксисилан, 3-акрилоксипропилдиметилметоксисилан, аллилтриметоксисилан, аллилтриэтоксисилан, диметилдиэтоксисилан, диметилдиметоксисилан, диметилэтоксисилан, н-гексадецилтриэтоксисилан, 3-меркаптопропилтриэтоксисилан, метилдодецилдиэтоксисилан, метил-н-октадецилдиэтоксисилан, метилфенилдиэтоксисилан, метилфенилдиметоксисилан, н-октадецилтриэтоксисилан, н-октадецилтриметоксисилан, фенилдиметилэтоксисилан, фенилтриметоксисилан, триметилэтоксисилан, триметилметоксисилан, винилметилдиэтоксисилан, октантиовая кислота, S-(триэтоксисилил) пропиловый эфир, бис(3-триэтоксисилилпропил)тетрасульфид (Si69® из Degussa), бис(3-триэтоксисилилпропил)дисульфид, гамма-меркаптопропилтриметоксисилан (SiSiB® PC2300 из РСС), гамма-меркаптопропилтриэтоксисилан и 3-октаноилтио-1-пропилтриэтоксисилан (NXT™ из GE). Следующие примеры силановых сшивающих агентов могут быть подобраны из WO 99/09036, силановые сшивающие агенты из которого включены в данное описание посредством цитирования.

Далее, можно представить, что силан, примененный в способе по изобретению, представляет собой смесь двух или более силанов согласно любой из формул I-VI.

Примеры пригодных дисиланов представляют собой бис(2-гидроксиэтил)-3-аминопропил-триэтоксисилан, 1,2-бис(триметоксисилил)этан, бис(триметоксилсилилэтил)бензол и 1,6-бис(триметоксилсилил)гексан.

Примеры пригодных олигомеров силана представляют собой олигомер винилтриметоксисилана (Dynasylan® 6490), олигомер винилтриэтоксисилана (Dynasylan® 6498).

Примерами пригодных силазанов являются гексаметилдисилазан (Dynasylan® HMDS), тетраметилдисилазан, диметилциклосилазан, 1,1,1,2,3,3,3-гептаметилдисилазан и N-метилсилазановая смола (PS1 17 от Petrarch). Примерами пригодных силоксанов являются 1,1,3,3-тетраметил-1,3-диэтоксидисилоксан, полидиметилсилоксан с концевым силанолом (например PS 340, PS 340.5, PS 341, PS 342.5 и PS 343 от Fluorochem), диацетоксифункционализированный полидиметилсилоксан (PS 363.5 от Fluorochem), метилдиацетоксифункционализированный полидиметилсилоксан (PS 368.5 и PS 375 от Fluorochem), полидиметилсилоксан с концевыми диметилэтоксигруппами (PS 393 от Fluorochem) и полидиметилсилоксан с концевыми диметилметоксигруппами (PS 397 от Fluorochem). Силанмодифицированные смолы обычно представляют собой полимеры, содержащие моно-, ди- или триалкоксисилильные фрагменты или их гидроксисилил, ацетоксисилильные или хлорсилильные эквиваленты, которые могут быть получены путем введения кремнийсодержащих мономеров в ходе полимеризации или путем модификации смолы, как будет очевидно специалисту в данной области техники. Предпочтительные силанмодифицированные смолы представляют собой полимеры, содержащие моно-, ди- или триалкоксисилильные фрагменты, так как они более стабильны и не требуют любых дальнейших стадий обработки для удаления нежелательных побочных продуктов, таких как кислоты и хлориды. Примеры таких силанмодифицированных смол представляют собой триметоксисилилмодифицированный полиэтиленимин (PS 076 от Fluorochem), метилдиметоксисилилмодифицированный полиэтиленимин (PS 076,5 от Fluorochem), N-триэтоксисилилпропил-о-полиэтиленоксидуретан (PS 077 от Fluorochem) и метилдиэтоксисилилмодифицированный 1,2-полибутадиен (PS 078,8 от Fluorochem).

Примерами пригодных силсесквиоксанов являются полиметил силсесквиоксан (PR 6155 от Fluorochem), полифенил пропилсилсесквиоксан (PR 6160 от Fluorochem) и ОН-функциональный полифенилпропилсилсесквиоксан (PR 6163 от Fluorochem).

Другие сшивающие агенты, предпочтительные в способе по изобретению, представляют собой органо-металлаты титана, алюминия, бора и циркония.

Примерами титансодержащих сшивающих агентов являются изопропилизостеароилтитанат, изопропилдиметакрилтриизостеароилтитанат, изопропилдиметакрилизостеароилтитанат, тетраизопропилди((диоктил)фосфито)титанат, тетра-(2,2-диаллилоксиметил)бутилди((дитридецил)фосфито)титанат, изопропилтри((диоктил)пирофосфат)титанат, изопропокситриизостеароилтитанат, ди((диоктил)пирофосфат)оксоэтилентитанат, ди((диоктил)фосфат)этилентитанат, ди((диоктил)пирофосфат)этилентитанат, тетраоктилтитанатди(дитридецил)фосфит, 2,2-(бис-2-пропенолатометил)бутанолатотитан(IV), трис(диоктил)пирофосфато-O и диалкокси-бис(триэтаноламин)титанат.

Примерами алюминийсодержащих сшивающих агентов являются диизопропилацетоалкоксиалюминат, изопропилдиизостеароилалюминат и изопропилдиоктилфосфаталюминат.

Примеры борсодержащих сшивающих агентов представляют собой триметилборат (ТМВ от Semichem), триэтилборат (ТЕВ от Semichem) и трипропилборат.

Примерами цирконийсодержащих сшивающих агентов являются изопропилтриизостеароилцирконат, бутил триизостеароилцирконат, бутилтриолеилцирконат, изопропилтрилинолеилцирконат, ди(кумил)фенилоксоэтиленцирконат, ди(кумил)фенилдибутилцирконат и три(кумил)фенилпропилцирконат.

Первая и вторая смолы могут быть теми же или различными и могут представлять собой любую смолу, известную специалисту в данной области техники. Примерами таких смол являются полиприсоединительный полимер, полиуретан, полиэфир, простой полиэфир, полиамид, полимочевина, полиуретан-полиэфир, полиуретан-простой полиэфир, основанные на целлюлозе связующие, такие как ацетобутират целлюлозы и/или гибридные смолы. Специфические примеры вышеупомянутых смол могут быть найдены в WO 04/018115. Эти смолы могут применяться, если это удобно, в форме твердого вещества, жидкости, раствора, эмульсии или суспензии.

Предшественники первой и второй смолы представляют собой строительные блоки для их соответствующих смол, такие как мономеры, олигомеры или смолы; и могут быть конвертированы в соответствующие первую и вторую смолы. Конверсия предшественника первой и/или второй смолы может быть проведена с применением любого традиционного способа, известного специалисту в данной области техники.

Далее изобретение относится к суспензии, которая может быть получена по способу по изобретению и включает модифицированный неорганический кислородсодержащий зернистый материал и алкоксилированный спирт согласно формуле:

где R1 представляет собой C1-C8-алкил или фенил, предпочтительно R1 представляет собой С14-алкил, R2 представляет собой атом водорода или метил, предпочтительно R2 представляет собой метил и n представляет собой целое число от 1 до 5. Поскольку модифицированный зернистый материал по изобретению имеет меньшую тенденцию к агломерации по сравнению с зернистым материалом, модифицированным в другом растворителе, чем растворитель по изобретению, суспензия по изобретению в целом имеет улучшенную стабильность.

Количество модифицированного неорганического кислородсодержащего зернистого материала обычно составляет по меньшей мере 10 мас.%, предпочтительно по меньшей мере 20 мас.%, и наиболее предпочтительно по меньшей мере 25 мас.%, считая на общую массу суспензии, и самое большее 70 мас.%, предпочтительно самое большее 65 мас.% и наиболее предпочтительно самое большее 60 мас.%, считая на общую массу суспензии.

Изобретение далее относится к сухому порошку модифицированного неорганического кислородсодержащего зернистого материала по изобретению. Такой сухой порошок может быть получен путем удаления алкоксилированного спирта из суспензии по изобретению. Удаление алкоксилированного спирта может быть проведено согласно любому способу, известному в технике. Сухой порошок по изобретению имеет уменьшенную тенденцию к агломерации по сравнению с зернистым материалом, модифицированным в растворителе другом, чем растворитель по изобретению. Следовательно, сухой порошок может быть повторно диспергирован в растворителе с образованием меньшего количества агломератов или вообще без образования агломератов. Без желания связываться с любой теорией, предполагается, что алкоксилированный спирт по изобретению реагирует и/или взаимодействует с модифицированным кислородсодержащим зернистым материалом для того, чтобы улучшить устойчивость к агломерации, и что, кроме того, совместимость модифицированного зернистого материала с первой и/или второй смолой будет увеличиваться.

Следующее преимущество сухих порошков по изобретению состоит в том, что они могут быть смешаны в блендере с первой и/или второй смолой без необходимости в растворителе. Также возможно сначала повторно диспергировать сухие порошки по изобретению в любом приемлемом растворителе и затем добавить полученную суспензию к первой и/или второй смоле.

Кроме того, изобретение относится к композиции смолы, которая может быть получена любым из способов, описанных выше, и включает модифицированный неорганический кислородсодержащий зернистый материал, алкоксилированный спирт и первую и/или вторую смолу. Для некоторых применений предпочтительно применять композицию смолы, из которой удален алкоксилированный спирт с применением традиционных способов, известных специалисту в данной области техники. Полученная композиция смолы включает модифицированный неорганический кислородсодержащий зернистый материал и первую и/или вторую смолу. Количество неорганического кислородсодержащего зернистого