Фибриллированный пенополиолефин

Иллюстрации

Показать все

Изобретение относится в целом к получению вспененного термопласта из водной дисперсии для применения в абсорбирующих материалах. Способ включает добавление, по меньшей мере, одного пеностабилизирующего поверхностно-активного вещества в водную дисперсию, которая содержит термопластичную смолу, воду, и стабилизирующий агент для дисперсных систем, с образованием смеси. Затем в смесь добавляют волокно и вспенивают с образованием пены. После чего из пены удаляют, по меньшей мере, части воды с получением пеноматериала с неячеистой фибриллированной морфологией. Пеноматериал со средней плотностью от приблизительно 0,02 г/см3 до приблизительно 0,07 г/см3 может быть использован в абсорбирующем изделии. Полученный пеноматериал имеет хорошую прочность при растяжении во влажном и сухом состояниях и превосходное качество в отношении спадания во влажном состоянии по сравнению с волокнистыми системами на основе целлюлозы. 4 н. и 31 з.п. ф-лы, 8 ил., 3 табл.

Реферат

Предпосылки Создания Раскрытия

Область техники, к которой относится Раскрытие

Настоящее изобретение относится в целом к получению пенополиолефинов для применений в абсорбирующих материалах.

Уровень техники

Абсорбирующие материалы используют во многих изделиях для персонального ухода, начиная от детских памперсов и кончая гигиеническими прокладками/пакетами, используемыми при недержании у взрослых и для женских потребностей. Эффективность абсорбирующих изделий зависит от нескольких свойств абсорбирующего материала сердцевины, включающих высокие объемы пустот, гидрофильность, упругость/эластичность во влажном состоянии, скорость абсорбции, и способность поддерживать объем пустот при намокании. В памперсах, например, абсорбирующая сердцевина должна быстро поглощать жидкость, распределять ее в пространстве пустот и действовать в качестве временного резервуара до тех пор, пока полимеры-суперабсорбенты (SAP) не смогут абсорбировать и удерживать жидкость.

Свойства абсорбирующих материалов, как правило, зависят от способа, которым их наносят на поддерживающую их поверхность. Например, материалы, сформованные “мокрой” выкладкой, как правило, имеют недостатки, связанные с высокой плотностью вследствие плоского расположения волокон. Материалы, сформованные “воздушной” выкладкой, склонны иметь высокий объем, но имеют ограничения по своей стабильности и упругости/эластичности в дополнение к ограничениям пористости. Традиционные распушенная целлюлоза и крепированная ткань показывают высокие объемы пустот и являются гидрофильными, но спадают при намокании. Разработка абсорбирующих пеноматериалов оказалась весьма перспективной в преодолении некоторых из этих недостатков.

Пеноматериалы и вспененные материалы, которые могут проявлять высокие абсорбционные свойства, как правило, изготавливают из эластомеров низкой плотности, пластиков и других материалов с различной пористостью. Существует шесть основных типов пеноматериалов и вспененных материалов: открытоячеистые, закрытоячеистые, гибкие, жесткие, сетчатые и синтактические. Открытоячеистые пеноматериалы имеют взаимосвязанные поры или ячейки и подходят для фильтрационных применений. Закрытоячеистые пеноматериалы не имеют взаимосвязанных пор или ячеек, но являются полезными в применениях, связанных с плавучестью или всплыванием. Гибкие пеноматериалы могут изгибаться, перегибаться или поглощать удары без растрескивания или расслаивания/отслоения. Сетчатые пеноматериалы имеют очень разрыхленную структуру с матрицей, состоящей из межсоединяющей сетки из тонких прядей или стержней (сжатых элементов) материала. Жесткие пеноматериалы имеют матрицу с очень небольшой гибкостью или матрицу, не обладающую гибкостью. Синтактические пеноматериалы состоят из жестких микросфер или стеклянных микрошариков, удерживаемых вместе посредством пластичной или смоляной матрицы.

Пеноматериалы с варьируемыми свойствами, описанные выше, как правило, находят применение в средствах для персонального ухода. Один способ получения пеноматериалов представляет собой введение воздуха в водную дисперсию полимерных частиц в присутствии пеностабилизирующих поверхностно-активных веществ посредством процесса вспенивания. Вспенивание может быть продолжено до тех пор, пока не будет получена желательная плотность пеноматериала. На этом этапе пеноматериал может быть выложен на субстрат или на конвейерную ленту для высушивания. Пример вспененного пенополиолефина (PFF), изготовленного в соответствии с таким способом, показан на ФИГ.1а и 1b, где представлены полученные с помощью сканирующего электронного микроскопа (SEM) изображения поперечного сечения (ФИГ.1а) и поверхности (ФИГ.1b) вспененного полиолефина известного уровня техники. Как показано на ФИГ.1а, эти пеноматериалы являются открытоячеистыми от поверхности к поверхности. То есть пеноматериалы имеют непрерывную сетчатую морфологию с открытыми порами, которая включает небольшие поры на поверхности и поры большего размера к середине поперечного сечения, что отображает губчатую морфологию. Капиллярное давление, создаваемое таким типом морфологии, обеспечивает пеноматериалы с некоторыми абсорбционными свойствами в отношении жидкостей, желательными для средств личной гигиены/персонального ухода, такими как абсорбция и распределение или продольное капиллярное распространение излияния (отправления). Однако для таких пеноматериалов существуют ограничения по скорости, с которой жидкость является абсорбированной (скорость излияния). В том случае, когда скорость излияния является слишком высокой, жидкость может выйти за пределы поверхности пеноматериала прежде, чем все жидкое излияние абсорбируется в прокладку из пеноматериала.

Дополнительно, так как капиллярная сила, удерживающая жидкость в небольших поверхностных порах ячеистого пеноматериала, обычно является сильнее, чем осмотическое давление абсорбции полимеров-суперабсорбентов (SAP), пеноматериал может удерживать, по меньшей мере, часть жидкости, предотвращая абсорбцию посредством SAP. Это дает в результате абсорбирующую сердцевину, имеющую жидкость, доступную для повторного смачивания кожи в том случае, когда прикладывают нагрузку на сердцевину.

Еще одна проблема составления пеноматериалов вспененного типа заключается в непостоянном и нежелательном спадании пеноматериала во время процесса высушивания, в связи с чем затрудняется контролирование свойств пеноматериала. Наполненные волокном пеноматериалы оказались полезными в снижении степени спадания во время процесса высушивания. Патенты: US Patent №№6261679 и 6603054, оба выданные Chen et al., описывают способы изготовления абсорбирующих материалов, имеющих основной материал из целлюлозных или других подобных волокон. Как патент '679, так и патент '054, раскрывает, что такие гидрофильные волокна должны составлять преобладающий структурный компонент абсорбирующего пеноматериала, составляя вплоть до 98% по массе массы пеноматериала. Полимерное связующее вещество, которое действует в качестве клея для стержневых волокон (волокон, подобных сжатым элементам) в значительной степени составляет остальные 2-10% массы пеноматериала.

Таким образом, существует постоянная потребность в абсорбирующих изделиях с повышенными скоростями абсорбции. Желательно поддерживать высокие объемы пустот и увеличивать поверхностные отверстия для снижения капиллярного удерживания жидкости.

Краткое изложение Раскрытия

В одной особенности, варианты осуществления, раскрытые в этом документе, относятся к способу получения вспененного термопласта из водной дисперсии, где водная дисперсия включает термопластичную смолу, воду, и стабилизирующий агент для дисперсных систем, где способ включает: добавление, по меньшей мере, одного пеностабилизирующего поверхностно-активного вещества в водную дисперсию с образованием смеси; добавление волокна в смесь; и вспенивание смеси с образованием пены, удаление, по меньшей мере, части воды из пены с получением пеноматериала, где изготовленный пеноматериал имеет неячеистую фибриллированную морфологию.

В другой особенности, варианты осуществления, раскрытые в этом документе, относятся к пеноматериалам, имеющим фибриллированную, неячеистую структуру на основе термопласта, где пеноматериал имеет среднюю плотность приблизительно 0,02 г/см3 - приблизительно 0,07 г/см3. В некоторых вариантах осуществления, пеноматериал может быть использован в абсорбирующем изделии, таком как детский памперс, предмет женской гигиены, изделие, используемое при недержании у взрослых, прокладка раневой повязки, хирургическая губка, медицинская спецодежда, хирургические ткани, полотенце для вытирания, губка для вытирания и упаковочная прокладка для пищевых продуктов.

Другие особенности и преимущества раскрытия будут вытекать со всей очевидностью из следующего описания и прилагаемой формулы изобретения.

Краткое Описание Чертежей

ФИГ.1а-1b показывают изображения, полученные с помощью сканирующего электронного микроскопа (SEM), поперечного сечения (1а) и поверхности (1b) пенополиолефина, полученного традиционным способом.

ФИГ.2 иллюстрирует образование пеноматериала из пены в соответствии с вариантами осуществления, раскрытыми в этом документе.

ФИГ.3 показывает экструдер, который может быть использован для получения дисперсий в соответствии с вариантами осуществления, раскрытыми в этом документе.

ФИГ.4а-4b показывают изображения, полученные с помощью сканирующего электронного микроскопа (SEM), с разрешением 1000 мкм, поперечного сечения (3а) и поверхности (3b) пенополиолефина, полученного в соответствии с одним вариантом осуществления, раскрытым в этом документе.

ФИГ.5 показывает изображение, полученное с помощью сканирующего электронного микроскопа (SEM), с разрешением 50 мкм, пенополиолефина, полученного в соответствии с одним вариантом осуществления, раскрытым в этом документе.

ФИГ.6 показывает изображение крупным планом, полученное с помощью сканирующего электронного микроскопа (SEM), с разрешением 10 мкм, поперечного сечения стержня (сжатого элемента) пенополиолефина, изготовленного в соответствии с одним вариантом осуществления, раскрытым в этом документе.

ПОДРОБНОЕ ОПИСАНИЕ

Варианты осуществления настоящего изобретения относятся к абсорбирующим материалам для использования в абсорбирующих изделиях для персонального ухода и к способам получения абсорбирующих материалов. В частности, некоторые варианты осуществления относятся к пеноматериалам, полученным из частиц термопластичной смолы и термопластичных волокон. В частности, варианты осуществления относятся к пеноматериалам, полученным из водных дисперсий полиолефиновых частиц, которые соединяют с полиолефиновыми волокнами. В последующем описании изложены многочисленные подробности для обеспечения понимания настоящего раскрытия. Однако специалистам в данной области будет понятно, что настоящее раскрытие может быть применено на практике без этих деталей и возможны многочисленные вариации или модификации описанных вариантов осуществления.

Один вариант осуществления изобретения включает способ получения вспененных термопластов. Структуры абсорбентов настоящего изобретения могут быть получены путем смешения термопластических волокон с водной дисперсией, где водная дисперсия может включать термопластичную смолу, воду и стабилизирующий агент. Смесь волокон и водной дисперсии может быть вспенена с образованием пены, которая впоследствии может быть подвергнута сушке для удаления, по меньшей мере, части воды, с образованием пеноматериала.

Как использован в этом документе, термин «вспенивание» или «вспененный» относится к процессу внедрения значительных объемов воздуха, или другого газа, в жидкость, где, в некоторых вариантах осуществления, по меньшей мере, 80% об. вспененного материала состоит из газообразного компонента. В других вариантах осуществления, по меньшей мере, 85% об. вспененного материала состоит из газообразного компонента; и, по меньшей мере, 90% об. вспененного материала состоит из газообразного компонента в дополнительных других вариантах осуществления. Жидкость может представлять собой молекулярный раствор, мицеллярный раствор или дисперсию в водной или органической среде. В общих чертах, вспененную жидкость получают механическими способами, такими как смешение с большим усилием сдвига в атмосферных условиях или необязательно с закачиванием газа в систему при смешении. Термин «пена», используемый в этом документе, относится к жидкости, которая была вспенена, как описано выше, до сушки или удаления жидкой среды. Как использовано в этом документе, сушка и удаление могут быть использованы взаимозаменяемо и могут включать термическое и/или механическое удаление жидкой среды.

Термин «пеноматериал», используемый в этом документе, относится к упругой структуре, образованной путем удаления части жидкой среды из пены, например, может быть удалена, по меньшей мере, часть, значительная часть жидкой среды или вся жидкая среда. Образование пеноматериала из пены в соответствии с вариантами осуществления, раскрытыми в этом документе, проиллюстрировано на ФИГ.2. Пена 5 может включать полости 7, заполненные паром, в пределах дисперсии 8, где дисперсия 8 включает полимерные частицы 10 в жидкой среде 9. Когда жидкую среду 9 удаляют из пены 5 во время процесса сушки или удаления 11, полимерные частицы 10 коалесцируют и плавятся вместе с образованием единой пленки или сообщающихся стержней 12 вокруг захваченных пузырьков пара 13, что дает стабильность получающейся в результате структуре 14. Пленкообразование может зависеть от переменных величин, включающих, среди прочих, температуру плавления полимеров внутри пены, скорость удаления (например, скорость испарения) жидкой среды и общую композицию пены. Например, поскольку воду удаляют из пены, образованной из водной дисперсии, полимеры, содержащиеся в дисперсии, могут коалесцировать, образуя пленку, (при)давая структуру и упругость получающемуся в результате пеноматериалу. В некоторых вариантах осуществления, пеноматериал может быть образован, когда количество остаточной жидкости колеблется в диапазоне от 0 до 20% мас.; от 0 до 10% мас. в других вариантах осуществления; и от 0 до 8% мас. в дополнительных других вариантах осуществления.

Водная Дисперсия

В более общем виде, варианты осуществления настоящего раскрытия относятся к водным дисперсиям и к компаундам (составам), изготовленным из водных дисперсий, которые являются полезными в получении вспененных пеноматериалов. Такие вспененные пеноматериалы могут быть полезными, например, в применениях с использованием абсорбционной способности материалов в отношении жидкостей. Дисперсии, использованные в вариантах осуществления настоящего раскрытия, содержат воду, (А) по меньшей мере, одну термопластичную смолу, и (В) стабилизирующий агент. Их рассматривают более подробно ниже.

Термопластичная смола

Термопластичная смола (А), включенная в варианты осуществления водной дисперсии настоящего раскрытия, представляет собой смолу, которая является сама по себе трудно диспергируемой в воде. Термин «смола», используемый в этом документе, следует истолковывать как включение синтетических полимеров или химически модифицированных природных смол.

Смолы, использованные в этом документе, могут включать эластомеры и смеси олефиновых полимеров. В некоторых вариантах осуществления, термопластичная смола представляет собой полукристаллическую смолу. Термин «полукристаллический» предназначен для идентифицирования тех смол, которые обладают, по меньшей мере, одной эндотермой, когда их подвергают стандартному тестированию посредством дифференциальной сканирующей калориметрии (DSC). Некоторые полукристаллические полимеры имеют полученную посредством дифференциальной сканирующей калориметрии эндотерму, которая проявляет относительно слабый наклон при повышении температуры сканирования после конечного максимума эндотермы. Это указывает на полимер с широким диапазоном плавления, а не на полимер, имеющий, как обычно подразумевают, отчетливо различимую температуру плавления. Некоторые полимеры, используемые в дисперсиях согласно изобретению, имеют единственную температуру плавления, тогда как другие полимеры имеют более одной температуры плавления.

В некоторых полимерах одна или более температур плавления могут быть отчетливо различимыми так, что весь полимер или часть полимера плавится в довольно узком диапазоне температур, таком как несколько градусов по Цельсию. В других вариантах осуществления, полимер может проявлять широкий диапазон характеристик плавления, около 20°С. В дополнительных других вариантах осуществления, полимер может проявлять широкий диапазон характеристик плавления, более 50°С.

Примеры термопластичной смолы (А), которая может быть использована в настоящем раскрытии, включают гомополимеры и сополимеры (в том числе эластомеры) альфа-олефина, такого как этилен, пропилен, 1-бутен, 3-метил-1-бутен, 4-метил-1-пентен, 3-метил-1-пентен, 1-гептен, 1-гексен, 1-октен, 1-децен, и 1-додецен, которые обычно представлены полиэтиленом, полипропиленом, поли-1-бутеном, поли-3-метил-1-бутеном, поли-3-метил-1-пентеном, поли-4-метил-1-пентеном, сополимером этилена и пропилена, сополимером этилена и 1-бутена, и сополимером пропилена и 1-бутена; сополимеры (в том числе эластомеры) альфа-олефина с сопряженным или несопряженным диеном, которые обычно представлены сополимером этилена и бутадиена и сополимером этилена и этилиден-норборнена; и полиолефины (в том числе эластомеры), такие как сополимеры двух или более альфа-олефинов с сопряженным или несопряженным диеном, которые обычно представлены сополимером этилена, пропилена и бутадиена, сополимером этилена, пропилена и дициклопентадиена, сополимером этилена, пропилена и 1,5-гексадиена, и сополимером этилена, пропилена и этилиден-норборнена; сополимеры этилен-виниловых соединений, такие как сополимер этилена и винилацетата, сополимер этилена и винилового спирта, сополимер этилена и винилхлорида, сополимеры этилена и акриловой кислоты или этилена и (мет)акриловой кислоты, и сополимер этилена и (мет)акрилата; стирольные сополимеры (в том числе эластомеры), такие как полистирол, сополимер акрилонитрила, бутадиена и стирола (ABS), сополимер акрилонитрила и стирола, сополимер α-метилстирола и стирола, сополимер стирола и винилового спирта, сополимеры стирола и акрилатов, такие как сополимер стирола и метакрилата, сополимер стирола и бутилакрилата, сополимер стирола и бутилметакрилата, и сополимеры стирола и бутадиенов и сшитые полимеры полистирола; и блоксополимеры стирола (в том числе эластомеры), такие как блоксополимер стирола и бутадиена и его гидрат, и тройной блоксополимер стирола, изопрена и стирола; поливиниловые соединения, такие как поливинилхлорид, поливинилиденхлорид, сополимер винилхлорида и винилиденхлорида, полиметилакрилат, и полиметилметакрилат; полиамиды, такие как нейлон 6, нейлон 6,6, и нейлон 12; термопластичные полиэфиры, такие как полиэтилентерефталат и полибутилентерефталат; поликарбонат, полифениленоксид, и тому подобное; и стеклопластики на основе углеводородов, включая поли-дициклопентадиеновые полимеры и родственные полимеры (сополимеры, тройные полимеры); насыщенные моно-олефины, такие как винилацетат, винилпропионат и винилбутират и тому подобное; виниловые сложные эфиры, такие как сложные эфиры монокарбоновых кислот, включая метилакрилат, этилакрилат, н-бутилакрилат, изобутилакрилат, додецилакрилат, н-октилакрилат, фенилакрилат, метилметакрилат, этилметакрилат, и бутилметакрилат и тому подобное; акрилонитрил, метакрилонитрил, акриламид, их смеси; смолы, полученные полимеризацией, включающей метатезис с раскрытием цикла, и полимеризацией, включающей перекрестный метатезис, и тому подобное. Такие смолы могут быть использованы как таковые или в комбинации двух или более смол.

В одном конкретном варианте осуществления, термопластичная смола может содержать альфа-олефиновый интерполимер этилена с сомономером, включающим алкен, такой как 1-октен. Сополимер этилена и октена может присутствовать как таковой или в комбинации с другой термопластичной смолой, такой как сополимер этилена и акриловой кислоты. В том случае, когда сополимер этилена и октена присутствует вместе с сополимером этилена и акриловой кислоты, соотношение масс между сополимером этилена и октена и сополимером этилена и акриловой кислоты может колебаться в диапазоне от приблизительно 1:10 до приблизительно 10:1, например, от приблизительно 3:2 до приблизительно 2:3. Полимерная смола, такая как сополимер этилена и октена, может иметь кристалличность менее, чем приблизительно 50%, например, менее, чем приблизительно 25%. В некоторых вариантах осуществления, кристалличность полимера может колебаться от 5 до 35%. В других вариантах осуществления, кристалличность полимера может колебаться от 7 до 20%.

Варианты осуществления, раскрытые в этом документе, также могут включать полимерный компонент, который может включать, по меньшей мере, один олефиновый мульти-блокинтерполимер. Подходящие олефиновые мульти-блокинтерполимеры могут включать олефиновые мульти-блокинтерполимеры, описанные, например, в предварительной заявке на патент: US Provisional Patent Application №60/818911. Термин «мульти-блоксополимер» или «мульти-блокинтерполимер» относится к полимеру, содержащему две или более химически отличающиеся зоны или сегменты (называемые как «блоки»), предпочтительно связанные линейным образом, то есть к полимеру, содержащему химически различимые звенья, которые связаны «конец к концу» по отношению к полимеризованной этиленовой функциональности, а не пендантным или привитым образом. В некоторых вариантах осуществления, блоки различаются по количеству или по типу сомономера, включенного в них, по плотности, по степени кристалличности, по размеру кристаллитов, свойственному полимеру с такой композицией, по типу или степени тактичности (изотактический или синдиотактический), по стерео-регулярности или стерео-нерегулярности, по степени разветвления, включая длинноцепочное разветвление или гипер-разветвление, по гомогенности, или по любому другому химическому или физическому свойству. Мульти-блоксополимеры характеризуются уникальными распределениями коэффициента полидисперсности (PDI или Mw/Mn), распределением по длинам блоков, и/или распределением по числу блоков вследствие уникального способа изготовления сополимеров. Более конкретно, при получении с использованием непрерывного процесса, варианты осуществления полимеров могут обладать PDI, колеблющимся в диапазоне от приблизительно 1,7 до приблизительно 8; от приблизительно 1,7 до приблизительно 3,5 в других вариантах осуществления; от приблизительно 1,7 до приблизительно 2,5 в других вариантах осуществления; и от приблизительно 1,8 до приблизительно 2,5 или от приблизительно 1,8 до приблизительно 2,1 в дополнительных других вариантах осуществления. При получении с использованием периодического или полунепрерывного процесса, варианты осуществления полимеров могут обладать PDI, колеблющимся в диапазоне от приблизительно 1,0 до приблизительно 2,9; от приблизительно 1,3 до приблизительно 2,5 в других вариантах осуществления; от приблизительно 1,4 до приблизительно 2,0 в других вариантах осуществления; и от приблизительно 1,4 до приблизительно 1,8 в дополнительных других вариантах осуществления.

Один пример олефинового мульти-блокинтерполимера представляет собой блокинтерполимер этилена и α-олефина. Еще один пример олефинового мульти-блокинтерполимера представляет собой блокинтерполимер пропилена и α-олефина. Последующее описание относится к интерполимеру, который имеет этилен в качестве основного мономера, но в отношении общих полимерных характеристик аналогичным образом применимо к мульти-блокинтерполимерам на основе пропилена.

Мульти-блоксополимеры этилена и α-олефина могут включать этилен и один или более сополимеризуемых α-олефиновых сомономеров в полимеризованной форме, характеризующейся многочисленными (то есть два или более) блоками или звеньями из двух или более полимеризованных мономерных звеньев, различающимися по химическим или физическим свойствам (блокинтерполимер). В некоторых вариантах осуществления, сополимер представляет собой мульти-блокинтерполимер. В некоторых вариантах осуществления, мульти-блокинтерполимер может быть представлен следующей формулой:

(АВ)n

где n имеет значение, по меньшей мере, 1, и в различных вариантах осуществления n представляет собой целое число более чем 1, например, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, или более; «А» представляет собой жесткий блок или сегмент; и «В» представляет собой мягкий блок или сегмент. Предпочтительно, блоки А и блоки В связаны линейным образом, не разветвленным или звездообразным образом. «Жесткие» сегменты относятся к блокам из полимеризованных звеньев, в которых этилен присутствует в количестве более чем 95% мас. в некоторых вариантах осуществления, и в других вариантах осуществления более чем 98% мас. Иными словами, содержание сомономера в жестких сегментах составляет менее чем 5% мас. в некоторых вариантах осуществления, и в других вариантах осуществления, менее чем 2 массовых процента от общей массы жестких сегментов. В некоторых вариантах осуществления, жесткие сегменты содержат весь или почти весь этилен. «Мягкие» сегменты, с другой стороны, относятся к блокам из полимеризованных звеньев, в которых содержание сомономера составляет более чем 5% мас. от общей массы мягких сегментов в некоторых вариантах осуществления, более чем 8% мас., более чем 10% мас., или более чем 15% мас. в различных других вариантах осуществления. В некоторых вариантах осуществления, содержание сомономера в мягких сегментах может составлять более чем 20% мас., более чем 25% мас., более чем 30% мас., более чем 35% мас., более чем 40% мас., более чем 45% мас., более чем 50% мас., или более чем 60% мас. в различных других вариантах осуществления.

В некоторых вариантах осуществления, блоки А и блоки В распределены случайным образом вдоль полимерной цепи. Иными словами, блоксополимеры не имеют структуру, подобную следующей:

ААА-АА-ВВВ-ВВ

В других вариантах осуществления, блоксополимеры не имеют третий блок. В дополнительных других вариантах осуществления, ни блок А, ни блок В не содержит два или более сегментов (или субблоков), таких как концевой сегмент.

Мульти-блокинтерполимеры могут быть охарактеризованы средним блок-индексом, ABI, колеблющимся в диапазоне от более, чем ноль, до приблизительно 1,0, и молекулярно-массовым распределением, Mw/Mn, более, чем приблизительно 1,3. Средний блок-индекс, ABI, представляет собой средневзвешенное значение блок-индекса («BI») для каждой из полимерных фракций, полученных при препаративном фракционировании элюированием при повышении температуры (TREF) от 20°С до 110°С, с приращением температуры на 5°С:

ABI = ∑ (ω i BI i )

где BIi представляет собой блок-индекс для iой фракции мульти-блокинтерполимера, полученного при препаративном TREF, и ωi представляет собой массовый процентное содержание iой фракции.

Аналогично, квадратный корень второго момента относительно среднего значения, в дальнейшем в этом документе называемый как второй момент средневзвешенного значения блок-индекса, может быть определен следующим образом:

2ой момент средневзвешенного значения BI = √ *

Для каждой полимерной фракции, BI определяют по одному из двух следующих равенств (оба из которых дают одинаковое значение BI):

где Тх представляет собой температуру элюирования при аналитическом фракционировании элюированием при повышении температуры (ATREF) для iой фракции (предпочтительно выраженную в Кельвинах), Рх представляет собой мольную долю этилена для iой фракции, которая может быть измерена с помощью ядерно-магнитного резонанса (NMR) или ИК-спектроскопии (IR), что описано ниже. РАВ представляет собой мольную долю этилена во всем интерполимере этилена и α-олефина (до фракционирования), которая также может быть измерена с помощью NMR или IR. ТА и РА представляют собой температуру элюирования в ATREF и мольную долю этилена для чистых «жестких сегментов» (которые относятся к кристаллическим сегментам интерполимера). В качестве приближения или в случае полимеров, где композиция «жесткого сегмента» не известна, значения ТА и РА устанавливают по соответственным значениям для гомополимера полиэтилена высокой плотности.

ТАВ представляет собой температуру элюирования в ATREF для статистического сополимера с композицией (имеющей мольную долю этилена РАВ) и молекулярной массой, аналогичными композиции и молекулярной массе мульти-блокинтерполимера. ТАВ может быть вычислено по мольной доле этилена (измеренной посредством NMR) с использованием следующего равенства:

Ln P AB =α/Т АВ

где α и β представляют собой две константы, которые могут быть определены с помощью калибровки с использованием ряда хорошо охарактеризованных фракций статистического сополимера с широким распределением по композиции, полученных посредством препаративного TREF, и/или хорошо охарактеризованных статистических сополимеров этилена с узким распределением по композиции. Следует отметить, что α и β могут варьироваться от прибора к прибору. Более того, может оказаться необходимым получить соответственную калибровочную кривую для представляющей интерес композиции полимера, с использованием соответственных диапазонов молекулярной массы и типа сомономера для фракций, полученных посредством препаративного TREF, и/или для статистических сополимеров, использованных для создания этой калибровки. Существует незначительное влияние молекулярной массы. Если калибровочная кривая получена для сходных диапазонов молекулярных масс, то такое влияние может быть существенно пренебрежимо малым. В некоторых вариантах осуществления, статистические сополимеры этилена и/или фракции статистических сополимеров, полученные посредством препаративного TREF, удовлетворяют следующей зависимости:

Ln P=-237,83/T ATREF +0,639

Вышеупомянутое калибровочное равенство определяет соотношение мольной доли этилена, Р, к температуре элюирования в аналитическом ATREF, TATREF, для статистических сополимеров с узким распределением по композиции и/или для фракций статистических сополимеров с широким распределением по композиции, полученных посредством препаративного TREF. ТХО представляет собой температуру ATREF для статистического сополимера с аналогичной композицией и имеющего мольную долю этилена РХ. ТХО может быть вычислено из равенства LnPX=α/TXO+β. И наоборот, РХО представляет собой мольную долю этилена для статистического сополимера с аналогичной композицией и имеющего температуру ATREF ТХ, которая может быть вычислена из равенства LnPXO=α/TX+β.

Как только получают блок-индекс (BI) для каждой фракции, полученной посредством препаративного TREF, может быть вычислено средневзвешенное значение блок-индекса, ABI, для всего полимера. В некоторых вариантах осуществления, ABI составляет более, чем ноль, но менее, чем приблизительно 0,4, или от приблизительно 0,1 до приблизительно 0,3. В других вариантах осуществления, ABI составляет более, чем приблизительно 0,4 и вплоть до приблизительно 1,0. В дополнительных других вариантах осуществления, ABI должен находиться в диапазоне от приблизительно 0,4 до приблизительно 0,7, от приблизительно 0,5 до приблизительно 0,7, или от приблизительно 0,6 до приблизительно 0,9. В некоторых вариантах осуществления, ABI находится в диапазоне от приблизительно 0,3 до приблизительно 0,9, от приблизительно 0,3 до приблизительно 0,8, или от приблизительно 0,3 до приблизительно 0,7, от приблизительно 0,3 до приблизительно 0,6, от приблизительно 0,3 до приблизительно 0,5, или от приблизительно 0,3 до приблизительно 0,4. В других вариантах осуществления, ABI находится в диапазоне от приблизительно 0,4 до приблизительно 1,0, от приблизительно 0,5 до приблизительно 1,0, или от приблизительно 0,6 до приблизительно 1,0, от приблизительно 0,7 до приблизительно 1,0, от приблизительно 0,8 до приблизительно 1,0, от приблизительно 0,9 до приблизительно 1,0.

Еще одной характеристикой мульти-блокинтерполимера является то, что интерполимер может содержать, по меньшей мере, одну полимерную фракцию, которая может быть получена препаративным TREF, где эта фракция имеет блок-индекс более, чем приблизительно 0,1 и вплоть до приблизительно 1,0, и полимер, имеющий молекулярно-массовое распределение, Mw/Mn, более, чем приблизительно 1,3. В некоторых вариантах осуществления, эта полимерная фракция имеет блок-индекс более, чем приблизительно 0,6 и вплоть до приблизительно 1,0, более, чем приблизительно 0,7 и вплоть до приблизительно 1,0, более, чем приблизительно 0,8 и вплоть до приблизительно 1,0, или более, чем приблизительно 0,9 и вплоть до приблизительно 1,0. В других вариантах осуществления, эта полимерная фракция имеет блок-индекс более, чем приблизительно 0,1 и вплоть до приблизительно 1,0, более, чем приблизительно 0,2 и вплоть до приблизительно 1,0, более, чем приблизительно 0,3 и вплоть до приблизительно 1,0, более, чем приблизительно 0,4 и вплоть до приблизительно 1,0, или более, чем приблизительно 0,4 и вплоть до приблизительно 1,0. В дополнительных других вариантах осуществления, эта полимерная фракция имеет блок-индекс более, чем приблизительно 0,1 и вплоть до приблизительно 0,5, более, чем приблизительно 0,2 и вплоть до приблизительно 0,5, более, чем приблизительно 0,3 и вплоть до приблизительно 0,5, или более, чем приблизительно 0,4 и вплоть до приблизительно 0,5. В дополнительных других вариантах осуществления, эта полимерная фракция имеет блок-индекс более, чем приблизительно 0,2 и вплоть до приблизительно 0,9, более, чем приблизительно 0,3 и вплоть до приблизительно 0,8, более, чем приблизительно 0,4 и вплоть до приблизительно 0,7, или более, чем приблизительно 0,5 и вплоть до приблизительно 0,6.

Мульти-блокинтерполимеры этилена и α-олефина, использованные в вариантах осуществления, раскрытых в этом документе, могут представлять собой интерполимеры этилена, по меньшей мере, с одним С320 α-олефином. Интерполимеры могут дополнительно содержать С418 диолефин и/или алкенилбензол. Подходящие ненасыщенные сомономеры, полезные для сополимеризации с этиленом, включают, например, ненасыщенные по этиленовому типу мономеры, сопряженные или несопряженные диены, полиены, алкенилбензолы, и так далее. Примеры таких сомономеров включают С320 α-олефины, такие как пропилен, изобутилен, 1-бутен, 1-гексен, 1-пентен, 4-метил-1-пентен, 1-гептен, 1-октен, 1-нонен, 1-децен, и тому подобное. В некоторых вариантах осуществления, α-олефины могут представлять собой 1-бутен или 1-октен. Другие подходящие мономеры включают стирол, галоген- или алкил-замещенные стиролы, винилбензоциклобутан, 1,4-гексадиен, 1,7-октадиен, и нафтеновые углеводороды (такие как, например, циклопентен, циклогексен и циклооктен).

Можно провести различие между мульти-блокинтерполимерами, раскрытыми в этом документе, и традиционными, статистическими сополимерами, физическими смесями полимеров, и блоксополимерами, полученными методами последовательного присоединения мономеров, с использованием флюидизированных катализаторов, и анионной или катионной живой полимеризации. В частности, в сравнении со статистическим сополимером аналогичных мономеров и аналогичного содержания мономеров с эквивалентной кристалличностью или модулем, интерполимеры имеют лучшую (более высокую) термостойкость, измеряемую посредством температуры плавления, более высокую температуру пенетрации в термомеханическом анализе (TMA), более высокую прочность при растяжении при высоких температурах, и/или более высокий динамический модуль упругости при кручении при высоких температурах, определяемый динамомеханическим анализом. Свойства заполнителя могут выиграть от использования вариантов осуществления мульти-блокинтерполимеров, в сравнении со статистическим сополимером, содержащим аналогичные мономеры и имеющем аналогичное содержание мономеров, мульти-блокинтерполимеры имеют меньшее остаточное сжатие, особенно при повышенных температурах, меньшую релаксацию напряжения, более высокую устойчивость к ползучести, более высокое сопротивление раздиру, более высокую стойкость к слипанию, более быстрое схватывание благодаря более высокой температуре кристаллизации (затвердевания), более полное восстановление (особенно при повышенных температурах), лучшее сопротивление истиранию, большую сократительную силу и лучшую способность воспринимать много масла и наполнителя.

Др