Пролекарства соединений 2,4-пиримидиндиамина и их применения

Иллюстрации

Показать все

Настоящее изобретение относится к новым пролекарствам биологически активного соединения 2,4-пиримидиндиамина, соответствующего структурной формуле, указанной ниже, ее гидрату, сольвату и их фармацевтически приемлемым солям Соединения обладают свойствами ингибирования каскада передачи сигнала Fc-рецептора, таких как FcαRI, FcγRI, FcγRIII и FcεRI, дегрануляции или активности киназы Syk. Соединения могут быть использованы для лечения или профилактики ревматоидного артрита, аутоиммунных заболеваний. Изобретение также относится к вариантам композиций на основе указанных соединений. Структурная формула:

3 н. и 22 з.п. ф-лы, 15 ил., 3 табл.

Реферат

1. ПЕРЕКРЕСТНАЯ ССЫЛКА

По настоящей заявке испрашивается приоритет согласно § 119(e) 35 U.S.C. на основании предварительной заявки на выдачу патента с регистрационным No. 60/645424, поданной 19 января 2005, и предварительной заявки на выдачу патента с регистрационным No. 60/654620, поданной 18 января 2005. Описания обеих указанных предварительных заявок на выдачу патента включены в данное описание в виде ссылки в полном объеме.

2. ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее описание относится к пролекарствам биологически активных соединений 2,4-пиримидиндиамина, к фармацевтическим композициям, содержащим пролекарства, к промежуточным соединениям и способам синтеза для получения пролекарств и к способам применения пролекарств и композиций в различных ситуациях, например для лечения или профилактики различных заболеваний.

3. УРОВЕНЬ ТЕХНИКИ

Поперечные сшивки Fc-рецепторов, таких как высокоаффинный рецептор IgE (FcεRI) и/или высокоаффинный рецептор IgG (FcγRI), активируют каскад передачи сигнала в тучных клетках, базофилах и других иммунных клетках, что приводит к высвобождению химических медиаторов, ответственных за многочисленные неблагоприятные явления. Например, такие поперечные сшивки приводят к высвобождению предварительно образованных медиаторов анафилактических реакций гиперчувствительности типа I (немедленного типа), таких как гистамин, из мест хранения в гранулах в результате дегрануляции. Сшивки также приводят к синтезу и высвобождению других медиаторов, включая лейкотриены, простагландины и активирующие тромбоциты факторы (PAF), которые играют важные роли в воспалительных реакциях. Дополнительные медиаторы, которые синтезируются и высвобождаются при поперечном сшивании Fc-рецепторов, включают цитокины и оксид азота.

Каскад(ды) передачи сигнала, активируемый поперечным сшиванием Fc-рецепторов, таких как FcεRI и/или FcγRI, содержит ряд клеточных белков. Одними из наиболее важных распространителей внутриклеточного сигнала являются тирозинкиназы. При этом важной тирозинкиназой, вовлеченной в пути сигнальной трансдукции, связанной с поперечным сшиванием рецепторов FcεRI и/или FcγRI, а также в другие каскады сигнальной трансдукции, является киназа Syk (см. обзор Valent et al., 2002, Intl. J. Hematol. 75(4): 257-362).

Медиаторы, высвобождаемые в результате поперечного сшивания рецепторов FcεRI и FcγRI, ответственны или играют важные роли в проявлении многочисленных неблагоприятных событий. Недавно были открыты различные классы соединений 2,4-пиримидиндиаминов, которые ингибируют каскады передачи сигналов FcεRI и/или FcγRI и которые имеют огромное количество терапевтических применений. См., например, заявку на выдачу патента США с регистрационным No. 10/355543, поданную 31 января 2003 (US 2004/0029902A1), международную заявку на выдачу патента с регистрационным No. PCT/US03/03022, поданную 31 января 2003 (WO 03/063794), заявку на выдачу патента США с регистрационным No. 10/631029, поданную 29 июля 2003, международную заявку на выдачу патента с регистрационным No. PCT/US03/24087 (WO 2004/014382), заявку на выдачу патента США с регистрационным No. 10/903263, поданную 30 июля 2004 (US2005/0234049), и международную заявку на выдачу патента с регистрационным No. PCT/US2004/24716. Хотя многие из указанных соединений имеют хорошую биодоступность, в некоторых случаях может требоваться подгонка их растворимости или других свойств так, чтобы оптимизировать их биодоступность при конкретных путях введения.

4. СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к пролекарствам соединений 2,4-пиримидиндиаминов, которые обладают огромным количеством биологических активностей, и к терапевтическим применениям, композициям, содержащим пролекарства, способам и промежуточным соединениям, применимым для синтеза пролекарств, и к способам применения пролекарств в различных ситуациях in vitro и in vivo, включая лечение и/или профилактику заболеваний, опосредованных, по меньшей мере частично, активацией каскадов передачи сигнала Fc-рецепторов.

Пролекарства обычно содержат биологически активное соединение 2,4-пиримидиндиамина, которое замещено у атома азота одной или несколькими первичными или вторичными аминогруппами прогруппы RP, которая метаболизируется или иным образом превращается в условиях применения, давая активный 2,4-пиримидиндиамин. В некоторых вариантах прогруппа RP представляет собой содержащую фосфор прогруппу. В некоторых вариантах прогруппа включает группу или остаток, который метаболизируется в условиях применения, давая нестабильное α-гидроксиметильное, α-аминометильное или α-тиометильное промежуточное соединение, которое затем метаболизируется in vivo, давая активное 2,4-пиримидиндиаминное лекарственное средство. В некоторых вариантах пролекарство содержит α-гидроксиалкильный, α-аминоалкильный или α-тиоалкильный остаток, например α-гидроксиметильный, α-аминометильный, α-тиометильный остаток, который метаболизируется в условиях применения, давая активное 2,4-пиримидиндиаминное лекарственное средство. Например, в некоторых вариантах прогруппа RP имеет формулу -CRdRd-AR3, где каждый Rd независимо от других выбран из водорода, цианогруппы, необязательно замещенного (C1-C20)алкила, (C1-C20)перфторалкила, необязательно замещенного (C7-C30)арилалкила и необязательно замещенного 6-30-членного гетероарилалкила, где каждый необязательный заместитель независимо от других выбран из водорода, алкила, арила, арилалкила, гетероарила и гетероалкила или, альтернативно, два Rd, взятые вместе с атомом углерода, с которым они связаны, образуют циклоалкил, содержащий от 3 до 8 атомов углерода; A выбран из O, S и NR50, где R50 выбран из водорода, алкила, арила, арилалкила, гетероарила, гетероарилалкила и циклогетероалкила, или, альтернативно, объединен с R3 и вместе с атомом азота, с которым они связаны, образуют трех-семичленный цикл; и R3 означает группу, которая может метаболизироваться in vivo, давая группу формулы -CRdRd-AH, где Rd и A имеют значения, определенные ранее.

Природа R3 не является критической при условии, что он может метаболизироваться в требуемых условиях применения, например, в кислых условиях, встречающихся в желудке, и/или ферментами, встречающимися in vivo, давая группу формулы -CRdRd-AH, где A и Rd имеют значения, определенные ранее. Таким образом, специалистам в данной области будет понятно, что R3 фактически может содержать любую известную или позднее открытую защитную группу гидроксила, амина или тиола. Не ограничивающие примеры подходящих защитных групп можно найти, например, в Protective Groups in Organic Synthesis, Greene and Wuts, 2nd Ed., John Wiley and Sons, New York, 1991 (особенно страницы 10-142 (спирты), 277-308 (тиолы) и 309-405 (амины), описание которых включено в данную публикацию в виде ссылки).

В конкретном варианте R3 включает в себя вместе с A эфирную, тиоэфирную связь, связь силилового эфира, силилового тиоэфира, сложноэфирную, сложную тиоэфирную, амидную, карбонатную, тиокарбонатную, карбаматную, тиокарбаматную или мочевинную связь, -OCH2SO3R, где R означает водород, алкил, арил, арилалкил или соль металла (например, натрия, лития, калия); -GCH2+N(R51)3M-, где G отсутствует, означает -OPO3-, OSO3- или -CO2-, R51 означает водород, алкил, арил, арилалкил, циклогетероалкил или циклогетероалкилалкил, и M- означает противоион, обычно ион галогенида или тому подобный (ацетат, сульфат, фосфат и т.д.). Конкретные иллюстративные варианты включают без ограничения прогруппы RP, в которых R3 выбран из Rf, -C(O)Rf, -C(O)ORf, -C(O)NRfRf и -SiRfRfRf, где каждый Rf независимо от других выбран из водорода, необязательно замещенного низшего алкила, необязательно замещенного низшего гетероалкила, необязательно замещенного низшего циклоалкила, необязательно замещенного низшего гетероциклоалкила, необязательно замещенного (C6-C10)арила, необязательно замещенного 5-10-членного гетероарила, необязательно замещенного (C7-C18)арилалкила и необязательно замещенного 6-18-членного гетероарилалкила. В конкретном варианте каждый Rf означает одну и ту же группу.

Природа прогруппы(прогрупп) RP может быть выбрана так, чтобы подобрать растворимость в воде и другие свойства лежащего в основе активного соединения 2,4-пиримидиндиамина, чтобы оптимизировать конкретный способ введения. Прогруппа также может быть выбрана так, чтобы обеспечить удаление в конкретных органах и/или тканях в организме, таких, например, как пищеварительный тракт, в крови и/или сыворотке или посредством ферментов, имеющихся в конкретных органах, таких как печень.

В некоторых вариантах прогруппы RP, которые представляют собой содержащие фосфор прогруппы, включают фосфатные остатки, которые могут быть отщеплены in vitro ферментами, такими как эстеразы, липазы и/или фосфатазы. Такие ферменты распространены в организме и находятся, например, в желудке и пищеварительном тракте, крови и/или сыворотке и практически во всех тканях и органах. Такие содержащие фосфат прогруппы RP как правило будут повышать растворимость в воде лежащего в основе активного соединения 2,4-пиримидиндиамина, делая такие содержащие фосфат прогруппы идеально подходящими для способов введения, при которых требуется растворимость в воде, таких, например, как пероральный, буккальный, внутривенный, внутримышечный и глазной способы введения.

В некоторых вариантах каждая содержащая фосфат прогруппа RP в пролекарстве имеет формулу -(CRdRd)y-O-P(O)(OH)(OH) или представляет собой соль, где Rd имеет значение, определенное ранее, и y является целым числом от 1 до 3, обычно 1 или 2. В одном конкретном варианте каждый Rd независимо от других выбран из водорода, замещенного или незамещенного низшего алкила, замещенного или незамещенного фенила, замещенного или незамещенного метила и замещенного или незамещенного бензила. В другом конкретном варианте каждый Rd независимо от других выбран из водорода и незамещенного низшего алкила. Конкретные примеры содержащих фосфат прогрупп RP включают -CH2-O-P(O)(OH)(OH) и -CH2CH2-O-P(O)(OH)(OH) и/или соответствующие соли.

Не имея намерения быть связанными с какой-либо теорией процесса, полагают, что в том случае, когда y равен 1 в примерах содержащих фосфат прогрупп RP, содержащие фосфат прогруппы превращаются in vivo такими ферментами, как фосфатазы, липазы и/или эстеразы, в соответствующие гидроксиметиламины, которые затем метаболизируются in vivo посредством отщепления формальдегида с образованием активного 2,4-пиримидиндиаминного лекарственного соединения. Побочные продукты метаболизма фосфата и формальдегида являются безвредными.

Когда y равен 2 в примерах содержащих фосфат прогрупп, полагают, что пролекарства метаболизируются до активного 2,4-пиримидиндиаминного лекарственного соединения in vivo посредством отщепления енолфосфата, который затем метаболизируется в ацетальдегид и фосфат. Побочные продукты метаболизма фосфата и ацетальдегида являются безопасными.

Специалистам в данной области будет понятно, что некоторые типы предшественников могут быть превращены in vivo в фосфатные группы. Такие предшественники включают в качестве примера и без ограничения сложные фосфатные эфиры, фосфиты и сложные фосфитные эфиры. Например, фосфиты могут быть окислены in vivo до фосфатов. Сложные фосфатные эфиры могут быть гидролизованы in vivo до фосфатов. Сложные фосфитные эфиры могут быть окислены in vivo до фосфатных эфиров, которые в свою очередь могут быть гидролизованы in vivo до фосфатов. Вследствие способности указанных групп-предшественников фосфатов превращаться в фосфаты in vivo пролекарства также могут включать прогруппы, которые содержат такие предшественники фосфатов. В некоторых вариантах группы-предшественники фосфатов могут быть непосредственно метаболизированы до активного 2,4-пиримидиндиаминного лекарственного средства без превращения сначала в фосфатное лекарственное средство. В других вариантах пролекарства, содержащие прогруппы, которые содержат такие предшественники фосфатов, сначала метаболизируются в соответствующее фосфатное пролекарство, которое затем метаболизируется в активное 2,4-пиримидиндиаминное лекарственное средство через гидроксиметиламин, как обсуждается выше.

В некоторых вариантах такими группами-предшественниками фосфатов являются сложные фосфатные эфиры. Сложные фосфатные эфиры могут быть ациклическими или циклическими и могут представлять собой сложные фосфатные триэфиры или сложные фосфатные диэфиры. Такие сложные эфиры обычно менее растворимы в воде, чем соответствующие пролекарства в виде фосфатной кислоты и соответствующие активные 2,4-пиримидиндиаминные соединения, и поэтому обычно подходят для способов доставки пролекарств активных 2,4-пиримидиндиаминных соединений, при которых требуется низкая растворимость в воде, включая в качестве примера и без ограничения введение посредством ингаляции. Растворимость пролекарства может быть специально приспособлена для конкретных способов введения посредством подбора количества и природы этерифицирующих групп в сложных фосфатных эфирах.

Механизм, посредством которого группа сложного фосфатного эфира метаболизируется в соответствующую фосфатную группу, можно контролировать соответствующим подбором этерифицирующих остатков. Например, хорошо известно, что некоторые сложные эфиры являются кислотолабильными (или щелочелабильными), приводя к образованию соответствующего фосфата в кислых условиях, существующих в желудке и пищеварительном тракте. В тех случаях, когда требуется, чтобы пролекарство в виде сложного фосфатного эфира метаболизировалось до соответствующего фосфатного пролекарства в пищеварительном тракте (например, когда пролекарства вводят перорально), могут быть выбраны прогруппы сложного фосфатного эфира, которые являются кислотолабильными. Другие типы сложных фосфатных эфиров являются стабильными при действии кислоты и основания и превращаются в соответствующие фосфаты посредством ферментов, имеющихся в некоторых тканях и органах организма (см., например, различные циклические сложные фосфатные эфиры, описанные в Erion et al, 2004, J. Am. Chem. Soc. 126: 5154-5163, включенной в данное описание в виде ссылки). В тех случаях, когда требуется превращение пролекарства в виде сложного фосфатного эфира в соответствующее фосфатное пролекарство в требуемой ткани или месте в организме, являющемся мишенью, могут быть выбраны сложные фосфатные эфиры, обладающие требуемыми метаболическими свойствами.

В некоторых вариантах каждая прогруппа RP в пролекарстве, содержащая сложный фосфатный эфир, представляет собой ациклический сложный фосфатный эфир формулы -(CRdRd)y-O-P(O)(OH)(ORe) или -(CRdRd)y-O-P(O)(ORe)(ORe) или его соль, где каждый Re независимо от других выбран из замещенного или незамещенного низшего алкила, замещенного или незамещенного (C6-C14)арила (например, фенила, нафтила, 4-низшего алкоксифенила, 4-метоксифенила), замещенного или незамещенного (C7-C20)арилалкила (например, бензила, 1-фенилэтан-1-ила, 2-фенилэтан-1-ила), -(CRdRd)y-ORf, -(CRdRd)y-O-C(O)Rf, -(CRdRd)y-O-C(O)ORf, -(CRdRd)y-S-C(O)Rf, -(CRdRd)y-S-C(O)ORf, -(CRdRd)y-NH-C(O)Rf, -(CRdRd)y-NH-C(O)ORf и -Si(Rd)3, где Rd, Rf и y имеют значения, определенные выше. В конкретном варианте каждый Rd выбран из водорода и незамещенного низшего алкила и/или каждый Re представляет собой незамещенный низший алканил или бензил. Конкретные примеры прогрупп в виде сложного фосфатного эфира включают без ограничения -CH2-O-P(O)(OH)(ORe), -CH2CH2-O-P(O)(OH)(ORe), -CH2-O-P(O)(ORe)(ORe) и -CH2CH2-O-P(O)(ORe)(ORe), где Re выбран из низшего алканила, изопропила и трет-бутила.

В других вариантах каждая прогруппа RP, содержащая сложный фосфатный эфир, представляет собой циклический сложный фосфатный эфир формулы , где каждый Rg независимо от других выбран из водорода и низшего алкила; каждый Rh независимо от других, выбран из водорода, замещенного или незамещенного низшего алкила, замещенного или незамещенного низшего циклогетероалкила, замещенного или незамещенного (C6-C14)арила, замещенного или незамещенного (C7-C20)арилалкила и замещенного или незамещенного 5-14-членного гетероарила; z является целым числом от 0 до 2; и Rd и y имеют значения, определенные ранее. В конкретном варианте каждая прогруппа RP, содержащая сложный фосфатный эфир, представляет собой циклический сложный фосфатный эфир формулы , где Rd, Rh и y имеют значения, определенные ранее.

Механизм, посредством которого пролекарства, представляющие собой циклические сложные фосфатные эфиры, включающие такие прогруппы циклического сложного фосфатного эфира, метаболизируются in vivo в активное лекарственное соединение, отчасти зависит от природы заместителя Rh. Например, прогруппы циклического сложного фосфатного эфира, в которых каждый Rh независимо от других выбран из водорода и низшего алкила, расщепляются in vivo эстеразами. Таким образом, в некоторых вариантах прогруппы циклического сложного фосфатного эфира выбирают так, чтобы они могли отщепляться in vivo эстеразами. Конкретные примеры таких прогрупп сложного фосфатного эфира включают без ограничения прогруппы, выбранные из

Альтернативно, пролекарства, представляющие собой сложные фосфатные эфиры, имеющие прогруппы, в которых заместители Rh представляют собой замещенные или незамещенные арильные, арилалкильные и гетероарильные группы, обычно не отщепляются эстеразами, а вместо этого метаболизируются в активное пролекарство такими ферментами, как цитохром P450, который находится в печени. Например, ряд нуклеотидных пролекарств, представляющих собой циклические сложные фосфатные эфиры, которые подвергаются реакции окислительного расщепления, катализируемой ферментом цитохромом P450 (CYP), преимущественно экспрессируемым в печени, описан в Erion et al, 2004, J. Am. Chem. Soc. 126: 5154-5163. В некоторых вариантах прогруппы циклического сложного фосфатного эфира выбирают так, чтобы они могли отщепляться ферментами CYP, экспрессируемыми в печени. Конкретные иллюстративные варианты таких прогрупп RP, содержащих циклические сложные фосфатные эфиры, включают без ограничения прогруппы, имеющие формулу , где Rh выбран из фенила, 3-хлорфенила, 4-пиридила и 4-метоксифенила.

Как будет понятно специалистам в данной области, фосфиты и сложные фосфитные эфиры могут подвергаться окислению in vivo, давая соответствующие аналоги в виде фосфатов и сложных фосфатных эфиров. Такие реакции могут быть осуществлены in vivo, например, с помощью ферментов оксидаз, ферментов оксоредуктаз и других окислительных ферментов. Таким образом, содержащие фосфор прогруппы RP также могут включать аналоги любых описанных выше прогрупп в виде фосфата и сложного фосфатного эфира, представляющие собой фосфиты и сложные фосфитные эфиры. В некоторых вариантах содержащие фосфор прогруппы RP включают без ограничения группы формулы -(CRdRd)y-O-P(OH)(OH), -(CRdRd)y-O-P(OH)(ORe) и -(CRdRd)y-O-P(ORe)(Re) или их соли, где Rd, Re и y имеют значения, определенные ранее. Конкретные иллюстративные варианты включают группы, в которых каждый Rd независимо от других выбран из водорода и незамещенного низшего алкила, и/или каждый Re независимо от других выбран из незамещенного низшего алканила и бензила. Конкретные примеры прогрупп в виде ацикилических фосфитов и сложных фосфитных эфиров включают без ограничения -CH2-O-P(OH)(OH), -CH2CH2-O-P(OH)(OH), -CH2-O-P(OH)(ORe) и -CH2CH2-O-P(ORe)(ORe), где каждый Re выбран из низшего алканил, изопропила и трет-бутила. Конкретные примеры пролекарств в виде циклических сложных фосфитных эфиров включают фосфитные аналоги описанных выше прогрупп в виде циклических сложных фосфатных эфиров. Концептуально, пролекарственные соединения, содержащие такие прогруппы фосфита и/или сложного фосфитного эфира, можно считать пролекарствами соответствующих пролекарств в виде фосфата и сложного фосфатного эфира.

Как указано выше, полагают, что некоторые содержащие фосфат пролекарства метаболизируются in vivo через соответствующие гидроксиметиламины. Хотя указанные гидроксиметиламины метаболизируются in vivo до соответствующих активных 2,4-пиримидиндиаминнных соединений, они являются стабильными при pH 7 и могут быть получены и введены в виде содержащих гидроксиалкил пролекарств. В некоторых вариантах каждая содержащая гидроксиалкил прогруппа RP таких пролекарств имеет формулу -CRdRd-OH, где Rd имеет значение, определенное ранее. Конкретным примером содержащей гидроксиалкил прогруппы RP является -CH2OH.

Практически любое известное соединение 2,4-пиримидиндиамина, которое обладает биологической и, следовательно, терапевтической активностью, может быть защищено по имеющемуся первичному или вторичному амину одной или несколькими прогруппами RP, которые описаны в данной публикации. Подходящие активные соединения 2,4-пиримидиндиамина описаны, например, в заявке на выдачу патента США с регистрационным No. 10/355543, поданной 31 января 2003 (US2004/0029902A1), международной заявке на выдачу патента с регистрационным No. PCT/US03/03022, поданной 31 января 2003 (WO 03/063794), заявке на выдачу патента США с регистрационным No. 10/631029, поданной 29 июля 2003, международной заявке на выдачу патента с регистрационным No. PCT/US03/24087 (WO2004/014382), заявке на выдачу патента США с регистрационным No. 10/903263, поданной 30 июля 2004 (US2005/0234049), и международной заявке на выдачу патента с регистрационным No. PCT/US2004/24716, описания которых включены в данное описание в виде ссылки. В таких 2,4-пиримидиндиаминных соединениях прогруппа(пы) RP может быть связана с любым имеющимся первичным или вторичным амином, включая, например, атом азота N2 остатка 2,4-пиримидиндиамина, атом азота N4 остатка 2,4-пиримидиндиамина и/или первичный или вторичный атом азота, включенный в заместитель 2,4-пиримидиндиаминного соединения. Использование содержащих фосфат прогрупп RP особенно полезно в случае 2,4-пиримидиндиаминных соединений, которые имеют плохую растворимость в воде в физиологических условиях (например, растворимости менее примерно 10 мкг/мл). Не имея намерения быть связанными с какой-либо теорией процесса, полагают, что содержащие фосфат прогруппы способствуют растворимости лежащего в основе активного 2,4-пиримидиндиаминного соединения, что, в свою очередь, увеличивает его биодоступность при пероральном введении. Полагают, что фосфатные прогруппы RP метаболизируются ферментами фосфатазы, имеющимися в пищеварительном тракте, что способствует всасыванию лежащего в основе активного лекарственного средства.

Обнаружено, что растворимость в воде и биодоступность при пероральном введении конкретного биологически активного соединения 2,4-пиримидиндиамина, показанного ниже (соединение 1), значительно увеличивается в том случае, когда его обрабатывают так, чтобы он содержал прогруппу RP формулы -CH2-O-P(O)(OH)2 у атома азота в цикле, отмеченного звездочкой (соединение 4):

Важно, что в то время как растворимость в воде активного лекарственного средства (соединения 1) находится в диапазоне примерно 1-2 мкг/мл в водном буфере в физиологических условиях, растворимость соответствующего фосфатного пролекарства (соединения 4) составляет более 5 мг/мл в таких же условиях или примерно в 2000 раз выше. Указанная повышенная растворимость в воде дает возможность лучше растворяться в кишечнике, тем самым облегчая пероральное введение. Предполагается, что другие активные 2,4-пиримидиндиаминные соединения, имеющие сходные растворимости в воде, проявляют сходные увеличения растворимости в воде и доступности при пероральном введении в том случае, когда их готовят в виде фосфатных пролекарств.

Как указано выше, пролекарства в виде сложных фосфатных эфиров обычно менее растворимы в воде, чем соответствующие фосфатные пролекарства, и поэтому обычно полезны в случае применений, когда требуется низкая растворимость в воде, например таких, как введение посредством ингаляции. Указанное справедливо и для относительно растворимых в воде пролекарств в виде сложных фосфитных эфиров и фосфитов.

В некоторых вариантах пролекарства, описанные в данной публикации, представляют собой соединения 2,4-пиримидиндиамина, которые замещены у атома азота N4 остатка 2,4-пиримидиндиамина замещенным или незамещенным содержащим азот бициклическим кольцом, которое содержит по меньшей мере одну прогруппу RP, которая описана в данной публикации, у одного или нескольких атомов: атома(ов) азота бициклического кольца, атома азота N2 остатка 2,4-пиримидиндиамина и/или атома азота N4 остатка 2,4-пиримидиндиамина. В конкретном приведенном в качестве примера иллюстративном варианте пролекарство представляет собой соединение согласно структурной формуле (I):

включая его соли, сольваты, гидраты и N-оксиды, где:

Y выбран из CH2, NR24, O, S, S(O) и S(O)2;

Z1 и Z2, каждый независимо друг от друга, выбраны из CH и N;

R2 означает необязательно замещенную низшую алкильную, низшую циклоалкильную, низшую гетероалкильную, низшую циклогетероалкильную, арильную, фенильную или гетероарильную группу;

R5 означает электроотрицательную группу, например, такую как галоген, фтор, цианогруппа, нитрогруппа, тригалогенметильная или трифторметильная группа;

R17 выбран из водорода, галогена, фтора, низшего алкила и метила, или, альтернативно, R17, взятый вместе с R18, может образовывать оксогруппу (=O), или вместе с атомом углерода, с которым они связаны, образовывать спироцикл, содержащий от 3 до 7 атомов углерода;

R18 выбран из водорода, галогена, фтора, низшего алкила и метила, или, альтернативно, R18, взятый вместе с R17, может образовывать оксогруппу (=O), или вместе с атомом углерода, с которым они связаны, образовывать спироцикл, содержащий от 3 до 7 атомов углерода;

R19 выбран из водорода, низшего алкила и метила, или, альтернативно, R19, взятый вместе с R20, может образовывать оксогруппу (=O), или вместе с атомом углерода, с которым они связаны, образовывать спироцикл, содержащий от 3 до 7 атомов углерода;

R20 выбран из водорода, низшего алкила и метила, или, альтернативно, R20, взятый вместе с R19, может образовывать оксогруппу (=O), или вместе с атомом углерода, с которым они связаны, образовывать спироцикл, содержащий от 3 до 7 атомов углерода;

R21, R22 и R23 каждый независимо друг от друга выбран из водорода и прогруппы RP, которая определена в данном описании; и

R24 выбран из водорода, низшего алкила и прогруппы RP, которая определена в данном описании, при условии, что по меньшей мере один R21, R22, R23 и R24 должен представлять собой прогруппу RP. В некоторых вариантах каждый из R21, R22 и R23 означает одну из конкретных прогрупп, приведенных в качестве примеров выше, и R24 означает водород. В некоторых вариантах R21 означает одну из конкретных прогрупп, приведенных в качестве примера выше, и R22, R23 и R24 каждый означают водород. В некоторых вариантах R21, R22 и R23 каждый означает одну из конкретных прогрупп, приведенных в качестве примера выше, и R24 означает низший алкил.

В другом аспекте настоящее изобретение относится к композициям, содержащим одно или несколько пролекарств, указанных в данном описании, и соответствующий носитель, эксципиент или разбавитель. Точная природа носителя, эксципиента или разбавителя будет зависеть от требуемого применения композиции и может быть в диапазоне от применимой или приемлемой для ветеринарных применений до применимой или приемлемой для применения на человеке. Композиция необязательно может содержать одно или несколько дополнительных соединений.

В еще одном аспекте настоящее изобретение относится к промежуточным соединениям, применимым для синтеза пролекарств, описанных в данной публикации. В случае пролекарств, содержащих фосфат или фосфит, промежуточные соединения обычно содержат пролекарства, в которых атомы кислорода содержащих фосфат и/или фосфит прогрупп замаскированы защитными группами, которые можно избирательно удалять в конкретных условиях. В некоторых вариантах защитные группы могут быть избирательно удалены в слабо кислых условиях. В некоторых вариантах промежуточные соединения представляют собой сложные фосфатные или фосфитные эфиры, которые сами по себе являются пролекарствами, которые могут быть метаболизированы в активные соединения 2,4-пиримидиндиамина. В одном иллюстративном варианте промежуточные соединения включают пролекарства, в которых каждая прогруппа RP независимо от других имеет формулу -(CRdRd)y-O-P(O)(ORi)(ORi), -(CRdRd)y-O-P(O)(ORi)(OH), -(CRdRd)y-O-P(ORi)(ORi) или -(CRdRd)y-O-P(ORi)(OH), где каждый Ri независимо от других выбран из низшего незамещенного алканила, замещенного или незамещенного фенила и замещенного или незамещенного бензила, и Rd и y имеют значения, определенные ранее. В конкретном варианте промежуточные соединения включают сложные фосфатные и/или фосфитные эфиры, в которых каждый Ri независимо от других выбран из низшего линейного алканила, низшего разветвленного алканила, изопропила, трет-бутила и низшего циклического алканила.

В некоторых вариантах промежуточные соединения содержат активный 2,4-пиримидиндиамин, который замещен у атома азота первичной или вторичной аминогруппы группой формулы -CRdRd-AH, где Rd и A имеют значения, определенные ранее.

В еще одном аспекте настоящее изобретение относится к способам синтеза промежуточных соединений и/или пролекарств, описанных в данной публикации. Содержащие фосфат пролекарства могут быть синтезированы в результате взаимодействия активного соединения 2,4-пиримидиндиамина с галогенидом сложного фосфатного эфира, например галогенидом сложного фосфатного эфира формулы X-(CRdRd)y-O-P(O)(ORj)(ORj) или X-(CRdRd)y-O-P(O)(ORj)(OH), где каждый Rj независимо от других означает избирательно удаляемую защитную группу; X означает галогенид, например, такой как хлорид; и Rd и y имеют значения, определенные ранее. В некоторых вариантах каждый Rj означает Re, определенный ранее. Удаление избирательно удаляемых защитных групп Rj дает фосфатное пролекарство. В некоторых вариантах каждый Rj имеет одно и то же значение и выбран из низшего линейного алкила, низшего разветвленного алкила и низшего циклоалкила. В некоторых вариантах каждый Rj означает изопропил или трет-бутил. В вариантах, в которых получают смеси промежуточных соединений, например смеси промежуточных соединений, которые содержат разные количества прогрупп или прогруппы в разных положениях молекулы 2,4-пиримидиндиамина, требуемое промежуточное соединение может быть выделено из смеси с использованием стандартных способов разделения и/или выделения (например, хроматографии на колонке). Альтернативно, требуемое пролекарство может быть выделено из смеси разных пролекарств с использованием стандартных способов разделения и/или выделения.

Пролекарства в виде ациклических сложных фосфатных эфиров могут быть получены аналогичным способом в результате взаимодействия активного 2,4-пиримидиндиамина с галогенидом сложного фосфатного эфира, например галогенидом сложного фосфатного эфира формулы X-(CRdRd)y-O-P(O)(OH)(ORe) или X-(CRdRd)y-O-P(O)(ORe)(ORe), где X, Rd, y и Re имеют значения, определенные ранее. В данном случае удаление этерифицирующих групп Re не является обязательным.

Пролекарства в виде ациклических сложных фосфитных и фосфатных эфиров могут быть получены аналогичным образом из соответствующих галогенидов сложных фосфитных эфиров, например галогенидов сложных фосфитных эфиров формулы X-(CRdRd)y-O-P(ORj)(ORj), X-(CRdRd)y-O-P(ORe)(OH), X-(CRdRd)y-O-P(ORe)(ORe), где X, Rd, y, Re и Rj имеют значения, определенные ранее.

Пролекарства в виде циклических сложных фосфатных эфиров и сложных фосфитных эфиров могут быть получены в результате взаимодействия активного соединения 2,4-пиримидиндиамина с соответствующим галогенидом циклического сложного фосфатного эфира или сложного фосфитного эфира, например галогенидом циклического сложного фосфатного эфира формулы , или галогенидом циклического сложного фосфитного эфира формулы , где X, Rd, y, z, Rg и Rh имеют значения, определенные ранее.

Варианты, в которых RP означает -CRdRd-AR3, могут быть получены из соответствующего 2,4-пиримидиндиаминного лекарственного средства обычными способами. Например, когда A означает O, промежуточные соединения могут быть синтезированы в результате взаимодействия активного соединения 2,4-пиримидиндиамина с альдегидом или кетоном формулы Rd-C(O)-Rd, где Rd имеет значение, определенное ранее, с получением соответствующего промежуточного гидроксиметиламина (где RP означает -CRdRd-OH). Затем промежуточный гидроксиметиламин может быть превращен в пролекарство с использованием стандартного способа. В соответствии с определением RP промежуточный гидроксиметиламин также является пролекарством согласно изобретению. Например, другие лекарственные вещества, содержащие вторичные амины, добавляли к формальдегиду, получая их соответствующие выделяемые аддукты гидроксиметиламина, Bansal et al., J. Pharmaceutical Sci. 1981, 70: (8), 850-854; Bansal et al., J. Pharmaceutical Sci. 1981, 70: (8), 855-856; Khan et al., J. Pharmaceutical and Biomedical Analysis 1989, 7 (6), 685-691. Альтернативно, гидроксиалкилсодержащие пролекарства могут быть получены в две стадии, сначала посредством взаимодействия активного 2,4-пиримидиндиамина с бис-функциональным электрофилом, таким как галогенид формулы X1-CRdRd-X2, где X1 означает первый галогенид, X2 означает второй галогенид, и Rd имеет значение, определенное ранее. В конкретном иллюстративном варианте галогенид имеет формулу I-CRdRd-Cl. Затем не прореагировавший галогенид подвергают гидроксилированию, получая содержащее гидроксиалкил пролекарство, с использованием стандартных способов.

Пролекарства, в которых A означает O, S или NR50, могут быть синтезированы из соответствующих сложных N-метилсодержащих фосфатных эфиров. Согласно данному варианту группы сложных фосфатных эфиров могут быть заменены группой формулы R3-AH, где R3 и A имеют значения, определенные ранее, получая пролекарство, которое более подробно обсуждается ниже.

Многие пролекарства, описанные в данной публикации, и в частности пролекарства согласно структурной формуле (I), метаболизируются, давая соединения 2,4-пиримидиндиамина, которые являются сильными ингибиторами дегрануляции иммунных клеток, таких как тучные клетки, базофилы, нейтрофилы и/или эозинофилы. Дополнительные соединения 2,4-пиримидиндиамина, которые проявляют сходные биологические активности, которые могут быть приготовлены в виде пролекарств, которые описаны в данной публикации, и могут быть использованы в различны