Способ (варианты) определения коллекторских свойств подземных пластов с уже существующими трещинами

Иллюстрации

Показать все

Группа изобретений относится к области исследования подземных нефтяных и газовых пластов, более конкретно для определения коллекторских свойств - гидропроводности коллекторов и средних пластовых давлений пласта путем использования количественных диагностических способов испытания кандидата на повторный разрыв пласта. Техническим результатом является повышение точности определения свойств пласта. Для этого изолируют слой подземного пласта. Вводят нагнетаемый флюид в подземный пласт при давлении нагнетания, превышающем давление гидравлического разрыва пласта. Перекрывают ствол скважины в течение периода остановки скважины. Измеряют данные спада давления со стороны подземного пласта в течение периода нагнетания и в течение периода остановки скважины. Определяют гидропроводность слоя подземного пласта, анализируя данные спада давления с помощью количественной диагностической модели кандидата на повторный разрыв пласта. Количественно определяют гидропроводность на промысловых установках по точке сопоставления до закрытия трещины или по точке сопоставления после закрытия трещины по математическим зависимостям. При этом нагнетаемый флюид является сжимаемым, и коллектор содержит слабо сжимаемый или сжимаемый флюид. 2 н. и 12 з.п. ф-лы, 13 ил.

Реферат

Описание

Уровень техники

Настоящее изобретение относится к области способов оценивания нефтяных и газовых подземных пластов, а более конкретно к способам и устройствам для определения коллекторских свойств подземных пластов с использованием количественных диагностических способов испытания кандидата на повторный разрыв пласта.

Нефтяные и газовые углеводороды могут занимать поровые пространства в подземных пластах, таких как, например, песчаниковые подземные пласты. Поровые пространства часто являются сообщающимися и имеют определенную проницаемость, которая представляет собой меру способности породы пропускать поток флюида. В случае, если проницаемость вблизи ствола скважины является низкой, или в случае, когда произошло нарушение эксплуатационных качеств в области вблизи ствола скважины, для повышения добычи из ствола скважины могут быть выполнены операции по гидравлическому разрыву пласта.

Гидравлический разрыв пласта представляет собой процесс, при котором флюид под высоким давлением нагнетают в пласт для образования и/или удлинения трещин, которые проникают в пласт. Эти трещины могут создавать каналы притока флюидов в скважину, повышающие краткосрочную продуктивность скважины. Расклинивающие агенты различных видов, химические или физические, часто используют для поддержания трещин открытыми и для предотвращения смыкания трещин после того, как давление разрыва сбрасывают.

При гидравлическом разрыве пласта можно столкнуться с различными проблемами во время операций разрыва, приводящими к менее чем оптимальному гидравлическому разрыву пласта. В соответствии с этим после гидравлического разрыва пласта может быть желательным оценивание эффективности гидравлического разрыва пласта, выполняемое сразу, или получение исходных данных о коллекторских свойствах для более позднего сравнения и оценивания. Одним примером проблемы, с которой время от времени сталкиваются при гидравлическом разрыве пласта, являются пропущенные слои. А именно, во время первоначального заканчивания нефтяные или газовые скважины могут содержать слои, пропущенные при гидравлическом разрыве специально или случайно.

Успех гидравлического разрыва пласта часто зависит от свойств скважины-кандидата, выбранной для воздействия на пласт. Выбор хорошего кандидата для интенсификации притока может привести к успеху, тогда как выбор плохого кандидата может привести к экономической неэффективности. Чтобы выбрать наилучшего кандидата для интенсификации притока или повторной интенсификации потока, необходимо учесть много параметров. Некоторые важные параметры для гидравлического разрыва пласта включают в себя проницаемость пласта, распределение механических напряжений в пласте, вязкость пластового флюида, коэффициент нарушения коллекторских свойств пласта и давление в коллекторе. Были разработаны различные способы для определения свойств пласта и тем самым для оценивания эффективности выполненной ранее обработки пласта с целью интенсификации притока или осуществленных воздействий на пласт.

Известные способы, предназначенные для идентификации в недостаточной степени функционирующих скважин и для повторного заканчивания пропущенных слоев, большей частью являются безуспешными, отчасти потому, что для способов характерна тенденция к чрезмерному упрощению сложной проблемы многочисленных слоев, и потому, что в них основное внимание обращается на характеристики скважин, дающих смесь продукции из двух или более горизонтов, и на возможность повторного возбуждения скважины без основательного исследования свойств слоев и возможности повторного заканчивания слоев. Сложность многослойной среды возрастает по мере увеличения числа слоев с различными свойствами. Слои с различными свойствами пор, давлениями гидравлического разрыва пласта и проницаемостями могут сосуществовать в одной и той же группе слоев. Значительный недостаток исследования свойств слоев заключается в отсутствии диагностического контроля экономической эффективности при определении проницаемости слоев, давления и количественного оценивания эффективности выполненной ранее обработки пласта для интенсификации притока или осуществленных воздействий на пласт.

Этим известным способам часто присущи разнообразные недостатки, включая отсутствие точности и/или неэффективность вычислительного метода, приводящая к способам, которые требуют слишком больших затрат времени. Кроме того, известные способы часто не имеют точного средства для количественного определения гидропроводности пласта.

Результаты геофизических исследований в эксплуатационной скважине после гидравлического разрыва, изображения гидравлического разрыва пласта вблизи ствола скважины, полученные с помощью радиоактивных индикаторов, и изображения в дальнем поле микросейсмических трещин, все они, позволяют считать, что от около 10% до около 40% слоев, намеченных для заканчивания во время работ по первичному гидравлическому разрыву пласта, могут быть пропущены или интенсифицированы неэффективно при использовании схем гидравлического разрыва пласта на ограниченной части продуктивного интервала.

Количественное оценивание пропущенных слоев обычно сопряжено с трудностью, отчасти потому, что получают изображения очень небольшого количества заканчиваемых скважин. Следовательно, пропущенные или неэффективно интенсифицированные слои не могут быть легко идентифицированы и должны прогнозироваться на основании анализа потока скважины, дающей смесь продукции из двух или более горизонтов, каротажа в эксплуатационной скважине или обычного исследования переходного процесса изменения давления в отдельных слоях.

В качестве одного примера известный способ описан в публикации 2002/0096324 патентной заявки США (Poe), в которой рассмотрен способ идентификации в недостаточной степени функционирующих или плохо функционирующих продуктивных слоев с целью повторной обработки или повторной интенсификации притока. Однако в этом способе используют анализ данных о добыче из притока к продуктивной скважине для вывода заключения о свойстве слоев, а не используют методику непосредственных измерений. Результатом этого ограничения может быть плохая точность, и кроме того, необходимо осуществлять распределение суммарной добычи из скважины по каждому слою на основании диаграмм каротажа в эксплуатационной скважине, получаемых на протяжении периода эксплуатации скважины, которые могут иметься или могут не иметься.

Другие способы оценивания эффективности ранее выполненных работ по гидравлическому разрыву пласта включают в себя обычное исследование переходного процесса изменения давления, которое включает в себя исследование депрессии, восстановления давления, спада давления после нагнетания. Эти способы могут быть использованы для идентификации существующей трещины, сохраняющей остаточную ширину, являющейся результатом ранее выполненной операции по гидравлическому разрыву пласта или осуществленных воздействий на пласт, но для известных способов могут требоваться сутки добычи и контроль давления для каждого, взятого в отдельности слоя. Вследствие этого в случае ствола скважины, имеющего многочисленные продуктивные слои, для оценивания всех слоев может потребоваться испытание отдельных слоев в течение срока, составляющего от недель до месяцев. Для многих скважин возможная отдача не оправдывает затрат этого вида.

Делались попытки проведения диагностического испытания в скважинах с многочисленными слоями, имеющими низкую проницаемость. Один пример такого способа раскрыт в Hopkins C.W., et al., “The use of injection/falloff tests and pressure buildup tests to evaluate fracture geometry and post-stimulation well performance in the Devonian shales”, paper SPE 23433, 22-25 (1991). Согласно этому способу описаны несколько диагностических методик, использованных для скважины в девонском сланце с целью выявления присутствия уже существующей трещины (трещин) в многочисленных целевых слоях на протяжении интервала, составлявшего 727 футов. Диагностические испытания включают в себя испытания изоляции потоков, исследования сообщений в стволе скважины, исследования спада давления после нагнетания азота и обычные исследования депрессии и восстановления давления.

Несмотря на то, что этот диагностический способ позволяет оценивать некоторые коллекторские свойства, он, однако, является затратным и занимающим много времени, даже в случае относительно простого случая, когда имеются только четыре слоя. Многие кандидаты на повторный разрыв пласта из числа скважин газовой залежи с низкой проницаемостью содержат расположенные друг над другом линзовидные песчаные пласты с числом слоев от 20 до 40, которые должны быть оценены своевременно и с наименьшими затратами.

В другом способе используют квазиколичественный способ интерпретации исследования переходного процесса изменения давления, раскрытый в Huang H., et al., “A short shut-in time testing method for determining stimulation effectiveness in low permeability gas reservoirs”, GASTIPS, 6, №4, 28 (Fall 2000). Этот «упрощенный способ интерпретации исследования при остановке скважины» предназначен для получения данных относительно только эффективности уже существующей трещины. Для получения верхнего и нижнего пределов проницаемости и эффективной полудлины трещины в способе используют опорные точки типовой кривой с логарифмическим масштабом по обеим осям (точки окончания заполнения нефтью ствола скважины, начала псевдолинейного потока, окончания псевдолинейного потока и начала псевдорадиального потока) и известные соотношения между давлением и свойствами системы в этих точках.

В другом способе для коллекторов с низкой проницаемостью используют испытания закачиванием азота в качестве диагностического испытания до разрыва пласта, раскрытые в Jochen J.E., et al., “Quantifying layered reservoir properties with a novel permeability test”, SPE 25864, 12-14 (1993). В соответствии с этим способом описано испытание нагнетанием азота в виде кратковременного нагнетания небольшого объема азота при более низком давлении, чем давление инициирования и распространения трещины, с последующим длительным периодом спада давления. В отличие от исследования спада давления после нагнетания азота, который использовали Hopkins и соавторы, результаты испытания закачиванием азотом анализируют, используя типовые кривые испытания закачиванием и сопоставляя динамику процесса нагнетания и спада давления с помощью конечно-разностного имитатора коллектора.

Аналогичным образом, как раскрыто в Craig D.P., et al., “Permeability, pore pressure and leakoff-type distribution in rocky mountain basins”, SPE Production & Facilities, 48 (February 2005), исследования некоторых видов по спаду давления после нагнетания в трещину регулярно проводят с 1998 г в качестве способа диагностики до разрыва пласта с целью оценивания проницаемости пласта и среднего давления в коллекторе. Эти исследования спада давления после нагнетания в трещину, которые по существу представляют собой гидравлический мини-разрыв пласта и в которых коллекторские свойства интерпретируют на основании спада давления, отличаются от испытаний закачиванием азота тем, что давление во время нагнетания больше, чем давление инициирования и распространения трещины. При исследованиях спада давления после нагнетания в трещину обычно необходимы низкий расход и нагнетание небольшого объема обработанной воды с последующим продолжительным периодом остановки скважины. Проницаемость относительно подвижного пластового флюида и среднее давление в коллекторе могут быть интерпретированы на основании снижения давления. Однако при исследовании спада давления после нагнетания в трещину может оказаться невозможным с достаточной точностью осуществить оценку кандидатов на повторный разрыв пласта, поскольку в соответствующей известной теории не учитываются уже существующие трещины.

Поэтому известные способы для оценивания свойств пласта имеют много недостатков, включая отсутствие возможности количественно определить гидропроводность коллектора, отсутствие экономической эффективности, вычислительную неэффективность и/или отсутствие точности. Даже среди способов, разработанных для того, чтобы количественно определять гидропроводность коллектора, такие способы могут быть практически нецелесообразными для оценивания пластов, имеющих многочисленные слои, такие как, например, расположенные друг над другом линзовидные коллекторы с низкой проницаемостью.

Сущность изобретения

Настоящее изобретение относится к области способов оценивания нефтяных и газовых подземных пластов, а более конкретно, к способам и устройствам для определения коллекторских свойств подземных пластов путем использования количественных диагностических способов испытания кандидата на повторный разрыв пласта.

Согласно некоторым осуществлениям способ определения гидропроводности коллектора по меньшей мере одного слоя подземного пласта, имеющего уже существующие трещины, имеющие пластовый флюид, содержит этапы, на которых: (а) изолируют по меньшей мере один слой подземного пласта, подлежащего испытанию; (b) вводят нагнетаемый флюид в по меньшей мере один слой подземного пласта при давлении нагнетания, превышающем давление гидравлического разрыва подземного пласта, в течение периода нагнетания; (с) перекрывают ствол скважины в течение периода остановки скважины; (d) измеряют данные спада давления со стороны подземного пласта в течение периода нагнетания и в течение последующего периода остановки скважины; и (е) определяют количественно гидропроводность коллектора по меньшей мере одного слоя подземного пласта, анализируя данные спада давления с помощью количественной диагностической модели кандидата на повторный разрыв пласта.

Согласно некоторым осуществлениям система для определения гидропроводности коллектора по меньшей мере одного слоя подземного пласта путем использования данных спада давления при переменном расходе со стороны по меньшей мере одного слоя подземного пласта, измеряемых в течение периода нагнетания и в течение последующего периода остановки скважины, содержит множество датчиков давления для измерения данных спада давления; и процессор, функционирующий для преобразования данных спада давления с целью получения эквивалентных давлений при постоянном расходе и с целью определения количественно гидропроводности коллектора по меньшей мере одного слоя подземного пласта путем анализа спада давления при переменном расходе с использованием анализа типовой кривой в соответствии с количественной диагностической моделью кандидата на повторный разрыв пласта.

Согласно некоторым осуществлениям компьютерная программа, сохраняемая на материальном носителе данных, для осуществления анализа по меньшей мере одного свойства в скважинных условиях содержит исполняемые команды, которые побуждают компьютер к определению количественно гидропроводности коллектора по меньшей мере одного слоя подземного пласта путем анализа данных спада давления при переменном расходе с помощью количественной диагностической модели кандидата на повторный разрыв пласта.

Признаки и преимущества настоящего изобретения должны быть понятными для специалистов в данной области техники. Хотя специалистами в данной области техники могут быть сделаны многочисленные изменения, такие изменения находятся в рамках сущности изобретения.

Краткое описание чертежей

Этими чертежами иллюстрируются конкретные аспекты некоторых осуществлений настоящего изобретения, и они не должны использоваться для ограничения или определения изобретения.

На чертежах:

фигура 1 - блок-схема последовательности операций, иллюстрирующая одно осуществление способа количественного определения гидропроводности коллектора;

фигура 2 - блок-схема последовательности операций, иллюстрирующая одно осуществление способа количественного определения гидропроводности коллектора;

фигура 3 - блок-схема последовательности операций, иллюстрирующая одно осуществление способа количественного определения гидропроводности коллектора;

фигура 4 - вид трещины с бесконечной высокой удельной проводимостью под произвольным углом относительно оси x D;

фигура 5 - график с логарифмическим масштабом по обеим осям зависимости безразмерного давления от безразмерного времени для крестовой трещины с бесконечной высокой удельной проводимостью, при этом δ L={0, 1/4, 1/2 и 1};

фигура 6 - вид трещины с конечной удельной проводимостью под произвольным углом относительно оси x D;

фигура 7 - иллюстрация дискретизации крестовой трещины;

фигура 8 - график с логарифмическим масштабом по обеим осям зависимости безразмерного давления от безразмерного времени для крестовой трещины с конечной удельной проводимостью, при этом δ L=1 и δ C=1;

фигура 9 - график с логарифмическим масштабом по обеим осям зависимости безразмерного давления от безразмерного времени для трещин с конечной удельной проводимостью, при этом δ L=1, δ C=1, пересекающихся под углами π/2, π/4 и π/8;

фигура 10 - пример результата исследования спада давления после нагнетания в трещину в отсутствие уже существующего гидравлического разрыва пласта;

фигура 11 - пример сопоставления с типовой кривой для исследования спада давления после нагнетания в трещину в отсутствие уже существующего гидравлического разрыва пласта;

фигура 12 - пример результата диагностического испытания кандидата на повторный разрыв пласта при наличии уже существующего гидравлического разрыва пласта; и

фигура 13 - пример графика с логарифмическим масштабом по обеим осям результатов диагностического испытания кандидата на повторный разрыв пласта при наличии поврежденного уже существующего гидравлического разрыва пласта.

Описание предпочтительных осуществлений

Настоящее изобретение относится к области способов оценивания нефтяных и газовых подземных пластов, а более конкретно, к способам и устройствам для определения коллекторских свойств подземных пластов путем использования количественных диагностических способов испытания кандидата на повторный разрыв пласта.

Способы настоящего изобретения могут быть полезными для оценивания свойств пласта путем использования количественных диагностических способов испытания кандидата на повторный разрыв пласта, в которых можно использовать нагнетаемые флюиды при давлениях, превышающих давление инициирования и распространения трещины. В частности, способы настоящей заявки могут быть использованы для оценивания свойств пласта, таких как, например, эффективная полудлина уже существующей трещины, удельная проводимость уже существующей трещины, гидропроводность коллектора и среднее давление в коллекторе. Кроме того, способы настоящей заявки могут быть использованы для определения, является ли уже существующая трещина поврежденной. Среди прочего, настоящее изобретение может быть полезным для определения на основании оцененных свойств пласта эффективности выполненного ранее гидравлического разрыва пласта, чтобы определить, требуется ли повторное воздействие на пласт вследствие менее чем оптимального результата гидравлического разрыва пласта. В соответствии с этим способы настоящего изобретения могут быть использованы для получения методики, предназначенной для определения, является ли желательным повторное воздействие на пласт и когда оно является желательным, путем количественного применения диагностического способа исследования спада давления после нагнетания в трещину кандидата на повторный разрыв пласта.

В большинстве случаев способы настоящей заявки позволяют осуществлять относительно быстрое определение эффективности выполненной ранее обработки или обработок пласта для интенсификации притока или воздействия на пласт путем нагнетания флюида в пласт при давлении нагнетания, превышающем давление разрыва пласта, и регистрации данных спада давления. Данные спада давления могут быть проанализированы для определения некоторых свойств пласта, включая, если желательно, гидропроводность пласта.

Согласно некоторым осуществлениям способ определения гидропроводности коллектора по меньшей мере одного слоя подземного пласта, имеющего уже существующие трещины, имеющие пластовый флюид, содержит этапы, на которых: (а) изолируют по меньшей мере один слой подземного пласта, подлежащего исследованию; (b) вводят нагнетаемый флюид в по меньшей мере один слой подземного пласта при давлении нагнетания, превышающем давление гидравлического разрыва подземного пласта, в течение периода нагнетания; (с) перекрывают ствол скважины в течение периода остановки скважины; (d) измеряют данные спада давления со стороны подземного пласта в течение периода нагнетания и в течение последующего периода остановки скважины; и (е) определяют количественно гидропроводность коллектора по меньшей мере одного слоя подземного пласта, анализируя данные спада давления с помощью количественной диагностической модели кандидата на повторный разрыв пласта.

Термин «диагностическое испытание кандидата на повторный разрыв пласта», используемый в настоящей заявке, относится к вычислительным оценкам, рассмотренным ниже в Разделах I и II, используемым для оценивания некоторых коллекторских свойств пласта, включая гидропроводность слоя или многочисленных слоев пласта. Испытание показывает, что существующая трещина, сохраняющая остаточную ширину, имеет соответствующую упругоемкость, а новая искусственно образованная трещина создает дополнительную упругоемкость. Следовательно, при исследовании спада давления после нагнетания в трещину в слое с уже существующей трещиной будет наблюдаться характеристика изменяющейся упругоемкости в течение периода спада давления и будет наблюдаться изменение упругоемкости при закрытии гидравлического разрыва пласта. В сущности, при испытании искусственно создают трещину, чтобы быстро идентифицировать уже существующую трещину, сохраняющую остаточную ширину.

Способы и модели настоящей заявки являются обобщениями идей Craig D.P. и частично основаны на этих идеях, изложенных в диссертации “Analytical modeling of a fracture-injection/falloff sequence and the development of refracture-candidate diagnostic test”, PhD dissertation, Texas A&M Univ., Колледж-Стейшен, Техас (2005), которая полностью включена в настоящую заявку посредством ссылки, и идей заявки №10/813698 на патент США, поданной 3 марта 2004 г под названием “Methods and apparatus for detecting fracture with significant residual width from previous treatments”, которая полностью включена в настоящую заявку посредством ссылки.

На фигуре 1 показан пример осуществления количественного диагностического способа испытания кандидата на повторный разрыв пласта, реализующего некоторые аспекты количественной диагностической модели кандидата на повторный разрыв пласта. Для определения гидропроводности коллектора по меньшей мере одного слоя подземного пласта способ 100 обычно начинают на этапе 105. На этапе 110 изолируют по меньшей мере один слой подземного пласта. Для испытания способами настоящего изобретения в течение этапа изоляции слоев предпочтительно каждый подземный слой изолировать индивидуально, по одному. Несколько слоев могут быть испытаны одновременно, но при таком объединении слоев в оценки гидропроводности может вноситься дополнительная вычислительная неопределенность.

Нагнетаемый флюид вводят (этап 120) в по меньшей мере один слой подземного пласта при давлении нагнетания, превышающем давление разрыва пласта, в течение периода нагнетания. Нагнетаемый флюид может быть жидкостью, газом или смесью их. В некоторых примерах осуществлений объем нагнетаемого флюида, вводимого в подземный слой, может быть приблизительно эквивалентен объему порового пространства набивки из расклинивающего агента для существующей трещины, если известно или предполагается, что она существует. Предпочтительно ограничивать введение нагнетаемого флюида относительно коротким периодом времени по сравнению со временем реакции коллектора, которое для конкретных пластов может быть в пределах от нескольких секунд до минут. В более предпочтительных осуществлениях при типичных применениях введение нагнетаемого флюида может быть ограничено временем, меньшим, чем около 5 мин. В случае пластов, имеющих уже существующие трещины, нагнетаемый флюид предпочтительно вводить таким образом, чтобы создавалось изменение объема существующих и создаваемых трещин, то есть по меньшей мере приблизительно удвоенного оцененного объема поровых пространств набивки из расклинивающего агента. После введения нагнетаемого флюида ствол скважины может быть перекрыт на период времени от нескольких минут до нескольких дней, что зависит от отрезка времени, на котором по данным спада давления обнаруживают приближение падающего давления к давлению в коллекторе.

В течение периода нагнетания и в течение последующего периода остановки скважины измеряют (этап 140) данные спада давления со стороны подземного пласта. Данные спада давления могут быть измерены датчиком давления или множеством датчиков давления. После введения нагнетаемого флюида ствол скважины может быть перекрыт на период времени от около нескольких часов до около нескольких дней, что зависит от отрезка времени, на котором по данным спада давления обнаруживают приближение падающего давления к давлению в коллекторе. Затем согласно этапу 150 данные спада могут быть проанализированы для определения гидропроводности коллектора подземного пласта в соответствии с количественной диагностической моделью кандидата на повторный разрыв пласта, рассмотренной более подробно ниже в Разделах I и II. Способ 100 заканчивают на этапе 225.

На фигуре 2 показан пример реализации количественного определения гидропроводности коллектора (показанной этапом 150 способа 100). В частности, способ 200 начинают на этапе 205. Этап 210 представляет собой этап преобразования данных спада давления при переменном расходе в эквивалентные давления при постоянном расходе и использования анализа типовой кривой для сопоставления эквивалентных давлений при постоянном расходе с типовой кривой. Этап 220 представляет собой этап определения количественно гидропроводности коллектора по меньшей мере одного слоя подземного пласта путем анализа эквивалентных давлений при постоянном расходе с помощью количественной диагностической модели кандидата на повторный разрыв пласта. Способ 200 заканчивают на этапе 225.

Один или несколько способов настоящего изобретения можно реализовать посредством системы обработки информации. Для целей этого раскрытия система обработки информации может включать в себя любое инструментальное средство или совокупность инструментальных средств, способных осуществлять вычисление, классификацию, обработку, передачу, прием, считывание, инициирование, переключение, сохранение, отображение, обнаружение, измерение, регистрацию, воспроизведение, контроль или использование информации любого вида, интеллектуальной, или данных для коммерческой деятельности, науки, контроля или других целей. Например, системой обработки информации может быть персональный компьютер, сетевое устройство хранения данных или любое другое подходящее устройство, и они могут быть различными по размеру, форме, характеристикам, функциональной возможности и цене. Система обработки информации может включать в себя оперативное запоминающее устройство (ОЗУ), один или несколько ресурсов для обработки информации, таких, как центральный процессор (ЦП или процессор) или аппаратные или программные логические схемы управления, постоянное запоминающее устройство и/или энергонезависимое запоминающее устройство другого вида. Дополнительные компоненты системы обработки информации могут включать в себя один или несколько дисковых накопителей, один или несколько сетевых портов для связи с внешними устройствами, а также различные устройства ввода и вывода, такие, как клавиатура, мышь и телевизионный дисплей. Система обработки информации также может включать в себя одну или несколько шин, функционирующих для передачи сообщений между различными аппаратными компонентами.

I. Количественная диагностическая модель испытания кандидата на повторный разрыв пласта

Диагностическая модель испытания кандидата на повторный разрыв пласта представляет собой расширение теоретической модели нагнетания в трещину/спада давления с помощью решений для переходного процесса изменения давления в многочисленных произвольно ориентированных трещинах с бесконечно высокой или конечной удельной проводимостью, используемых для адаптации модели. Теоретическая модель нагнетания в трещину/спада давления представлена в заявке Реестр HES 2005-IP-018458U1 патентного поверенного под названием “Methods and apparatus for determining reservoir properties of subterranean formations”, поданной одновременно с настоящей заявкой, при этом раскрытие указанной заявки полностью включено в настоящую заявку посредством ссылки.

Испытанием выявляется, что существующая трещина, сохраняющая остаточную ширину, имеет соответствующую упругоемкость, а новая, искусственно образованная трещина создает дополнительную упругоемкость. Следовательно, исследованием спада давления после нагнетания в трещину в слое с уже существующей трещиной будет выявляться изменяющаяся упругоемкость во время спада давления и будет наблюдаться изменение упругоемкости при закрытии гидравлического разрыва. В сущности, при испытании искусственно создают трещину, чтобы быстро идентифицировать уже существующую трещину, сохраняющую остаточную ширину.

Рассмотрим уже существующую трещину, которая расширяется во время выполнения последовательности из нагнетания в трещину и спада давления, но при этом полудлина трещины остается неизменной. При постоянной полудлине трещины во время нагнетания и спаде давления до закрытия трещины изменения объема трещины являются функцией ширины трещины, а коэффициент упругоемкости до закрытия трещины эквивалентен коэффициенту упругоемкости расширяющейся трещины и записывается в виде

(Система условных обозначений, используемая повсюду в этом описании, охарактеризована ниже в Разделе VI),

где S f является жесткостью трещины, описанной в диссертации Craig D.P., “Analytical modeling of a fracture-injection/falloff sequence and the development of a refracture-candidate diagnostic test”, PhD dissertation, Texas A&M Univ., Колледж-Стейшен, Техас (2005). В случае эквивалентности упругоемкости до закрытия трещины и упругоемкости расширенной трещины дифференцирование, аналогичное показанному ниже в Разделе III, приводит к решению для безразмерного давления, записываемому как

В качестве альтернативы во время нагнетания вторичная трещина может быть инициирована в плоскости, отличающейся от плоскости первичной трещины. В случае образования вторичной трещины и в предположении, что объем первичной трещины остается постоянным, коэффициент упругоемкости распространяющейся трещины записывается в виде

Коэффициент упругоемкости до закрытия трещины может быть определен как

а коэффициент упругоемкости после закрытия трещины может быть записан в виде

При новых формулировках коэффициента упругоемкости решение для последовательности из нагнетания в трещину и спада давления в случае уже существующей трещины и распространяющейся вторичной трещины записывается как

Отвечающие предельному случаю решения для единственной расширенной трещины идентичны отвечающим предельному случаю решениям для спада давления после нагнетания в трещину (уравнения 19 и 20 в одновременно рассматриваемой заявке на патент США, регистрационный номер … [Реестр № HES 2005-IP-018458U1 патентного поверенного]), когда (te)LfD☐t LfD. При распространении вторичной трещины удовлетворяющее предельному случаю решение до закрытия трещины для (te)LfD□tLfD<(tc)LfD может быть записано в виде

где p LfbcD является решением для безразмерного давления при депрессии с постоянным расходом в скважине, выдающей продукт из многочисленных трещин с постоянной упругоемкостью до закрытия трещин, которое в области Лапласа может быть записано как

и при этом представляет собой решение в области Лапласа для коллектора в случае добычи из многочисленных произвольно ориентированных трещин с конечной или бесконечно высокой удельной проводимостью. Новые решения для многочисленных трещин получены ниже в Разделе IV для случая произвольно ориентированных трещин с бесконечно высокой удельной проводимостью и в Разделе V для случая произвольно ориентированных трещин с конечной удельной проводимостью. В новых решениях для многочисленных трещин учитываются изменяющаяся полудлина трещин, изменяющаяся удельная проводимость и изменяющийся угол расхождения между трещинами.

При наличии распространения вторичной трещины удовлетворяющее предельному случаю решение после закрытия трещины, когда tLfD□(tc)LfD□(te)LfD, записывается в виде

где p LfacD является решением для безразмерного давления при депрессии с постоянным расходом в скважине, выдающей продукт из многочисленных трещин с постоянной упругоемкостью после закрытия трещин, которое в области Лапласа может быть записано как

Удовлетворяющие предельному случаю решения представляют собой решения для испытания закачиванием, и это позволяет предположить, что результаты диагностического испытания кандидата на повторный разрыв пласта можно анализировать как результаты испытания закачиванием при условии, что время нагнетания меньше по сравнению с реакцией коллектора.

Следовательно, согласно некоторым осуществлениям при испытании кандидата на повторный разрыв пласта можно использовать следующее:

- Изоляцию слоя, подлежащего испытанию.

- Нагнетание жидкости или газа при давлении, превышающем давление инициирования и распространения трещины. Согласно некоторым осуществлениям нагнетаемый объем может быть приблизительно эквивалентен объему порового пространства набивки из расклинивающего агента в существующей трещине, если известно или предполагается, что она существует. Согласно некоторым осуществлениям время нагнетания может быть ограничено несколькими минутами.

- Остановку скважины и регистрацию данных спада давления. Согласно некоторым осуществлениям период измерения может составлять несколько часов.

Для качественной интерпретации можно использовать следующие этапы, к которым относятся:

- Идентификация закрытия гидравлического разрыва во время спада давления путем использования способов, таких как способы раскрытые в Craig D.P., et al., “Permeability, pore pressure, and leakoff-type distribution in rocky mountain basins”, SPE Production & Facilities, 48 (February 2005).

- Момент времени в конце закачивания, t ne, становится нулевым моментом отсчета времени, ∆t=0. Вычисление момента остановки скважины относительно окончания закачивания в виде

В некоторых случаях t ne является очень малым по сравнению с t, и ∆t=t. Специалисту в данной области техники, имеющему выгоду от этого раскрытия, должно быть понятно, что t ne можно приравнять к нулю, принять приблизительно равным нулю, с тем, чтобы аппроксимировать ∆t. Поэтому член ∆t, используемый в настоящей заявке, охватывает реализации, когда t ne предполагается равным нулю или приблизительно равным нулю. В случае нагнетания слабо сжимаемого флюида в