Композиции, содержащие магнитные частицы оксида железа, и применение указанных композиций при способах получения изображений

Иллюстрации

Показать все

Изобретение относится к частице для получения диагностических средств для применения при получении изображений с помощью магнитных частиц (ИМЧ), которая содержит поликристаллическое магнитное ядро из оксида железа в оболочке из карбоксидекстрана. Ядро имеет диаметр от 30 нм до 80 нм, при этом отношение общего диаметра частицы к диаметру ядра составляет менее 6, частица состоит из, по меньшей мере, 2 спаянных кристаллов и имеет релаксативность Т2, по меньшей мере, 290 (мМ·сек)-1, измеренную при напряженности магнитного поля 1 тесла в водном коллоидном растворе частиц. Изобретение также относится к способу получения указанных частиц, включающему смешивание водного раствора солей железа с водным раствором щелочи в присутствии карбоксидекстрана с образованием коллоидного раствора частиц, который затем пропускают через магнитное градиентное поле с выделением задержанных после устранения магнитного поля в нем частиц. Изобретение также относится к композиции и жидкости, которые содержат указанные частицы и пригодны для получения изображений с помощью магнитных частиц. Изобретение позволяет получать изображения высокого разрешения без риска и при низкой напряженности магнитного поля. 6 н. и 11 з.п. ф-лы, 3 табл., 5 ил.

Реферат

Введение

Настоящее изобретение относится к комплексам, которые содержат магнитные частицы оксида железа в фармацевтически приемлемой оболочке, причем указанные частицы имеют диаметр от 20 нм до 1 мкм при общем отношении диаметр частиц/диаметр ядра менее 6, и к применению этих комплексов при получении изображения с помощью магнитных частиц (МРI; ИМЧ). Особое предпочтение отдается применению этих композиций при обследовании желудочно-кишечного тракта, сосудистой системы сердца и краниальных компонентов, при диагностике атеросклероза, при инфарктах и опухолях и метастазах, например, лимфатической системы.

Уровень техники

При способах получения изображения, особенно в области медицинской диагностики, контрастные средства привели к значительному улучшению по сравнению с обычными способами получения изображения, такими как рентгенодиагностика и получение изображения методом магнитного резонанса (MRI; МРИ). Контрастные средства, которые можно использовать при МРИ, можно дифференцировать на основе механизма их действия (позитивное усиление или воздействие на продольную релаксацию или негативное усиление или воздействие на поперечную релаксацию). Это действие выражается в виде Т1 и Т2 релаксативности в единице мМ-1·сек-1. R1 и R2 определяются как крутизна подъема кривых 1/Т1 и 1/Т2 по отношению к концентрации контрастного средства. Отношение R2/R1 определяет, обладает ли контрастное средство главным образом снижающим Т1 (R1 значительно выше R2) или снижающим Т2 действием (Krombach et al. (2002) Röfo 174: 819-829). Позитивные контрастирующие средства (известные также как повышающие релаксативность или повышающие Т1 контрастирующие средства) увеличивают силу сигнала перфузируемых областей. Негативные контрастные средства (известные также как повышающие чувствительность или повышающие Т2 контрастные средства) снижают силу сигнала перфузируемой области в нагруженных Т2 последовательностях.

Подходящие контрастные средства для МРИ описаны в предшествующей литературе по данному вопросу. Например, в ЕР 0525199 описаны фармацевтические препараты, содержащие магнитные частицы оксида железа, которые образуют комплексы с полисахаридами, а также их использование в качестве контрастных средств для МРИ. В одном из предпочтительных вариантов осуществления суперпарамагнитные ядра из оксида железа имеют размер от 2 нм до 30 нм. Размер комплексов (ядро плюс полисахаридная оболочка) в соответствующих препаратах представлен как от 10 нм до 500 нм. Однако конкретное описание распространяется только на комплексы с ядрами из оксида железа, имеющие диаметр 10,1 нм. В ЕР 0543020 описаны очень похожие частицы. Однако в этом случае суперпарамагнитные частицы оксида железа образуют комплексы с карбоксиполисахаридами. Также описано использование этих комплексов в качестве контрастных средств для МРИ. Использование карбодекстрана в качестве материала оболочки улучшает фармакологические свойства препарата. В одном из предпочтительных вариантов осуществления размер ядра из оксида железа составляет от 20 до 30 нм. Однако конкретно описанные комплексы содержат только ядра из оксида железа, имеющие диаметр самое большее 8,8 нм. В патенте США 5492814 описаны монокристаллические частицы оксида железа, а также их использование для исследования биологической ткани посредством МРИ. Для предпочтительного размера ядер из оксида железа установлены интервалы от 1 до 10 нм; однако в примерах конкретно описаны только частицы с ядрами из железа, имеющие диаметр 2,9±1,3 нм. Для улучшения пригодности в качестве контрастных средств для МРИ описанные частицы предпочтительно являются монокристаллическими частицами, то есть кристаллическая структура всей частицы является гомогенной и не имеет каких-либо нарушений - монокристалл.

Недавно в медицинской области был описан новый способ получения изображения. В этом случае измеряется изменение в намагничивании частиц при движении в магнитном поле. Это изменение служит для определения пространственного распределения магнитных частиц в исследуемой области (см., например, DЕ 101 51 778 А1 и DЕ 102 38 853 А1). Эта новая методика была вызвана потребностями получения изображения с помощью магнитных частиц (ИМЧ). В этих и других заявках того же заявителя упоминается ряд свойств, которыми должны обладать используемые частицы при методе ИМЧ. Например, частицы могут быть ферромагнитными и ферримагнитными частицами и, таким образом, похожи на частицы, известные по методу МРИ. Однако релаксативность Т1 и Т2 не оказывает влияния на возможность использования этих частиц при ИМЧ. Из-за в корне различных физических феноменов, которые используются для получения изображения при способах МРИ и ИМЧ, пригодность частиц, описанных по предшествующему уровню техники, в качестве контрастного средства для МРИ не определяет, пригодны ли частицы или нет для ИМЧ. Кроме того, описано, что частицы должны быть такими малыми, что в них может быть образован только один магнитный домен (монодомен) и не могут быть получены области Вейсса. Предполагается, что в зависимости от материала подходящие монодоменовые частицы должны иметь идеальный размер в интервале от 20 нм до примерно 800 нм. Магнетит (Fе3О4) упоминается как подходящий материал для монодоменовых частиц.

ИМЧ является новым многообещающим методом, который представляет особый интерес в отношении диагностического применения, так как необходимые затраты в отношении аппарата значительно ниже, чем в случае МРИ. Это происходит из-за того, что в отличие от МРИ при ИМЧ не существует потребности в больших гомогенных магнитных полях и поэтому в больших сверхпроводящих магнитах, которые делают диагностику с применением МРИ такой дорогой и делают трудным ее широкое применение. Чтобы дать возможность широкого применения этой новой технологии, однако, необходимо разработать магнитные частицы, которые дают возможность высокого пространственного разрешения, введения без риска и низкой напряженности магнитного поля во время исследования. Поэтому существует потребность в получении частиц, которые пригодны для диагностики с помощью ИМЧ.

Описание изобретения

Перед тем как настоящее изобретение будет описано более подробно ниже, необходимо отметить, что это изобретение не ограничивается конкретными методами, методиками и реагентами, описанными здесь, так как эти условия могут быть изменены. Применяемая здесь терминология использована только в целях описания конкретных предпочтительных вариантов осуществления, и указанная терминология не предназначена для ограничения объема настоящего изобретения, причем последний ограничивается только прилагаемой формулой изобретения. Если не указано иначе, технические и научные термины, используемые здесь, имеют значение, которое приписывается им специалистами в данной области. Предпочтительно, термины использованы здесь в значении, определяемом в «A multilingual glossary of biotechnological terms: (IUPAC Recommendations)», Leuenberger, H.G.W., Nagel, B. and Klbl, H. eds (1995), Helvetica Chimica Acta, CH-4010 Basel, Switzerland).

В описании процитирован ряд документов. Каждый из документов, процитированных здесь (включая все патенты, патентные заявки, научные публикации, рабочие инструкции производителей, рекомендации и т.д.), включены в виде ссылки на них во всей полноте. Однако упоминание одного из этих документов не должно в каком-либо случае истолковываться как значение того, что настоящее изобретение может отрицаться по праву, основанному на более ранней дате изобретения указанной публикации.

Неожиданно обнаружено, что частицы, которые содержат магнитное ядро из оксида железа, которое имеет особый размер и особое отношение между диаметром ядра из оксида железа и всей частицы, особенно пригодны для ИМЧ. Поэтому первым объектом настоящего изобретения является частица, которая содержит в фармацевтически приемлемой оболочке ядро из оксида железа, имеющее диаметр от 20 нм до 1 мкм при отношении диаметр частицы в целом/диаметр ядра менее 6.

Известно, что применение ядер из чистого оксида железа у пациентов приводит к тяжелым побочным эффектам. Были описаны агрегация тромбоцитов крови и быстрое падение кровяного давления. Чтобы предотвратить эти побочные эффекты, которые в некоторых случаях могут быть угрожающими жизни, ядра частиц из оксида железа по настоящему изобретению окружают фармацевтически приемлемой оболочкой. «Фармацевтически приемлемая оболочка» в контексте настоящего изобретения является слоем вещества или смеси веществ, которая по существу полностью покрывает ядро из оксида железа и изолирует ядро из оксида железа таким образом, что при применении у пациента известные угрожающие жизни эффекты не возникают. Здесь предпочтительно, когда вещество или смесь веществ являются биологически разрушаемыми, то есть, другими словами, могут быть расщеплены на небольшие элементы, которые могут использоваться организмом и/или могут быть удалены почками. Данные частицы вводят пациенту предпочтительно в водных коллоидных растворе или дисперсии. Поэтому желательно, когда вещество или смесь веществ являются гидрофильными, и предотвращается осаждение частиц, и коллоидный раствор стабилизирован. Множество таких веществ описано ранее (см., например, патент США 5492814).

В одном из предпочтительных вариантов осуществления фармацевтически приемлемая оболочка включает синтетический полимер или сополимер, крахмал или его производное, декстран или его производное, циклодекстран или его производное, жирную кислоту, полисахарид, лецитин или моно-, ди- или триглицерид или их производные. Также включены смеси вышеназванных предпочтительных веществ.

Из широких групп этих веществ особое предпочтение отдается следующим веществам и их смесям:

(i) в отношении полимеров или сополимеров: сложным полиоксиэтиленовым эфирам сорбитана, полиоксиэтилену и его производным, полиоксипропилену и его производным, неионным поверхностно-активным веществам, полиоксилстеаратам (35-80), поливиниловым спиртам, полимеризованной сахарозе, полигидроксиалкилметакриламидам, сополимерам молочной кислоты и гликолевой кислоты, полиортоэфирам, полиалкилцианоакрилатам, полиэтиленгликолям, полипропиленгликолям, полиглицеринам, полигидроксилированным поливиниловым матрицам, полигидроксиэтиласпартамидам, полиаминокислотам, сополимерам стирола и малеиновой кислоты, поликапролактонам, карбоксиполисахаридам и полиангидридам;

(ii) в отношении производных крахмала: 2-гидроксиметиловому эфиру крахмала и гидроксиэтилкрахмалу;

(iii) в отношении декстранов или его производных: галактозилированным декстранам, лактозилированным декстранам, аминированным декстранам, декстранам, содержащим SН-группы, декстранам, содержащим карбоксильные группы, декстранам, содержащим альдегидные группы, биотинилированным декстранам;

(iv) в отношении циклодекстринов: бета-циклодекстринам и гидроксипропилциклодекстринам;

(v) в отношении жирных кислот: лаурилсульфатам натрия, стеаратам натрия, стеариновым кислотам, монолауратам сорбитана, моноолеатам сорбитана, монопальмитатам сорбитана и моностеаратам сорбитана.

Благодаря особенно хорошей совместимости предпочтение отдают использованию декстранов и полиэтиленгликоля (ПЭГ) и их производных, и особенно, карбоксидекстранам, низкомолекулярным ПЭГ (предпочтительно, от 500 до 2000 г/моль) или высокомолекулярным ПЭГ (более чем от 2000 г/моль до 20000 г/моль) для того, чтобы сформировать фармацевтически приемлемую оболочку. В одном из особенно предпочтительных вариантов осуществления фармацевтически приемлемая оболочка является биологически разрушаемой. Множество из предпочтительных веществ и полимеров, описанных выше, удовлетворяют этому требованию.

По предшествующему уровню техники известно множество способов, которые пригодны для получения железных ядер в оболочке. При некоторых из этих методов железное ядро формируется на первой стадии способа, а оболочку наносят на дальнейшей стадии. Однако возможно также формировать железное ядро и оболочку при одной реакции или при «реакции в одном резервуаре». Известные способы включают, без ограничения этим, аэрозольно/паровой пиролизный способ, способ химического осаждения из пара, зольно-гелевый способ и микроэмульсионный способ. Особенно предпочтительные способы для создания оболочки для ядер из оксида железа были описаны, например, в ЕР 0543020 В1, ЕР 0186616, ЕР 0525199 и ЕР 0656368.

Предпочтительно, когда магнитное ядро из оксида железа содержит магнетит или маггемит, или их смеси. Возможно при некоторых вариантах осуществления добавлять дополнительные оксиды металлов в ядро из оксида железа, причем указанные оксиды металлов предпочтительно выбирают из магния, цинка и кобальта. Эти дополнительные оксиды металлов можно добавлять в ядро из оксида железа в пропорции до 20% в целом. Кроме того, возможно также, когда марганец, никель, медь, барий, стронций, хром, лантан, гадолиний, европий, диспрозий, холмий, иттербий и самарий содержатся в количестве менее 5%, предпочтительно менее 1%.

Диаметр частиц в целом по настоящему изобретению зависит от диаметра ядра из оксида железа и от толщины фармацевтически приемлемой оболочки, окружающей последнее, а также от любых молекул, связанных с поверхностью оболочки. Верхний предел общего диаметра определяется тем условием, что частицы должны быть способны проходить через капилляры после применения в организме пациента. Капилляры с наименьшим диаметром обычно расположены в легких. Через эти капилляры еще могут проходить частицы, имеющие общий диаметр 2 мкм. Частицы по настоящему изобретению предпочтительно являются сферическими. Однако частицы, которые являются удлиненными или угловатыми или по существу имеют любую другую форму, также охватываются настоящим изобретением при условии, что поверхность железного ядра по существу окружена фармацевтически приемлемой оболочкой. Таким образом, общий диаметр частицы составляет 2r в случае сферической частицы, а в случае частицы неправильной формы определяется расстоянием между двумя точками на поверхности частицы, которые находятся наиболее далеко одна от другой, плюс толщина гидратированной оболочки. Общий диаметр, определенный здесь, должен отличаться от среднего общего диаметра частицы по настоящему изобретению, который определяется как среднее арифметическое расстояние всех точек на поверхности частицы от центра тяжести частицы плюс толщина гидратированной оболочки. Средний общий диаметр, в свою очередь, отличается от среднего арифметического общего диаметра частиц, которые относятся к группе частиц, и который получают как среднее арифметическое значение от всех средних диаметров частиц, включенных в группу, плюс толщина гидратированной оболочки. Низший предел общего диаметра определяется по нижнему пределу диаметра ядра из оксида железа, который приводит к улучшенному изображению при методе ИМЧ. Поэтому в одном из предпочтительных вариантов осуществления диаметр частицы в целом колеблется в интервале от примерно 30 нм до примерно 2 мкм. Однако еще большее предпочтение отдается использованию частиц, имеющих общий диаметр от примерно 40 нм до примерно 500 нм, более предпочтительно в интервале от примерно 45 до примерно 300 нм, еще предпочтительнее в интервале от примерно 50 до примерно 200 нм. Общий диаметр частиц по настоящему изобретению может быть определен рядом прямых или непрямых методов, известных по предшествующему уровню техники, которые включают, например, электронную микроскопию и динамическое рассеяние света. Предпочтительно, общий диаметр определяется по динамическому рассеянию света.

В доступной литературе по предшествующему уровню техники и прежде всего в упомянутых выше документах DЕ 10151778 А1 и DЕ 10238853 А1 описаны частицы, которые, как предполагают, пригодны для ИМЧ. В указанном прототипе описано, что пригодны только частицы, которые имеют магнитное ядро, имеющие диаметр от 20 до 800 нм, и что действительно подходящий диаметр магнитного ядра зависит от соответственно выбранного магнитного материала. Нет руководства, в котором раскрывается использование частиц, которые имеют ядра из оксида железа, имеющие диаметр от 20 нм до 1 мкм с отношением общий диаметр частицы/диаметр ядра менее 6. Таким образом, предпочтительные нижние пределы диаметра ядра из оксида железа составляют 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 85, 90, 95, 100 нм. Предпочтительные верхние пределы диаметра представляют 500, 490, 480, 470, 460, 450, 440, 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 320, 310, 300, 290, 280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 95, 90, 85 и 80 нм. Возможны все комбинации вышеназванных верхнего и нижнего пределов, для того чтобы определить предпочтительный интервал для размера частиц, при условии, что значение верхнего предела больше значения нижнего предела, например, от 40 до 400 нм, от 50 до 200 нм и т.д. Предпочтительные частицы по настоящему изобретению имеют диаметр ядра из оксида железа в интервале от примерно 25 нм до примерно 500 нм. Еще более предпочтительно, когда диаметр ядра из оксида железа находится в интервале от примерно 30 нм до примерно 200 нм, еще более предпочтительно от 35 нм до примерно 80 нм. Диаметр ядра опять можно определять методами, известными по предшествующему уровню техники, которые включают, без ограничения этими названными методами, рентгеноструктурный анализ и электронную микроскопию. Так как ядра из оксида железа не во всех случаях имеют сферическую форму, диаметр ядра из оксида железа равен расстоянию между точками на поверхности ядра из оксида железа, которые находятся наиболее далеко одна от другой. Этот диаметр должен отличаться от среднего диаметра ядра из оксида железа, который определяется как среднеарифметическое расстояние всех точек на поверхности ядра из оксида железа от центра тяжести ядра из оксида железа. Средний диаметр ядра из оксида железа, в свою очередь, отличается от среднеарифметического диаметра ядра из оксида железа, который относится к группе частиц, и получается в виде среднего значения от всех средних диаметров ядер из оксида железа, заключенных в данной группе.

Неожиданно было обнаружено, что частицы, которые имеют тонкую оболочку из фармацевтически приемлемого вещества вокруг ядра из оксида железа, более пригодны для ИМЧ, чем частицы, которые имеют более толстую оболочку, имея в то же время такой же диаметр ядра из оксида железа. Поэтому в одном из предпочтительных вариантов осуществления частицы по настоящему изобретению характеризуются тем, что отношение диаметра частицы в целом к диаметру ядра из оксида железа составляет менее 6. Еще предпочтительнее, когда это отношение составляет менее 5,5, 5,0, 4,5, 4,0, 3,5, 3,0, 2,9, 2,8, 2,7, 2,6, 2,5, 2,4, 2,3, 2,2, 2,1, 2,0, 1,95, 1,90, 1,85, 1,80, 1,75, 1,60, 1,55 или менее 1,5. Что касается вышеназванных диаметров частиц в целом и ядер из оксида железа, особенно предпочтительные частицы имеют ядра из оксида железа, имеющие диаметр в интервале от примерно 30 до примерно 200 нм, и еще предпочтительнее в интервале от примерно 35 нм до примерно 80 нм с отношением диаметра частицы в целом к диаметру ядра из оксида железа, которое меньше 3,0, 2,9, 2,8, 2,7, 2,6, 2,5, 2,4, 2,3, 2,2, 2,1, 2,0, 1,95, 1,90, 1,85, 1,80, 1,75, 1,60, 1,55 или менее 1,5.

В связи с настоящим изобретением термин «поликристаллические частицы из оксида железа» относится к магнитным частицам из оксида железа, которые состоят из, по меньшей мере, 2 спаянных кристаллов, предпочтительно из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 или более кристаллов. Максимальное число кристаллов, которое может содержаться в одной частице настоящего изобретения, ограничивается только размером частицы. В больших частицах может содержаться больше кристаллов, чем в меньших частицах. Кристаллы, которые заключаются в поликристаллических магнитных частицах из оксида железа, предпочтительно имеют длину в предпочтительном направлении 1-100 нм, предпочтительно от 3 до 50 нм. Элементарная ячейка кристалла магнетита (Fе3О4) имеет длину грани примерно 1 нм. Соответственно кристаллы, которые заключены в поликристаллических магнитных частицах из оксида железа, имеют в предпочтительном направлении, по меньшей мере, 3 элементарных ячейки, еще предпочтительнее 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 или более элементарных ячеек. В поликристаллических ядрах из оксида железа могут сформировываться некристаллические области с неупорядоченной аморфной структурой на границах раздела между одним или более кристаллами, то есть, другими словами, поликристаллические магнитные ядра из оксида железа предпочтительно состоят на 50%, еще предпочтительнее на 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или более из поликристаллических областей, а оставшаяся часть частицы из оксида железа состоит из неупорядоченных аморфных областей. Отдельные кристаллы, заключенные в ядре из оксида железа, могут иметь одинаковую или разную длину. Наибольший кристаллит, то есть, другими словами, отдельный кристалл, который заключен в поликристаллических магнитных частицах из оксида железа, должен предпочтительно иметь объем, который составляет менее 70%, еще предпочтительнее, менее 65%, менее 60%, менее 55%, менее 50%, менее 45% от всего объема частицы по настоящему изобретению. В одном из вариантов осуществления настоящего изобретения не существует дальнего порядка в поликристаллическом ядре из оксида железа, а скорее есть только ближний порядок. Это означает, что эта частица находится в форме по существу аморфной частицы с кристаллическими включениями. В контексте настоящего изобретения термин «поликристаллические» охватывает как частицы из оксида железа с дальним порядком, так и частицы с ближним порядком. Предпочтительны кристаллы с дальним порядком.

Нужно отметить, что поликристаллические ядра из оксида железа могут также образовывать монодомен и необязательно приводят к образованию областей Вейсса. Размер ядра из оксида железа является определяющим фактором в отношении способности к образованию областей Вейсса. В одном из особенно предпочтительных вариантов осуществления ядро из оксида железа содержит, по меньшей мере, пять монокристаллов из оксида железа. Число и размер кристаллов, заключенных в частице, могут быть выявлены посредством множества различных методов, которые включают, без ограничения этим, транмиссионную электронную микроскопию (ТЭМ), электронную томографию и рентгенографию. Предпочтительно, размер определяют с помощью ТЭМ.

ИМЧ основано на определении положения магнитных частиц. При диагностических методах, которые имеют целью только выявление внутреннего строения областей, через которые протекает жидкость, таких как изображение желудочно-кишечного тракта или изображение коронарных артерий, например, может быть достаточно дать пациенту достаточное количество частиц, например, путем инъекции дисперсии частиц или путем перорального приема раствора или дисперсии соответствующих частиц. За частицами, которые по существу не связываются со структурами в исследуемой области, можно затем наблюдать, когда они протекают через исследуемую область. Однако при многих видах диагностического применения желательно, чтобы частицы проявляли специфическое сродство к поверхностным структурам исследуемых областей. Поэтому в одном из предпочтительных вариантов осуществления частицы по настоящему изобретению включают один или более из идентичных или разных лигандов на поверхности частицы. Лиганды могут быть ковалентно или нековалентно связаны с поверхностью. В контексте настоящего изобретения «лиганд» представляет собой вещество, которое связывается с данным веществом с IС50 менее 10 мкМ, предпочтительно менее 1 мкМ, менее 900 нМ, менее 800 нМ, менее 700 нМ, менее 600 нМ, менее 500 нМ, менее 400 нМ, менее 300 нМ, менее 200 нМ, менее 100 нМ, менее 90 нМ, менее 80 нМ, менее 70 нМ, менее 50 нМ, менее 40 нМ, менее 30 нМ, менее 20 нМ. По предшествующему уровню техники известно множество методов определения сродства связывания лиганда (IС50 или некоторые другие параметры) с данным веществом. Эти методы включают, без ограничения этим, ELISA, поверхностный плазмонный резонанс и методы исследования связывания радиоактивно меченного лиганда, как описано, например, у Gazal S. et al. (2002) J. Med. Chem. 45: 1665-1671.

В некоторых случаях может быть желательно фиксировать на поверхности частицы по настоящему изобретению два или более различных лиганда. Это возможно, например, когда на поверхности, с которой должны специфически связываться частицы, существуют две структуры, характерные для этой поверхности, расположенные по соседству друг с другом. Это может быть в случае, например, некоторых опухолевых клеток, у которых из-за мутации два компонента рецептора постоянно соединены друг с другом. Использование двух лигандов, которые, каждый, направлены к одной из двух структур, затем приводит к значительному повышению сродства или специфичности. При этом в предпочтительном варианте осуществления частиц по настоящему изобретению на поверхности оболочки, которая состоит из фармацевтически приемлемого вещества, дополнительно фиксируется(ются) один или более из видов лигандов. В зависимости от соответствующего вещества или смеси веществ, из которых состоит фармацевтически приемлемая оболочка, последняя сама может обладать сродством к данному веществу. Например, ряд полисахаридов обладает определенной клеточной специфичностью. Поэтому при производстве, например, клеткоспецифических частиц не во всех случаях необходима фиксация лигандов, так как такое сродство может происходить от фармацевтически приемлемой оболочки.

Максимальное число лигандов, которое может быть зафиксировано на поверхности, определяется размером поверхности и пространством, необходимым для соответствующего лиганда. Обычно лиганд связан с поверхностью частицы в мономолекулярном слое, что, в зависимости от размера лиганда, может приводить к значительному увеличению диаметра. При выборе подходящих лигандов и, в частности, при использовании крупных антительных лигандов, необходимо позаботиться об обеспечении того, чтобы общий диаметр получаемой покрытой лигандами частицы не приводил к той ситуации, при которой частица больше не способна проходить через капилляры. Поэтому предпочтительно, когда диаметр покрытой лигандами частицы составляет менее 2 мкм, и еще предпочтительнее, составляет диаметр, как указано, который является предпочтительным для общего диаметра непокрытой частицы, о чем сказано выше. В этом случае толщина фармацевтически приемлемой оболочки и/или диаметр ядра из оксида железа должен быть соответственно снижен. В прототипах описано множество методов для прикрепления лигандов. Особенно предпочтительные способы описаны, например, в патенте США 6048515. В зависимости от соответствующей фармацевтически приемлемой оболочки может быть необходимо структурировать оболочку перед прикреплением лиганда. Такие способы были описаны, например, Weißleder et al.

Выбор лиганда будет зависеть от заболевания или патологического состояния, которое нужно диагностировать с помощью ИМЧ. Предпочтительно, структуры, с которыми связываются лиганды, расположенные на частицах, содержатся в областях, через которые протекают жидкости тела, например кровь или лимфа, или содержатся в жидкостях организма. Поэтому предпочтительно, когда лиганд способен специфически связываться с клеточными (эукариотическими или прокариотическими), экстраклеточными или вирусными поверхностными структурами. По предшествующему уровню техники известно множество структур, которые преимущественно экспрессируются в пораженных тканях или клетках или вблизи таких тканей или клеток и которые поэтому служат для индикации соответствующего заболевания. Например, новообразование кровеносных сосудов (неоангиогенез) в организме взрослого ограничивается эндометрием в связи с менструацией или беременностью, и процессами заживления после травмы сосудов. Однако известно, что новые кровеносные сосуды образуются также при многих из пролиферативных заболеваний, и указанные новые кровеносные сосуды не обнаруживаются в каком-либо другом месте в организме, которое не поражается пролиферативным заболеванием. Поэтому клеточные структуры, которые продуцируются в связи с неоангиогенезом и, в частности, структуры, которые обнаружены только в эндотелии опухолей, такие как, например, домен ЕD-В фибронектина (ЕD-ВF), являются превосходными мишенями для лигандов, которые могут быть фиксированы на поверхности частиц по настоящему изобретению. Все лиганды, известные по предшествующему уровню техники, к таким структурам, связанным с заболеваниями, можно использовать в соединении с частицами настоящего изобретения. Однако особенно предпочтительными лигандами являются лиганды, которые способны специфически связываться с одной из следующих структур: с доменом ЕD-В фибринонектинов (ЕD-ВF), с эндоглином, с рецепторами сосудистого эндотелиального фактора роста (VEGFR), с представителями семейства VЕGF, NRР-1, с Аng1, с Тhiе2, с РDGF-ВВ и рецепторами, с ТGF-β1, с рецепторами ТGF-β, с FCF, с HGF, с МСР-1, с интегринами (αvβ3, αvβ5, α5β1), с VЕ-кадхеринами, с РЕСАМ (СD31), с эфринами, с активаторами плазминогена, с ММР, с РАI-1, с NОS, с СОХ-2, с АС133, с хемокинами, с Id1/Id3, с VEGFR-1, с Аng2, с ТSР-1,-2, с ангиостатинами и складками связанного плазминогена, с эндостатинами (фрагмент ХVII коллагена), с вазостатином, с тромбоцитным фактором 4 (ТФ4; РF4), с ингибиторами ММР, с РЕХ, с Меth-1, с Меth-2, с INF-α, -β, -γ, с IL-10, с IL-4, с IL-12, с IL-18, с пролактином (М, 16К), с VЕGI, с фрагментами SРАRС, с фрагментами остеопонтина или маспином, с СоllХVIII, с СМ201, со статинами, в частности, с L-статином, с СD105, с IСАМ1, с соматостатином (подтип 1, 2, 3, 4 или 5) или рецепторами соматостатина (подтип 1, 2, 3, 4, 5 или 6).

По предшествующему уровню техники известно, что множество веществ обладают сродством предпочтительно к клеточным (эукариотическим или прокариотическим), экстраклеточным или вирусным поверхностным структурам. Предпочтительно лиганды, которые зафиксированы на частицах по настоящему изобретению, выбраны из полипептида, олигонуклеотида, полисахарида и липида.

Полипептиды, которые обладают специфическим сродством, известны и могут быть идентифицированы с помощью ряда методов, включая «выявление фагом» и иммунизацию. В этой связи предпочтительно, когда белки, которые по настоящему изобретению можно использовать в качестве лигандов, выбраны из группы, состоящей из антител, включая человеческие, гуманизированные и химерные антитела и фрагменты антител, фрагменты, содержащие связывающие домены антител, например Fv, Fаb, Fаb', F(аb')2, Fаbс, Fасb, одноцепочечные антитела, например одноцепочечные Fvs (sсFvs) и диантитела, и лиганда клеточного, экстраклеточного или вирусного рецептора или его фрагмента. Подходящими лигандами являются, например, сосудистый эндотелиальный фактор роста (СЭФР; VEGF), эпидермальный фактор роста (ЭФР; ЕGF), хемокины и цитокины.

Способность нуклеиновых кислот вступать в специфические связи, например, с транскрипционными факторами или гистонами хорошо известна. Предпочтительные олигонуклеотиды, которые могут быть фиксированы в качестве лигандов на частицах по настоящему изобретению, включают ДНК, РНК, ПНК и аптамеры. Особое предпочтение отдается ПНК, так как они обладают более высокой резистентностью к нуклеазам, обычно обнаруживаемым у пациентов и, таким образом, обладают более длинным полупериодом биологического существования. Способы идентификации специфического связывания нуклеиновых кислот известны по предшествующему уровню техники и описаны, например, в WО93/24508А1, WО94/08050А1, WО95/07364А1, WО96/27605А1 и WО96/34875А1.

В некоторых случаях, например, по причинам стерической или химической несовместимости будет невозможно связать лиганд непосредственно с поверхностью частицы. В этих случаях лиганд может быть связан с поверхностью частицы с помощью линкера. В этой связи термин «линкер» обозначает молекулу, которая предпочтительно имеет одну химически реактивную группу или две таких группы, которые соответственно дают возможность ковалентного или нековалетного связывания с поверхностью частицы с одной стороны и с лигандом с другой стороны. Между этими связывающими группами существует обычно линейная, циклическая или разветвленная область, которая дает возможность, например, большего пространственного разделения между лигандом и частицей и большей подвижности лиганда. Линейная область может быть, например, замещенной или незамещенной, разветвленной или неразветвленной, насыщенной или ненасыщенной алкильной цепью (С2 - С50), которая может быть разбита одним или более из атомов О, N и/или S, или полипептидом, или полинуклеотидом. Примеры химически реактивных групп, которые можно использовать в этих линкерах, включают, например, амино, гидроксильную, тиольную или тиолореактивную, сульфгидрильную, карбоксильную и эпоксидную группы. Тиолореактивные группы включают, например, малеинимидную (малеимид), хлорацетильную, бромацетильную, йодацетильную, хлорацетамидо, бромацетамидо, йодацетамидо, хлоралкильную, бромалкильную, йодалкильную, пиридильную, дисульфидную и винилсульфонамидную группы. Множество соединяющих реагентов, соединяющих групп и линкеров описаны в WО98/47541, на который здесь сделана конкретная ссылка в отношении этого описания.

Было обнаружено, что полиэтиленгликолевые остатки (ПЭГ) и полипропиленгликолевые остатки (ППГ), которые зафиксированы на поверхности фармацевтически активных веществ, приводят к значительному удлинению полупериода биологического существования. Примерами этого являются ПЭГилированные липосомы или ПЭГилированные белки, такие как ПЭГилированные ЕРО, например. Методы ПЭГилирования поверхностей известны по предшествующему уровню техники. В зависимости от материала соответствующей фармацевтически приемлемой оболочки, который использован, ПЭГ остатки или ППГ остатки могут быть ковалентно или нековалентно зафиксированы на поверхности непосредственно или через линкер. Предпочтительно, полиэтиленгликолевые и/или полипропиленгликолевые остатки ковалентно связаны с поверхностью частицы.

Другим объектом настоящего изобретения является способ получения частиц, которые содержат в фармацевтически приемлемой оболочке магнитное ядро из оксида железа, имеющее диаметр от 20 нм до 1 мкм, и с отношением общий диаметр частицы/диаметр ядра менее 6, причем указанный способ включает следующие стадии:

(i) смешивания водного раствора смешанных солей железа, который содержит соль железа(II) и соль железа(III), с основанием в присутствии синтетического полимера или сополимера, крахмала или его производного, декстрана или его производного, циклодекстрана или его производного, жирной кислоты, полисахарида, лецитина или моно-, ди- или триглицерида или его производного, или их смесями до тех пор, пока не образуется коллоидный раствор этих частиц,

(ii) пропускания содержащего частицы раствора через магнитное градиентное поле,

(iii) удаления магнитного градиентного поля,

(iv) и извлечения частиц, задержанных в градиентном поле.

Стадия (i) способа по настоящему изобретению обычно не приводит к получению гомогенной группы частиц, а скорее к получению группы частиц, которые различаются в пределах некоторых полос размеров как в отношении диаметра ядра из оксида железа, так и в отношении диаметра всей частицы. Средний диаметр ядра из оксида железа такой группы получают как среднее арифметическое значение из всех значимых диаметров ядер из оксида железа, содержащихся в группе. Применение магнитного градиентного поля на стадии (ii) приводит к отбору частиц с ядром из оксида железа, которые больше частиц со средним диаметром ядра из оксида железа. Например, путем подбора силы магнитного градиентного поля и, возможно, путем повторения стадий с (ii) по (iv) способа по настоящему изобретению один, два или более раз, возможно, при повышении силы градиентного поля, можно отобрат