Получение алкилированных ароматических углеводородов из метана

Иллюстрации

Показать все

Изобратение относится к способам получения ароматических углеводородов из метана и, в частности, из природного газа. Описан способ превращения метана в алкилированные ароматические углеводороды, включающий: (а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород; (б) контактирование по меньшей мере части упомянутого ароматического углеводорода из упомянутого первого отходящего потока с алкилирующим агентом в условиях, эффективных для алкилирования упомянутого ароматического углеводорода и получения алкилированного ароматического углеводорода, содержащего алкильных боковых цепей больше, чем упомянутый ароматический углеводород перед алкилированием; и (в) реакцию по меньшей мере части водорода из упомянутого первого отходящего потока с диоксидом углерода или моноксидом углерода с получением второго отходящего потока, обладающего более низким содержанием водорода в сравнении с упомянутым первым отходящим потоком. Технический результат - превращение метана в ароматические соединения с получением пригодных продуктов, таких как дополнительный метан или алкилирующие агенты. 19 з.п. ф-лы, 3 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ. К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

В данной заявке описан способ получения ароматических углеводородов из метана и, в частности, из природного газа.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Ароматические углеводороды, в особенности бензол, толуол, этилбензол и ксилолы, являются важными химическими продуктами массового производства в нефтехимической промышленности. В настоящее время ароматические соединения наиболее часто получают по разнообразным методам из исходных материалов на основе сырой нефти, включая каталитический реформинг и каталитический крекинг. Однако по мере того как мировые поставки исходных материалов на основе сырой нефти уменьшаются, возрастает потребность найти альтернативные источники жидких углеводородов.

Одним возможным альтернативным источником ароматических углеводородов служит метан, который является основным компонентом природного газа и биогаза. Объем разведанных мировых запасов природного газа постоянно увеличивается и в настоящее время открывают больше месторождений природного газа, чем нефти. Из-за проблем, связанных с транспортировкой больших объемов природного газа, большую часть природного газа, добываемого вместе с нефтью, в особенности в отдаленных местах, сжигают в факеле и направляют в отход. Следовательно, особенно привлекательным методом повышения сортности природного газа является превращение алканов, содержащихся в природном газе, непосредственно в более высокомолекулярные углеводороды, такие как ароматические соединения, при условии, что могут быть преодолены сопутствующие этому технические трудности.

Значительная часть основных способов превращения метана в жидкие углеводороды включает вначале превращение метана в синтез-газ, смесь Н2 и СО. Получение синтез-газа связано с большими капитальными затратами и является энергоемким; следовательно, предпочтительны пути, которые не требуют генерирования синтез-газа.

Предложен ряд альтернативных способов превращения метана в более высокомолекулярные углеводороды. Один такой способ включает каталитическое окислительное сочетание метана до олефинов с последующим каталитическим превращением олефинов в жидкие углеводороды, включающие ароматические углеводороды. Так, например, в US №5336825 описан двухстадийный способ окислительного превращения метана в углеводороды с пределами кипения бензиновой фракции, включающие ароматические углеводороды. На первой стадии в присутствии свободного кислорода с использованием промотированного редкоземельным металлом катализатора из оксида щелочноземельного металла при температуре в пределах от 500 до 1000°С метан превращают в этилен и небольшие количества С3- и С4олефинов. Затем этилен и более высокомолекулярные олефины, образовавшиеся на первой стадии, над кислым твердым катализатором, включающим пентасиловый цеолит с высоким содержанием диоксида кремния, превращают в жидкие углеводороды с пределами кипения бензиновой фракции.

В качестве пути повышения сортности метана до более высокомолекулярных углеводородов, в особенности этилена, бензола и нафталина, предложена также дегидроароматизация метана посредством высокотемпературного восстановительного сочетания. Так, например, в US №4727206 описан способ получения жидких продуктов, богатых ароматическими углеводородами, введением метана при температуре в пределах от 600 до 800°С в отсутствии кислорода в контакт с каталитической композицией, включающей алюмосиликат, обладающий молярным отношением диоксида кремния к оксиду алюминия по меньшей мере 5:1, причем в упомянутый алюмосиликат вводят (I) галлий или его соединение и (II) металл группы VIIB Периодической таблицы элементов или его соединение.

В US №5026937 описан способ ароматизации метана, который включает стадии подачи потока исходных материалов, который включает больше 0,5 мольного % водорода и 50 мольных % метана, в реакционную зону, содержащую по меньшей мере один слой твердого катализатора, включающего ZSM-5 и фосфорсодержащий оксид алюминия, в условиях превращения, которые включают температуру от 550 до 750°С, абсолютное давление ниже 10 ат (1000 кПа) и среднечасовую скорость подачи газа от 400 до 7500 ч-1. Отходящий поток продуктов включает, как сказано, метан, водород, по меньшей мере 3 мольных % С3углеводородов и по меньшей мере 5 мольных % ароматических С68углеводородов. После конденсации для удаления фракции С4+ с целью выделить водород и легкие углеводороды (метан, этан, этилен и т.д.), содержащиеся в отходящем потоке продуктов, предложены криогенные методы.

В US №5936135 описан низкотемпературный неокислительный способ превращения низшего алкана, такого как метан и этан, в ароматические углеводороды. В этом способе низший алкан смешивают с более высокомолекулярным олефином или парафином, таким как пропилен и бутен, и смесь вводят в контакт с предварительно обработанным бифункциональным пентасиловым цеолитным катализатором, таким как GaZSM-5, при температуре от 300 до 600°С, среднечасовой скорости подачи газа от 1000 до 100000 см3·г-1ч-1 и под давлением от 1 до 5 ат (от 100 до 500 кПа). Предварительная обработка катализатора включает контактирование катализатора со смесью водорода и водяного пара при температуре от 400 до 800°С, под давлением от 1 до 5 ат (от 100 до 500 кПа) и при среднечасовой скорости подачи газа по меньшей мере 500 см3·г-1ч-1 ч в течение периода по меньшей мере 0,5 ч, а затем контактирование катализатора с воздухом или кислородом при температуре от 400 до 800°С, среднечасовой скорости подачи газа по меньшей мере 200 см3·г-1ч-1 и под давлением от 1 до 5 ат (от 100 до 500 кПа) в течение периода по меньшей мере 0,2 ч.

В US №6239057 и №6426442 описан способ получения углеводородов с более высоким числом углеродных атомов, например бензола, из углеводородов с низким числом углеродных атомов, таких как метан, введением этого последнего в контакт с катализатором, включающим пористый носитель, такой как ZSM-5, который содержит диспергированный на нем рений и промоторный металл, такой как железо, кобальт, ванадий, марганец, молибден, вольфрам, или их смесь. Добавление СО или СО2 в исходный материал повышает, как сказано, выход бензола и стабильность катализатора.

В US №6552243 описан способ неокислительной ароматизации метана, в котором каталитическую композицию, включающую кристаллическое алюмосиликатное молекулярное сито с введенным металлом, первоначально активируют обработкой смесью водорода и алкана с С2 по С4, предпочтительно бутана, а затем активированный катализатор вводят в контакт с потоком исходных материалов, включающим по меньшей мере 40 мольных % метана, при температуре от 600 до 800°С, под абсолютным давлением ниже 5 ат (500 кПа) и при среднечасовой скорости подачи сырья (ССПС) от 0,1 до 10 ч-1.

В RU №2135441 описан способ превращения метана в более тяжелые углеводороды, в котором метан смешивают с по меньшей мере 5 мас.% углеводорода С3+, такого как бензол, а затем в мультистадийной реакторной системе вводят в контакт с катализатором, включающим металлическую платину, обладающим под парциальным давлением метана по меньшей мере 0,05 МПа и при температуре по меньшей мере 440°С степенью окисления выше нуля. Водород, образующийся в процессе, может быть введен в контакт с оксидами углерода с получением дополнительного метана, который после удаления одновременно получаемой воды можно добавлять в метановый исходный материал. Продукты превращения метана представляют собой газообразную фазу С34 и жидкую фазу С3+, но в соответствии с примерами при этом мало (меньше 5 мас.%) или отсутствует фактическое увеличение количества ароматических колец в сравнении с исходным материалом.

Существующие предложения по превращению метана в ароматические углеводороды страдают наличием нескольких проблем, которые ограничивают их технический потенциал. Так, например, основными ароматическими продуктами осуществления большинства способов превращения метана являются бензол и нафталин. Хотя бензол обладает потенциальной ценностью как химическое сырье, он находит ограниченный сбыт на рынке химикатов и не является надежным топливным источником вследствие проблем, создаваемых здоровью и экологии. Нафталин находит еще более ограниченный сбыт на рынке химикатов, а его применение в качестве топлива оказывается более затруднительным вследствие проблем, создаваемых здоровью и экологии, в дополнение к которым его температура плавления превышает комнатную температуру. В противоположность этому алкилароматические соединения, такие как толуол, этилбензол, ксилолы и диметилнафталины, обычно характеризуются более высокой полезностью как промежуточные продукты в нефтехимической промышленности.

Кроме того, методы окислительного сочетания обычно включают высокоэкзотермические и потенциально опасные реакции горения метана, часто требующие наличия дорогостоящего оборудования для генерирования кислорода и получения больших количеств экологически нежелательных оксидов углерода. С другой стороны, существующие методы восстановительного сочетания часто характеризуются низкой селективностью в отношении ароматических соединений и могут требовать дорогостоящих совместных исходных материалов для улучшения превращения и/или селективности в отношении ароматических соединений. Более того в любом процессе восстановительного сочетания получают большие количества водорода, вследствие чего для экономической жизнеспособности необходим путь для эффективной утилизации водорода как побочного продукта. Поскольку месторождения природного газа часто находятся в отдаленных районах, эффективная утилизация водорода может оказаться довольно сложной задачей.

Особая трудность при применении природного газа как источника метана заключается в том факте, что многие месторождения природного газа по всему миру содержат большие количества, иногда больше 50%, диоксида углерода. Диоксид углерода является не только объектом ужесточения правительственных требований вследствие его потенциальной ответственности за глобальное изменение климата, но, вероятно, экономически запретным оказывается также любой способ, осуществление которого требует выделения из природного газа и устранения больших количеств диоксида углерода. В действительности некоторые месторождения природного газа характеризуются настолько высокими концентрациями диоксида углерода, что в настоящее время рассматриваются как экономически безвозвратно утраченные.

Следовательно, все еще существует потребность в разработке усовершенствованного способа превращения метана, в особенности метана из потоков природного газа, в ароматические углеводороды, в особенности в алкилированные ароматические углеводороды.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В одном отношении в данной заявке описан способ превращения метана в алкилированные ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород; и

(б) контактирование по меньшей мере части упомянутого ароматического углеводорода из упомянутого первого отходящего потока с алкилирующим агентом в условиях, эффективных для алкилирования упомянутого ароматического углеводорода и получения алкилированного ароматического углеводорода, содержащего алкильных боковых цепей больше, чем упомянутый ароматический углеводород перед алкилированием.

В подходящем варианте упомянутый исходный материал в (а) содержит также по меньшей мере один из Н2, Н2О, СО и СО2.

В подходящем варианте упомянутый исходный материал в (а) содержит меньше 5 мас.% углеводородов С3+ Используемое в настоящем описании понятие "углеводороды С3+" означает углеводороды, включающие 4 или большее число углеродных атомов.

В подходящем варианте упомянутые условия в (а) являются неокислительными условиями. Понятие "неокислительные" указывает на то, что окислители (такие как О2, NOx и оксиды металлов, которые способны высвобождать кислород для окисления метана в СОх) содержатся в концентрации ниже 5%, предпочтительно ниже 1%, наиболее предпочтительно ниже 0,1%, от количества, необходимого для стехиометрического окисления метана.

Как правило, упомянутые условия в (а) включают температуру от 400 до 1200°С, в частности от 500 до 975°С, например от 600 до 950°С.

В подходящем варианте перед упомянутым контактированием (б) способ также включает выделение из упомянутого первого отходящего потока по меньшей мере части ароматического углеводорода, как правило, бензола и/или нафталина.

В одном варианте алкилирующий агент, используемый при упомянутом контактировании (б), представляет собой этилен, получаемый при упомянутом контактировании (а).

В другом варианте алкилирующий агент, используемый при упомянутом контактировании (б), включает моноксид углерода и водород или продукт их взаимодействия.

В одном варианте способ далее включает реакцию по меньшей мере части водорода из упомянутого первого отходящего потока с кислородсодержащими материалами с получением второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с упомянутым первым отходящим потоком.

В подходящем варианте упомянутые кислородсодержащие материалы включают оксид углерода, такой как диоксид углерода, например диоксид углерода из потока природного газа, который может также включать по меньшей мере часть метана из исходного материала в (а). В одном варианте при взаимодействии с кислородсодержащими материалами образуются вода и метан, этан или смесь метана и этана, и способ дополнительно включает удаление из упомянутого второго отходящего потока воды и подачу по меньшей мере части метана и/или этана из второго отходящего потока на упомянутое контактирование (а). В другом варианте при взаимодействии с кислородсодержащими материалами образуется один или несколько парафинов и олефинов с С2 по C5, моноциклические ароматические углеводороды и спирты с C1 по С3.

В другом отношении в данной заявке описан способ превращения метана в алкилированные ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород;

(б) контактирование по меньшей мере части упомянутого ароматического углеводорода из упомянутого первого отходящего потока с алкилирующим агентом в условиях, эффективных для алкилирования упомянутого ароматического углеводорода и получения алкилированного ароматического углеводорода, содержащего алкильных боковых цепей больше, чем упомянутый ароматический углеводород перед алкилированием;

(в) выделение упомянутого алкилированного ароматического углеводорода и

(г) реакцию по меньшей мере части водорода из упомянутого первого отходящего потока с кислородсодержащими материалами с получением второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с упомянутым первым отходящим потоком.

Тем не менее в еще одном отношении в данной заявке описан способ превращения метана в алкилированные ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород;

(б) контактирование по меньшей мере части упомянутого ароматического углеводорода в упомянутом первом отходящем потоке с алкилирующим агентом в условиях, эффективных для алкилирования упомянутого ароматического углеводорода и получения алкилированного ароматического углеводорода, содержащего алкильных боковых цепей больше, чем упомянутый ароматический углеводород перед алкилированием;

(в) выделение упомянутого алкилированного ароматического углеводорода;

(г) реакцию по меньшей мере части водорода из упомянутого первого отходящего потока с СО и/или CO2 с получением второго отходящего потока, включающего воду и углеводород;

(д) выделение из упомянутого второго отходящего потока по меньшей мере части упомянутой воды с получением третьего отходящего потока, включающего углеводород; и

(е) возврат по меньшей мере части углеводорода в упомянутом третьем отходящем потоке на упомянутое контактирование (а).

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с первым примером по изобретению.

На фиг.2 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с вторым примером по изобретению.

На фиг.3 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с третьим примером по изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

В данной заявке описан способ превращения метана в алкилированные ароматические углеводороды. Этот способ включает вначале обработку исходного материала, содержащего метан, как правило, совместно с Н2, Н2О, СО и/или СО2 на стадии дегидроциклизации в условиях, эффективных для превращения метана в ароматические углеводороды и образования первого отходящего потока, включающего ароматические углеводороды, в особенности бензол и нафталин, и водород. Затем с начальной стадией выделения или без нее по меньшей мере часть упомянутого ароматического углеводорода в первом отходящем потоке вводят в контакт с алкилирующим агентом в условиях, эффективных для алкилирования ароматического углеводорода и получения алкилированного ароматического углеводорода, содержащего алкильных боковых цепей больше, чем упомянутый первоначально получаемый ароматический углеводород.

В еще одном варианте далее алкилированный ароматический углеводород выделяют, а остаток первого отходящего потока может быть подвергнут обработке на стадии снижения содержания водорода, на которой по меньшей мере часть водорода из упомянутого первого отходящего потока вводят в реакцию с кислородсодержащими материалами с получением второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с первым отходящим потоком. На стадии снижения содержания водорода, как правило, получают дополнительные углеводородные материалы, такие как метан, которые возвращают на стадию дегидроциклизации.

Исходный материал

В способе по изобретению можно использовать любой метансодержащий исходный материал, но в общем предлагаемый способ предусмотрен для применения с исходным природным газом. Другие приемлемые метансодержащие исходные материалы включают те, которые получают из таких источников, как угольные пласты, захоронения отходов, ферментация сельскохозяйственных или муниципальных отходов и/или газообразные потоки нефтепереработки.

Метансодержащие исходные материалы, такие как природный газ, как правило, содержат, в дополнение к метану, диоксид углерода и этан. Этан и другие алифатические углеводороды, которые могут содержаться в исходном материале, на стадии дегидроциклизации могут быть, разумеется, превращены в целевые ароматические продукты. Кроме того, как это обсуждается ниже, диоксид углерода может быть использован при получении ароматических продуктов либо непосредственно на стадии дегидроциклизации, либо косвенным путем посредством превращения в метан и/или этан на стадии снижения содержания водорода.

Перед применением метансодержащих потоков в способе по изобретению азот- и/или серусодержащие примеси, которые также, как правило, находятся в этих потоках, могут быть удалены или их количество может быть уменьшено до низких концентраций. В одном из вариантов выполнения изобретения исходный материал, подаваемый на стадию дегидроциклизации, содержит меньше 100 част./млн, например меньше 10 част./млн, в частности меньше 1 част./млн, каждого из соединений азота и серы.

В дополнение к метану, с целью содействовать уменьшению коксообразования в исходный материал, подаваемый на стадию дегидроциклизации, можно добавлять по меньшей мере один из водорода, воды, моноксида углерода и диоксида углерода. Эти добавки могут быть введены в виде отдельных совместно подаваемых исходных материалов или могут находиться в метановом потоке, например таком, как в случае, когда метановый поток дериватизируют из природного газа, включающего диоксид углерода. Другие источники диоксида углерода могут включать, но ими их список не ограничен, отходящие газы, установки СПГ, водородные установки, аммиачные установки, гликольные установки и фталевоангидридные установки.

В одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит диоксид углерода и включает от 90 до 99,9 мольного %, в частности от 97 до 99 мольных %, метана и от 0,1 до 10 мольных %, в частности от 1 до 3 мольных %, СО2. В другом варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит моноксид углерода и включает от 80 до 99,9 мольного %, в частности от 94 до 99 мольных %, метана и от 0,1 до 20 мольных %, в частности от 1 до 6 мольных %, СО. В еще одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит водяной пар и включает от 90 до 99,9 мольного %, в частности от 97 до 99 мольных %, метана и от 0,1 до 10 мольных %, в частности от 1 до 5 мольных %, водяного пара. Однако в еще одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит водород и включает от 80 до 99,9 мольного %, в частности от 95 до 99 мольных %, метана и от 0,1 до 20 мольных %, в частности от 1 до 5 мольных %, водорода.

Исходный материал, подаваемый на стадию дегидроциклизации, может также включать более высокомолекулярные углеводороды, чем метан, включая ароматические углеводороды. Такие более высокомолекулярные углеводороды могут быть возвращены в процесс со стадии снижения содержания водорода, добавлены в виде отдельных совместно подаваемых исходных материалов или могут находиться в метановом потоке, таком как, например, в случае, когда в исходном природном газе содержится этан. Более высокомолекулярные углеводороды, возвращаемые в процесс со стадии снижения содержания водорода, как правило, включают моноциклические ароматические соединения и/или парафины и олефины, содержащие преимущественно 6 или меньше, в частности 5 или меньше, например 4 или меньше, как правило, 3 или меньше углеродных атомов. Обычно исходный материал, подаваемый на стадию дегидроциклизации, содержит меньше 5 мас.%, в частности меньше 3 мас.%, углеводородов С3+.

Дегидроциклизадия

На стадии дегидроциклизации предлагаемого способа метансодержащий исходный материал вводят в контакт с катализатором дегидроциклизации в условиях, как правило, в неокислительных условиях, а предпочтительно в восстановительных условиях, эффективных для превращения метана в более высокомолекулярные углеводороды, включая бензол и нафталин. В принципе проводят следующие результирующие реакции:

Моноксид и/или диоксид углерода, который может находиться в исходном материале, повышает активность и стабильность катализатора содействием протеканию реакций, таких как:

но негативно влияет на равновесие, позволяя протекать параллельным результирующим реакциям, таким как:

.

В способе по изобретению можно использовать любой катализатор дегидроциклизации, эффективный для превращения метана в ароматические соединения, хотя обычно катализатор включает металлический компонент, в особенности переходный металл или его соединение, на неорганическом носителе. В подходящем варианте металлический компонент содержится в количестве в пределах от 0,1 до 20%, в частности в пределах от 1 до 10 мас.%, в пересчете на массу катализатора.

Приемлемые для катализатора металлические компоненты включают кальций, магний, барий, иттрий, лантан, скандий, церий, титан, цирконий, гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, железо, рутений, кобальт, родий, иридий, никель, палладий, медь, серебро, золото, цинк, алюминий, галлий, германий, кремний, индий, олово, свинец, висмут и трансурановые металлы. Такие металлические компоненты могут содержаться в форме свободных элементов или в виде соединений металлов, таких как оксиды, карбиды, нитриды и/или фосфиды, и их можно использовать самостоятельно или в сочетании. В качестве одного из металлических компонентов могут быть также использованы платина и осмий, но обычно они не предпочтительны.

Неорганический носитель может быть либо аморфным, либо кристаллическим и, в частности, может представлять собой оксид, карбид или нитрид бора, алюминия, кремния, фосфора, титана, скандия, хрома, ванадия, магния, марганца, железа, цинка, галлия, германия, иттрия, циркония, ниобия, молибдена, индия, олова, бария, лантана, гафния, церия, тантала, вольфрама или других трансурановых элементов. Кроме того, носителем может быть пористый материал, такой как микропористый кристаллический материал и мезопористый материал. Приемлемые микропористые кристаллические материалы включают силикаты, алюмосиликаты, титаносиликаты, алюмофосфаты, металлофосфаты, кремнеалюмофосфаты и их смеси. Такие микропористые кристаллические материалы включают материалы, обладающие каркасами типов MFI (например, ZSM-5 и силикалит), MEL (например, ZSM-11), MTW (например, ZSM-12), TON (например, ZSM-22), МТТ (например, ZSM-23), FER (например, ZSM-35), MFS (например, ZSM-57), MWW (например, МСМ-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, МСМ-36, МСМ-49 и МСМ-56), IWR (например, ITQ-24), KFI (например, ZK-5), ВЕА (например, бета-цеолит), ITH (например, ITQ-13), MOR (например, морденит), FAU (например, цеолиты X, Y, ультрастабилизированный Y и деалюминированный Y), LTL (например, цеолит L), IWW (например, ITQ-22), VFI (например, VPI-5), AEL (например, SAPO-11), AFI (например, ALPO-5) и AFO (SAPO-41), а также такие материалы, как МСМ-68, EMM-1, EMM-2, ITQ-23, ITQ-24, ITQ-25, ITQ-26, ETS-2, ETS-10, SAPO-17, SAPO-34 и SAPO-35. Приемлемые мезопористые материалы включают МСМ-41, МСМ-48, МСМ-50 и SBA-15.

Примеры предпочтительных катализаторов включают молибден, вольфрам, рений и их соединения и сочетания на ZSM-5, диоксиде кремния или оксиде алюминия.

Металлический компонент может быть диспергирован на неорганическом носителе с помощью любого средства, хорошо известного в данной области техники, такого как соосаждение, пропитка до начальной влажности, выпаривание, обычная пропитка, распылительная сушка, золь-гелевое, ионообменное, химическое паровое осаждение, диффузионное и физическое смешение. Кроме того, неорганический носитель может быть модифицирован по известным методам, таким как, например, обработка водяным паром, кислотная промывка, промывка каустической содой и/или обработка кремнийсодержащими соединениями, фосфорсодержащими соединениями и/или элементами или соединениями элементов групп 1, 2, 3 и 13 Периодической таблицы элементов. Такие модификации можно использовать для изменения поверхностной активности носителя и препятствия или улучшения доступа к любой внутренней пористой структуре носителя.

Стадия дегидроциклизации может быть осуществлена в широком диапазоне условий, включая температуру от 400 до 1200°С, в частности от 500 до 975°С, например от 600 до 950°С, давление от 1 до 1000 кПа, в частности от 10 до 500 кПа, например от 50 до 200 кПа, и среднечасовую скорость подачи сырья от 0,01 до 1000 ч-1, в частности от 0,1 до 500 ч-1, например от 1 до 20 ч-1. В подходящем варианте стадию дегидроциклизации осуществляют в отсутствии О2.

Стадия дегидроциклизации может быть осуществлена в реакторах с одним или несколькими неподвижными слоями, подвижными слоями или с псевдоожиженными слоями с регенерированием катализатора, проводимым in situ или ex-situ воздухом, кислородом, диоксидом углерода, моноксидом углерода, водой, водородом или их сочетаниями.

Реакция дегидроциклизации является эндотермической, следовательно, когда эту реакцию проводят в несколько стадий, для возврата исходного материала к требуемой реакционной температуре может оказаться необходимым применение межстадийного нагрева. Топливо, требующееся для того чтобы обеспечить межстадийный нагрев, может быть с успехом получено удалением и сжиганием отводного потока из отходящего из дегидроциклизации потока после выделения ароматических компонентов и/или после выделения алкилированных ароматических компонентов. Кроме того, когда реакция протекает в присутствии подвижного слоя катализатора, часть или все тепло может быть обеспечено удалением из слоя части катализатора, нагреванием катализатора путем, например, сжигания кокса на катализаторе и затем возвратом нагретого катализатора в подвижный каталитический слой.

Основными компонентами отходящего со стадии дегидроциклизации потока являются водород, бензол, нафталин, моноксид углерода, этилен, кокс и непрореагировавший метан. Этот отходящий поток, как правило, включает по меньшей мере на 5 мас.%, в частности по меньшей мере на 10 мас.%, например по меньшей мере на 20 мас.%, предпочтительно по меньшей мере на 30 мас.%, ароматических колец больше, чем исходный материал. Необходимо иметь в виду, что в настоящем описании ссылки на первый отходящий поток, включающий по меньшей мере на 5 мас.% ароматических колец больше, чем исходный материал, следует воспринимать как означающие, что общее количество ароматических колец в первом отходящем потоке должно превышать общее количество ароматических колец в исходном материале по меньшей мере на 5 мас.%. Изменения среди заместителей на любых ароматических кольцах при переходе от исходного материала к первому отходящему потоку этими расчетами не охватываются.

Затем бензол и нафталин подвергают обработке на стадии алкилирования с получением более высокоценных материалов, таких как ксилолы и диметилнафталины. Этого в целесообразном варианте добиваются без предварительного выделения бензола и нафталина из отходящего из дегидроциклизации потока. Однако при необходимости бензол и нафталин можно выделять из отходящего из дегидроциклизации потока, например, экстракцией растворителем с последующим разделением на фракции перед обработкой алкилированием.

Алкилирование ароматических соединений

Способ алкилирования по изобретению включает контактирование части или всех ароматических углеводородов в отходящем из дегидроциклизации потоке с алкилирующим агентом, таким как олефин, спирт и алкилгалогенид, в газообразной или жидкой фазе в присутствии кислотного катализатора. Приемлемые кислотные катализаторы включают цеолиты со средними порами (т.е. те, которые обладают ограничивающим показателем от 2 до 12, как определено в US №4016218), включая материалы, обладающие каркасами типов MFI (например, ZSM-5 и силикалит), MEL (например, ZSM-11), MTW (например, ZSM-12), TON (например, ZSM-22), MTT (например, ZSM-23), MFS (например, ZSM-57), FER (например, ZSM-35) и ZSM-48, а также цеолиты с крупными порами (т.е. те, которые обладают ограничивающим показателем меньше 2), такие как материалы, обладающие каркасами типов ВЕА (например, бета-цеолит), FAU (например, ZSM-3, ZSM-20, цеолиты X, Y, ультрастабилизированный Y и деалюминированный Y), MOR (например, морденит), MAZ (например, ZSM-4), MEI (например, ZSM-18) и MWW (например, МСМ-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, МСМ-36, МСМ-49 и МСМ-56).

Алкилирование олефинами

В одном варианте предлагаемого способа бензол выделяют из отходящего из дегидроциклизации потока и затем алкилируют олефином, таким как этилен и пропилен. Олефин может быть получен в качестве побочного продукта реакции дегидроциклизации или может быть получен, как хорошо известно специалистам в данной области техники, путем термического или каталитического крекинга углеводородов. Средством получения увеличенных количеств олефинов в сочетании со стадией дегидроциклизации является инжектирование углеводородов С2+ в горячий отходящий из реактора дегидроциклизации поток. С целью уменьшить коксообразование совместно с углеводородом С2+ может быть инжектирован водяной пар. Олефины, которые можно использовать для алкилирования, могут быть также получены из диметилового эфира, метанола или более высокомолекулярных спиртов.

Типичные условия проведения парофазного алкилирования бензола этиленом включают температуру от 650 до 900°F (от 343 до 482°С), манометрическое давление от атмосферного до 3000 фунтов/кв.дюйм (от 100 до 20800 кПа), ССПС в пересчете на этилен от 0,5 до 4,0 ч-1 и мольное отношение бензола к этилену от 1/1 до 30/1. Жидкофазное алкилирование бензола этиленом можно проводить при температуре в пределах от 300 до 650°F (от 150 до 340°С), под манометрическим давлением до примерно 3000 фунтов/кв.дюйм (20800 кПа), при ССПС в пересчете на этилен от 0,1 до 20 ч-1 и мольном отношении бензола к этилену от 1/1 до 30/1. Типичные условия проведения жидкофазного алкилирования бензола пропиленом включают температуру от примерно 176 до 392°F (от 80 до 200°С), манометрическое давление от атмосферного до 3000 фунтов/кв.дюйм (от 100 до 20800 кПа), ССПС в пересчете на пропилен от 0,5 до 4,0 ч-1 и мольное отношение бензола к пропилену от 1/1 до 30/1.

В предпочтительном варианте этилирование бензола проводят в условиях по меньшей мере частично жидкой фазы с использованием катализатора, включающего по меньшей мере один из бета-цеолита, цеолита Y, MCM-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, ITQ-13, ZSM-5 МСМ-36. МСМ-49 и МСМ-56.

Этилирование бензола может быть осуществлено по месту процесса дегидроциклизации/снижения содержания водорода или бензол может быть транспортирован в другой регион для превращения в этилбензол. Затем полученный этилбензол может быть поставлен для продажи, использован как предшественник, например, при получении стирола или изомеризован по методам, хорошо известным в данной области техники, в смешанные ксилолы.

В другом варианте предлагаемого способа алкилирующий агент представляет собой метанол или диметиловый эфир (ДМЭ), который используют для алкилирования бензола и/или нафталина, выделяемого из отходящего из дегидроциклизации потока, с получением толуола, ксилолов, метилнафталинов и/или диметилнафталинов. Когда метанол или ДМЭ используют для алкилирования бензола, в целесообразном варианте это осуществляют в присутствии катализатора, включающего цеолит, такой как ZSM-5, бета-цеолит, ITQ-13, MCM-22. МСМ-49, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35 и ZSM-48, который предварительно модифицируют обработкой водяным паром таким образом, чтобы он обладал диффузионным параметром для 2,2-диметилбутана примерно от 0,1 до 15 с-1, когда его определяют при температуре 120°С и давлении 2,2-диметилбутана 60 Торр (8 кПа). Такой способ селективен в отношении получения пара-ксилола, он изложен, например, в патенте US №6504272, включенном в настоящее описание в качестве ссылки. Когда метанол или ДМЭ используют для алкилирования нафталина, в целесообразном варианте это осуществляют в присутствии катализатора, включающего ZSM-5, MCM-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, ITQ-13, МСМ-36, МСМ-49 или МСМ-56. Такой способ можно применять для селективного получения 2,6-диметилнафталина, он изложен, например, в патентах US №4795847, 5001295, 6011190 и 6018086, включенных в настоящее описание в качестве ссылок.

Метилирование толуола/бензола с получением ксилолов

Типичный моноциклический ароматический продукт реакции дегидроциклизации представляет собой по преимуществу бензол с более низким содержанием толуола. Для увеличения общего выхода ксилолов может быть метилирован как продукт из реактора дегидроциклизации, так и возвращаемые в процесс бензол и толуол, в