Улучшенные составы и способы для производства бумаги

Иллюстрации

Показать все

Способы касаются приготовления беленого бумажного материала и изготовления бумажного изделия (его вариант) и могут быть использованы в целлюлозно-бумажной промышленности. Способ приготовления беленого бумажного материала включает получение беленого бумажного материала и приведение последнего в контакт с эффективным количеством одного или более окислителей, за исключением органических пероксикислот. Способ изготовления бумажного изделия включает получение беленой бумажной массы. Создание водной суспензии из этой массы. Обезвоживание суспензии для получения листа и высушивание. При этом в беленую бумажную массу или ее суспензию добавляют эффективное количество одного или более окислителей, за исключением органических пероксикислот. Или на лист добавляют эффективное количество одного или более окислителей, включая органические пероксикислоты. Способ изготовления бумажного изделия (вариант) включает получение беленой бумажной массы и создание из нее густой суспензии. Затем в густую суспензию добавляют эффективное количество одного или более окислителей и одного или более оптических отбеливателей. После чего густую суспензию разбавляют, обезвоживают до получения листа и высушивают. При использовании окислителей в сочетании с оптическими отбеливателями и/или хелатообразующими агентами наблюдается синергетический эффект. Техническим результатом является повышение и стабилизация яркости бумажной массы или бумаги и увеличение устойчивости их к пожелтению. 3 н. и 21 з.п. ф-лы, 9 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Данное изобретение относится к составам и способам для улучшения яркости и оптических свойств, предотвращения потери яркости и повышения устойчивости к тепловому пожелтению в производстве бумажной массы и бумаги. В частности, данное изобретение касается составов, включающих окислители, которые либо сами по себе, либо в присутствии оптически отбеливающих веществ эффективно улучшают яркость и оптические свойства бумажного изделия, а также повышают его тепловую устойчивость.

УРОВЕНЬ ТЕХНИКИ

Бумажная масса, полученная способами либо механической, либо химической варки целлюлозы, имеет цвет, который может находиться в интервале от темно-коричневого до кремового в зависимости от типа древесины и применяемого способа дефибрирования. Бумажную массу отбеливают для получения изделий из белой бумаги для множества применений.

Отбелка представляет собой удаление или модификацию поглощающих свет веществ, содержащихся в небеленой бумажной массе. При отбелке механически обработанной бумажной массы целью является обесцвечивание бумажной массы без растворения лигнина. Обычно применяют либо восстанавливающие (например, гидросульфит натрия), либо окисляющие (например, пероксид водорода) отбеливатели. Отбелка часто представляет собой многостадийный процесс. Отбелка химически обработанной бумажной массы является продолжением делигнификации, которая началась на стадии варки. Отбелка часто представляет собой многостадийный процесс, стадии которого могут включать отбелку диоксидом хлора, кислородно-щелочную делигнификацию и пероксидную отбелку.

Изменение цвета, приписываемое, главным образом, тепловому старению, приводит к пожелтению и потере яркости на разных стадиях способов производства бумаги, в которых применяют беленую бумажную массу, и в получаемых бумажных изделиях. Промышленность инвестирует значительные средства в химические реактивы, такие как отбеливатели и оптически отбеливающие вещества, которые улучшают оптические свойства конечной бумаги или бумажных изделий.

Например, в WO 0052258 и WO 9932710 описаны способы последующей отбелки, в которых бумажную массу осветляют до требуемой белизны с применением пероксикислот. В GB 2391011 описано добавление состава, включающего надуксусную кислоту и пероксид водорода, в густое сырье перед добавлением оптически отбеливающих веществ (ООВ) для снижения количества ООВ, требуемого для достижения сопоставимой степени яркости. В публикации Jukka Jakara et al., The effect of peracetic acid treatment of bleached kraft pulp in fine paper production, Preprint-PAPTAC Annual Meeting, 87th, Montreal, QC, Canada Jan. 30 - Feb. 1, 2001 (2001) описано, что добавление надуксусной кислоты в баки для подготовки сырья бумагоделательных машин ограничивает реверсию яркости беленой бумажной массы и приводит к значительной экономии добавления ООВ в бумагоделательной машине. См. также публикации Jukka Jakara et al., The effect of peracetic acid in fine paper production, Appita Annual Conference Proceedings (2000), 54th (Vol.1), 169-174 и Jukka Jakara et al., The use of peracetic acid as brightening agent, Appita Ann. General Conf. Proc. (1999), 53rd (Vol.2), 463-467. В FI 104339 В описана обработка беленого сырья пероксикислотой перед добавлением нейтрального клея в сырье. В СА 2292107 описано приготовление пероксида, содержащего оптически отбеливающие вещества в капсулированной форме.

Однако на настоящий момент результаты являются недостаточно удовлетворительными, а экономические потери из-за изменения цвета и пожелтения постоянно представляют собой значительную проблему для промышленности. Таким образом, существует необходимость в успешном и практическом решении проблемы потери яркости и нежелательного пожелтения бумажной массы и бумаги.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении предложены составы и способы для повышения и стабилизации яркости и увеличения устойчивости к пожелтению в процессе изготовления бумаги.

В одном из аспектов данного изобретения предложен способ приготовления беленого бумажного материала, обладающего повышенной яркостью и повышенной устойчивостью к тепловому пожелтению, включающий: i) получение беленого бумажного материала и ii) приведение беленого бумажного материала в контакт с эффективным количеством одного или более окислителей, за исключением органических пероксикислот.

В другом аспекте данного изобретения предложен способ изготовления бумажного изделия, обладающего повышенными яркостью и устойчивостью к тепловому пожелтению, включающий: i) получение беленой бумажной массы; ii) создание водной суспензии сырья, включающей беленую бумажную массу; iii) обезвоживание суспензии сырья для получения листа и высушивание листа; причем а) в беленую бумажную массу или суспензию сырья добавляют эффективное количество одного или более окислителей, за исключением органических пероксикислот, или б) на лист добавляют эффективное количество одного или более окислителей, включая органические пероксикислоты.

В следующем аспекте данного изобретения предложен способ изготовления бумажного изделия, обладающего повышенными яркостью и устойчивостью к тепловому пожелтению, включающий: i) получение беленой бумажной массы; ii) создание водной суспензии густого сырья, включающей беленую бумажную массу; iii) добавление в густое сырье эффективного количества одного или более окислителей и одного или более оптически отбеливающих веществ; iv) разбавление водной суспензии густого сырья для получения разбавленной суспензии сырья; v) обезвоживание разбавленной суспензии сырья для получения листа и vi) высушивание листа.

Еще в одном аспекте данного изобретения предложен способ предотвращения потери яркости и пожелтения беленого бумажного материала во время хранения, включающий добавление в беленый бумажный материал эффективного количества одного или более окислителей, за исключением органических пероксикислот.

В следующем аспекте данного изобретения предложен беленый бумажный материал, который включает смешанный продукт из беленой бумажной массы и эффективного количества одного или более окислителей, причем указанный беленый бумажный материал обладает более высокой яркостью и повышенной устойчивостью к тепловому пожелтению по сравнению с аналогичной бумажной массой, не обработанной указанными окислителями.

Заявитель также обнаружил, что окислители в сочетании с хелатообразующими агентами эффективно повышают яркость бумажных изделий, а также обнаружил, что окислители, применяемые в сочетании с оптически отбеливающими веществами, усиливают действие оптически отбеливающих веществ и улучшают цветовую схему. Таким образом, в дополнительных аспектах данного изобретения предложены способы применения окислителей в сочетании с хелатообразующими агентами и/или оптически отбеливающими веществами для получения беленых бумажных материалов, обладающих более высокой яркостью, повышенной устойчивостью к тепловому пожелтению и улучшенными цветовыми схемами.

Окислитель, оптически отбеливающие вещества и хелатообразующие агенты можно применять отдельно или в сочетании с известными добавками для повышения качества требуемого бумажного изделия.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В настоящем изобретении предложен улучшенный способ изготовления бумаги и бумажных изделий, проявляющих высокую оптическую яркость. Обеспечения устойчивости яркости к тепловому пожелтению, улучшения цвета и повышения яркости беленой бумажной массы и бумажного изделия, изготовленного из беленой бумажной массы, можно достичь добавлением одного или более окислителей, как определено здесь, в бумажную массу, бумагу, картон или тонкую бумагу на любой стадии процесса изготовления бумаги.

Термин "яркость" применяют для описания белизны бумажной массы или бумаги по шкале от 0% (абсолютно черная) до 100% (относительно стандарта MgO, абсолютная яркость которого составляет приблизительно 96%) по отражательной способности синего света (457 нм) от бумаги. "Тепловая потеря яркости" представляет собой потерю яркости бумаги и бумажной массы под влиянием времени, температуры и влажности (нефотохимическая потеря яркости). "Потеря яркости при хранении" представляет собой тепловую потерю яркости со временем в условиях хранения.

Пожелтение беленого бумажного материала (возвращение к исходной яркости) представляет собой потерю яркости беленой бумажной массы, бумаги, картона, тонкой бумаги и аналогичных материалов, изготовленных из беленой бумажной массы, за некоторый период времени. Применяемый здесь термин "беленый бумажный материал" включает беленую бумажную массу, а также бумажные изделия, изготовленные из такой бумажной массы.

Описанные здесь окислители пригодны для использования с любым беленым бумажным материалом, применяемым в процессах изготовления бумаги, и с любым бумажным изделием, изготовленным из беленой бумажной массы. Используемый здесь термин "беленый бумажный материал" означает беленую бумажную массу и бумажные изделия, изготовленные из беленой бумажной массы, включая бумагу, картон, тонкую бумагу и т.д.

Согласно данному изобретению окислители включают химические вещества, способные преобразовывать функциональные группы в беленом бумажном материале из категории с более низкой степенью окисления в категорию с более высокой степенью окисления. Преимущества данного преобразования включают повышение устойчивости яркости в бумагоделательной машине и повышение эффективности оптически отбеливающих веществ.

Типичные представители окислителей включают (но не ограничиваются перечисленным) пероксид водорода, органические пероксикислоты, органические и неорганические пероксиды (гидропероксиды), супероксиды и пероксиды-супероксиды, неорганические пероксикислоты и их соли, пероксигидраты, растворимые в воде органические пероксиды, включая диоксираны, оксид азота, нитрозодисульфонаты, гипохлориты, гипобромиты, хлориты, хлораты и перхлораты, броматы, диоксид хлора, хлорамины, хлорамиды, хлорсульфамиды, бромамины, бромамиды, бромсульфамиды, хлорсульфоновую кислоту, хлор и сочетания всех вышеперечисленных веществ.

Применяемый здесь термин "пероксид водорода" означает Н2О2.

Термин "органическая пероксикислота" означает соединение формулы R1C(O)O2H и его соли с металлами, где R1 выбран из алкила, алкенила, арила и арилалкила. Типичные представители органических пероксикислот включают пероксибензойную кислоту С6Н5С(O)ООН, надуксусную кислоту (НУК) СН3С(O)ООН, надмуравьиную кислоту НС(O)ООН, надпропионовую кислоту СН3СН2С(O)ООН и аналогичные соединения.

Термин "неорганические пероксиды" означает одноосновные (гидропероксиды) и двухосновные (пероксиды) металлические производные пероксида водорода Н2О2, включая производные щелочных и щелочноземельных металлов, такие как гидропероксид натрия (NaOOH), пероксид магния (MgO2) и аналогичные соединения.

Термин "супероксиды" означает металлические производные, содержащие группу О2-, включая производные щелочных и щелочноземельных металлов, такие как супероксид натрия (NaO2), супероксид кальция (Са(O2)2) и аналогичные соединения.

Термин "пероксиды-супероксиды" означает смешанные производные щелочных металлов формулы 2МО2·М2О2, где М представляет собой щелочной металл, такие как К2О3 и аналогичные соединения.

Термин "неорганические пероксикислоты и их соли" означает неорганические кислоты, содержащие группу -O-O-, включая пероксомонокислоты, содержащие группу -ООН, и пероксод и кислоты, содержащие группу -O-O-, и их металлические соли, например пероксимоносерная кислота (кислота Каро (HO)2SO2OOH), пероксидисерная кислота (HOSO2OOSO2OH), пероксимонофосфорная кислота H3PO5, пероксимонокарбонат натрия Na2CO4, пероксидикарбонат натрия Na2C2O6 и аналогичные соединения.

"Пероксигидраты" представляют собой неорганические соли, содержащие кристаллизационный пероксид водорода, такие как пероксигидрат метасиликата натрия Na2SiO3·H2O2·H2O, пероксигидрат бората натрия NaBO2·Н2О2·3Н2О и аналогичные соединения.

"Органические пероксиды" представляют собой любые органические химические соединения, содержащие группу -O-O-, включая органические пероксикислоты, как определены здесь, диоксираны, такие как диметилдиоксиран (СН3)2СО2, и аналогичные соединения.

"Нитрозодисульфонаты" представляют собой соли щелочных и щелочноземельных металлов и нитрозодисульфоновой кислоты, такие как нитрозодисульфонат калия (соль Фреми) (KSO3)2NO и аналогичные соединения.

"Гипохлориты", "хлориты", "хлораты" и "перхлораты" представляют собой растворимые в воде металлические соли хлорноватистой HOCl, хлористой НОСlO, хлорноватой HOClO2 и хлорной HOClO3 кислот соответственно, например гипохлорит натрия NaOCl и аналогичные соединения.

"Гипобромиты" и "броматы" представляют собой растворимые в воде соли бромноватистой HOBr и бромноватой НВrO3 кислот, соответственно, например гипобромит натрия NaOBr и аналогичные соединения.

"Хлорамины" и "бромамины" представляют собой аммониевые производные формулы NHxHaly, где Hal представляет собой Cl или Br, или алкиламинопроизводные NR1R2Halx, где R1 и R2 определены выше, а индексы х и у независимо друг от друга равны 1-3. В водном растворе хлорамины и бромамины могут быть представлены в виде соответствующих аммониевых солей.

"Хлорамиды" и "бромамиды" представляют собой амидные производные, содержащие группы -C(O)N(R1)pHqHalr, где Hal определен выше, индексы р и q независимо друг от друга равны 0-1, а индекс r равен 1-2, такие как продукты, образовавшиеся в смеси гипохлорита натрия NaClO и карбамида H2NCONH2 или гипохлорита натрия NaClO и 5,5-диметилгидантоина, и аналогичные соединения.

"Хлорсульфамиды" и "бромсульфамиды" представляют собой амидные производные, содержащие группы -SO2N(R1)pHqHalr, где R1, Hal, индексы р, q и r определены выше, такие как продукты, образовавшиеся в смеси гипохлорита натрия NaClO и сульфамида H2NSO2NH2, и аналогичные соединения.

"Хлорсульфоновая кислота" представляет собой химическое соединение формулы ClSO3H.

Термин "алкил" означает одновалентную группу, полученную удалением одного атома водорода из насыщенного углеводорода с линейной или разветвленной цепью. Алкил может быть незамещенным или замещенным одной или более одной группами, выбранными из амино-, алкокси-, гидроксигрупп и галогена. Типичные представители алкильных групп включают метил, этил, н-пропил и изопропил, н-бутил, втор-бутил, изобутил и трет-бутил и аналогичные группы.

Термин "алкилен" означает двухвалентную группу, полученную удалением двух атомов водорода из насыщенного углеводорода с линейной или разветвленной цепью, например метилен, 1,2-этилен, 1,1-этилен, 1,3-пропилен, 2,2-диметилпропилен и аналогичные группы.

Термин "амино" означает группу формулы -NY1Y2, где Y1 и Y2 независимо друг от друга выбраны из Н, алкила, алкенила, арила и арилалкила. Типичные представители аминогрупп включают амино- (-NH2), метиламино-, этиламино-, изопропиламино-, диэтиламино-, диметиламино-, метилэтиламиногруппы и аналогичные группы. В водном растворе амины могут быть представлены в виде соответствующих аммониевых солей.

Термин "арил" означает ароматические карбоциклические радикалы и гетероциклические радикалы, включающие от 5 до 14 атомов в кольце. Арил может быть незамещенным или замещенным одной или более группами, выбранными из амино-, алкокси-, гидроксигрупп и галогена. Типичные представители арильных групп включают фенил, нафтил, фенантрил, антрацил, пиридил, фурил, пирролил, хинолинил, тиенил, тиазолил, пиримидил, индолил и аналогичные группы.

Термин "арилалкил" означает арильную группу, присоединенную к исходному молекулярному фрагменту через алкиленовую группу. Типичные представители арилалкильных групп включают бензил, 2-фенилэтил и аналогичные группы.

Термины "гало" и "галоген" означают хлор, фтор, бром и иод.

Термин "соль" означает соль металла, аммония, замещенного аммония или фосфония с неорганическим или органическим анионным противоионом. Типичные представители металлов включают натрий, литий, калий, кальций магний и аналогичные металлы. Типичные представители анионных противоионов включают сульфит, бисульфит, сульфоксилат, метабисульфит, тиосульфат, политионат, гидросульфит, формамидинсульфинат и аналогичные соединения.

Окислитель можно применять в сочетании с одним или более "активаторов". Активаторы включают композиции, которые усиливают действие окислителя посредством катализа реакции окисления или изменения рН или посредством обоих факторов. Типичные представители активаторов включают (но не ограничиваются перечисленным) фосфорную кислоту, дигидрофосфат натрия, гидросульфат натрия, гидрокарбонат натрия, ТЕМПО (2,2,6,6-тетраметилпиперидинилоксил), 4-гидрокси-ТЕМПО (4-гидрокси-2,2,6,6-тетраметилпиперидинилоксил), молибдат аммония, тетраацетилэтилендиамин (ТАЭД) и изменяющие рН химические соединения, влияющие на скорости окисления, например уксусную кислоту. Термин "активированный окислитель" означает окислитель, применяемый в сочетании с одним или более активаторов. В некоторых воплощениях данного изобретения окислитель представляет собой активированный пероксид водорода.

В некоторых воплощениях данного изобретения беленый бумажный материал можно обработать одним или более окислителей и одним или более восстановителей. "Восстановителями" называют химические вещества, способные преобразовывать функциональные группы в беленом бумажном материале из категории с более высокой степенью окисления в категорию с более низкой степенью окисления. Применение восстановителей для повышения и стабилизации яркости и повышения устойчивости к пожелтению в процессе изготовления бумаги описано в одновременно поданной заявке на патент США №11/379499 от 23 марта 2006 г.

Типичные представители восстановителей включают сульфиты, бисульфиты, метабисульфиты (пиросульфиты), сульфоксилаты, тиосульфаты, дитиониты (гидросульфиты), политионаты, формамидинсульфиновую кислоту и ее соли и производные, аддукт формальдегида и бисульфита и другие аддукты альдегидов и бисульфитов, сульфинамиды и простые эфиры сульфиновых кислот, сульфенамиды и простые эфиры сульфеновых кислот, сульфамиды, фосфины, соли фосфония, фосфиты и тиофосфиты.

Термин "сульфиты" означает двухзамещенные соли металлов и сернистой кислоты H2SO3, включая двухзамещенные соли щелочных и щелочноземельных металлов, такие как сульфит натрия (Na2SO3), сульфит кальция (CaSO3) и аналогичные соединения.

Термин "бисульфиты" означает однозамещенные соли металлов и сернистой кислоты H2SO3, включая однозамещенные соли щелочных и щелочноземельных металлов, такие как бисульфит натрия (NaHSO3), бисульфит магния (Mg(HSO3)2) и аналогичные соединения.

Термин "сульфоксилаты" означает соли сульфоксиловой кислоты H2SO2, включая сульфоксилат цинка (ZnSO2) и аналогичные соединения.

Термин "метабисульфиты (пиросульфиты)" означает соли пиросернистой кислоты H2S2O5, включая метабисульфит натрия (Na2S2O5) и аналогичные соединения.

Термин "тиосульфаты" означает соли тиосерной кислоты H2S2O3, включая тиосульфат натрия (Na2S2O3) и аналогичные соединения.

Термин "политионаты" означает соли политионовых кислот H2SnO6 (n=2-6), включая тритионат натрия (Na2S3O6), соли дитионовой кислоты H2S2O6, такие как дитионат натрия (Na2S2O6), и аналогичные соединения.

Термин "дитиониты (гидросульфиты)" означает соли дитионистой (гидросернистой, гипосернистой) кислоты, H2S2O4, включая дитионит (гидросульфит) натрия (Na2S2O4), дитионит магния (MgS2O4) и аналогичные соединения.

Термин "формамидинсульфиновая кислота (ФАСК)" означает соединение формулы H2NC(=NH)SO2H и его соли и производные, включая натриевую соль H2NC(=NH)SO2Na.

Термин "аддукты альдегидов и бисульфитов" означает соединения формулы R1CH(OH)SO3H и их металлические соли, где R1 выбран из алкила, алкенила, арила и арилалкила. Типичные представители аддуктов альдегидов и бисульфитов включают аддукты формальдегида и бисульфита HOCH2SO3Na и аналогичные соединения.

Термин "сульфинамиды и простые эфиры сульфиновых кислот" означает соединения формулы R1-S(=O)-R2, где R1 определен выше, a R2 выбран из OR3 и NR4R5, где R3-R5 независимо друг от друга выбраны из алкила, алкенила, арила и арилалкила. Типичные представители сульфинамидов включают этилсульфиндиметиламид (CH3CH2S(=O)N(CH3)2) и аналогичные соединения.

Термин "сульфенамиды и простые эфиры сульфеновых кислот" означает соединения формулы R1-S-R2, где R1 и R2 определены выше. Типичные представители сульфенамидов включают этилсульфендиметиламид (CH3CH2SN(CH3)2) и аналогичные соединения.

Термин "сульфамиды" означает соединения формулы R1-C(=S)-NR4R5, где R1, R4 и R5 определены выше. Типичные представители сульфамидов включают CH3CH2C(=S)N(CH3)2 и аналогичные соединения.

Термин "фосфины" означает производные фосфина РН3, обычно органические замещенные фосфины формулы R6R7R8P, где R6-R8 независимо друг от друга выбраны из Н, алкила, алкенила, арила, арилалкила и NR4R5, где R4 и R5 определены выше. Типичные представители фосфинов включают тригидроксиметилфосфин (НОСН2)3Р (ТГМФ) и аналогичные соединения.

Термин "фосфиты" означает производные фосфористой кислоты Р(ОН)3, включая органические замещенные фосфиты формулы (R3O)(R4O)(R5O)P, где R3-R5 определены выше. Типичные представители фосфитов включают (CH3CH2O)3Р и аналогичные соединения.

Термин "тиофосфиты" означает производные тиофосфористой кислоты HSP(OH)2, включая органические замещенные тиофосфиты формулы (R3O)(R4O)(R5S)P, где R3-R5 определены выше. Типичные представители тиофосфитов включают (CH3CH2O)2(CH3CH2S)Р и аналогичные соединения.

Термин "соли фосфония" означает органические замещенные фосфины формулы R1R3R4R5P+X-, где R1 и R4-R5 определены выше, а X представляет собой органический или неорганический анион. Типичные представители солей фосфония включают трикарбоксиэтилфосфонийгидрохлорид (HO2CCH2CH2)3Р+HCl- (ТКЭФГХ), бис-(тетрагидроксиметилфосфоний)сульфат [(HOCH2)4P+]2(SO4)2- (БТГМФС) и аналогичные соединения.

Термин "алкенил" означает одновалентную группу, полученную удалением одного атома водорода из углеводорода с линейной или разветвленной цепью, содержащего по меньшей мере одну двойную связь углерод-углерод. Алкенил может быть незамещенным или замещенным одной или более групп, выбранных из амино-, алкокси-, гидроксигрупп и галогена.

Термин "алкокси" означает алкильную группу, присоединенную к исходному молекулярному фрагменту через атом кислорода. Типичные представители алкоксильных групп включают метокси-, этокси-, пропокси-, бутоксигруппы и аналогичные группы. Предпочтительными являются метокси- и этоксигруппы.

В одном из воплощений данного изобретения восстановитель выбран из группы, состоящей из замещенных фосфинов, сульфитов, бисульфитов и метабисульфитов. Предпочтительным восстановителем является бисульфит натрия.

Способ согласно изобретению можно осуществлять на практике в традиционном бумагоделательном оборудовании. Хотя бумагоделательное оборудование различается по действию и механической конструкции, способы, которыми изготавливают бумагу на различном оборудовании, содержат общие стадии. Изготовление бумаги обычно включает стадию варки целлюлозы, стадию отбелки, стадию подготовки сырья, стадию мокрой части и стадию сухой части бумагоделательной машины.

На стадии получения целлюлозы отдельные волокна целлюлозы выделяют из источника целлюлозы либо механическим, либо химическим воздействием, либо обоими типами воздействия. Типичные источники целлюлозы включают (но не ограничиваются перечисленным) древесину и аналогичные "древесные" растения, сою, рис, хлопок, солому, лен, абаку, пеньку, багассу, лигниносодержащие растения и аналогичные растения, а также первичную и вторичную бумагу, тонкую бумагу и картон. Такая бумажная масса включает (не ограничиваясь перечисленным) древесную массу (ДМ), беленую древесную массу, термомеханическую массу (ТММ), беленую термомеханическую массу, химико-термомеханическую массу (ХТММ), беленую химико-термомеханическую массу, очищенную от чернил бумажную массу, крафт-целлюлозу, беленую крафт-целлюлозу, сульфитную бумажную массу и беленую сульфитную бумажную массу. Вторичную бумажную массу можно отбеливать или не отбеливать на стадии переработки для повторного использования, но предполагают, что первоначально она была беленая. Любую описанную выше бумажную массу, которая ранее не была подвергнута отбелке, можно отбеливать, как описано здесь, для получения беленого бумажного материала.

В одном из воплощений данного изобретения беленый бумажный материал выбран из группы, состоящей из первичной бумажной массы, вторичной бумажной массы, крафт-целлюлозы, сульфитной бумажной массы, механической бумажной массы, любого сочетания указанных видов бумажной массы, вторичной бумаги, тонкой бумаги и любой бумаги, изготовленной из перечисленных выше видов бумажной массы или их сочетаний.

Дополнительным преимуществом данного изобретения является то, что оно позволяет замещать дорогостоящую крафт-целлюлозу более дешевой механической бумажной массой в крафт-механической бумаге марки для печати. Применение описанных здесь химических веществ и способов повышает яркость и устойчивость к пожелтению, следовательно, позволяя использовать более значительные количества механической бумажной массы, с соответствующим снижением стоимости без потерь качества получаемого бумажного изделия.

На стадии подготовки сырья получают суспензию бумажной массы в воде. На данной стадии в сырье также можно вводить добавки, такие как осветлители, красители, пигменты, наполнители, противомикробные средства, пеногасители, регуляторы рН и средства для обезвоживания. Применяемый в данном описании термин "подготовка сырья" включает такие операции, как разбавление, грубую фильтрацию и очистку суспензии сырья, которые можно осуществлять до формования полотна.

Стадия мокрой части бумагоделательного процесса включает нанесение суспензии сырья или суспензии бумажной массы на проволочную сетку или войлок бумагоделательной машины для формования непрерывного полотна волокон, обезвоживание полотна и уплотнение ("прессование") полотна для получения листа. Для использования в способе согласно изобретению подходит любая известная бумагоделательная машина. Такие машины могут включать цилиндровые машины, длинносеточные машины, формовочные машины с двойной проволочной сеткой, машины для производства тонкой бумаги и аналогичные машины и их модификации.

На стадии сухой части бумагоделательного процесса полотно высушивают и, возможно, подвергают дополнительной обработке, такой как клеильное прессование, каландрирование, напыление покрытия модификаторов поверхности, печать, резка, гофрирование и т.д. Кроме клеильного пресса и каландровочной водяной камеры на высушенную бумагу можно нанести напылением покрытие с помощью штанги опрыскивателя.

В воплощениях данного изобретения, где окислители добавляют перед отливом листа бумаги, используют окислители, отличные от органических пероксикислот. Когда окислители вводят после отлива листа бумаги или когда окислители добавляют в густое сырье в сочетании с оптически отбеливающими веществами, используют окислители, включающие органические пероксикислоты.

Таким образом, в воплощениях, где окислители добавляют перед отливом листа бумаги, окислители можно выбрать из пероксида водорода, неорганических пероксидов, супероксидов и пероксидов-супероксидов, неорганических пероксикислот и их солей, пероксигидратов, растворимых в воде органических пероксидов, нитрозодисульфонатов, гипохлоритов, гипобромитов, хлоритов, хлоратов, броматов, перхлоратов, диоксида хлора, хлораминов, хлорамидов, хлорсульфамидов, бромаминов, бромамидов, бромсульфамидов, хлорсульфоновой кислоты, бромсульфоновой кислоты и хлора.

В других воплощениях, где окислители добавляют перед отливом листа бумаги, окислители можно выбрать из пероксида водорода, активированного пероксида водорода, гипохлоритов, гипобромитов, хлораминов, хлорамидов, хлорсульфамидов, бромаминов, бромамидов, бромсульфамидов, хлорсульфоновой кислоты и бромсульфоновой кислоты.

В воплощениях, где окислители добавляют после отлива листа бумаги или когда окислители добавляют в густое сырье в сочетании с оптически отбеливающими веществами, окислители можно выбрать из пероксида водорода, органических пероксикислот, неорганических пероксидов, супероксидов и пероксидов-супероксидов, неорганических пероксикислот и их солей, пероксигидратов, растворимых в воде органических пероксидов, нитрозодисульфонатов, гипохлоритов, гипобромитов, хлоритов, хлоратов, броматов, перхлоратов, диоксида хлора, хлораминов, хлорамидов, хлорсульфамидов, бромаминов, бромамидов, бромсульфамидов, хлорсульфоновой кислоты, бромсульфоновой кислоты и хлора.

В других воплощениях, где окислители добавляют после отлива листа бумаги или когда окислители добавляют в густое сырье в сочетании с оптически отбеливающими веществами, окислители можно выбрать из пероксида водорода, активированного пероксида водорода, надуксусной кислоты, гипохлоритов, гипобромитов, хлораминов, хлорамидов, хлорсульфамидов, бромаминов, бромамидов, бромсульфамидов, хлорсульфоновой кислоты и бромсульфоновой кислоты.

Окислители можно приготовить заранее или получить in situ из смешанных компонентов, как известно в данной области. В некоторых случаях может оказаться желательным приготовление in situ, например, когда требуемый окислитель является относительно неустойчивым или быстро расходуется в системе. Например, надуксусную кислоту и смеси надуксусной кислоты и пероксида водорода можно приготовить in situ смешиванием пероксида водорода и тетраацетилэтилендиамина. Гипобромит можно приготовить in situ смешиванием бромида натрия и гипохлорита натрия. Хлорамины можно приготовить in situ смешиванием бромида аммония, мочевины (карбамида) или диметилгидантоина и гипохлорита натрия. Хлорсульфаматы можно приготовить in situ смешиванием бромида натрия, гипохлорита натрия и сульфаминовой кислоты.

Заявитель также обнаружил, что окислители в сочетании с хелатообразующими агентами, как описано ниже, эффективно повышают яркость бумажного изделия посредством повышения тепловой устойчивости бумажной массы и снижения количества хромофорных структур в бумажной массе.

В одном из воплощений данного изобретения в беленую бумажную массу или бумажное изделие добавляют один или более хелатообразующих агентов. Согласно данному воплощению подходящие хелатообразующие агенты включают соединения, способные образовывать хелатные комплексы с переходными металлами, которые образуют окрашенные продукты с компонентами бумажной массы и катализируют цветообразующие реакции в беленой бумажной массе или бумажных изделиях.

Типичные представители хелатообразующих агентов включают (но не ограничиваются перечисленным) органические фосфонаты, фосфаты, карбоновые кислоты, дитиокарбаматы, соли любых указанных компонентов и любые их сочетания.

Термин "органические фосфонаты" означает органические производные фосфоновой кислоты НР(O)(ОН)2, содержащие одинарную связь С-Р, такие как гидроксиэтилендифосфоновая кислота ГЭДФК (HEDP) (СН3С(ОН)(Р(O)(ОН)2)2), 1-гидрокси-1,3-пропандиил-бис-фосфоновая кислота ГПБФК ((НО)2Р(O)СН(ОН)СН2СН2Р(O)(ОН)2); предпочтительно содержащие одинарную связь C-N, смежную (вицинальную) со связью С-Р, такие как диэтилентриаминотетраметиленфосфоновая кислота ДТМФК (DTMPA) ((HO)2P(O)CH2N[CH2CH2N(CH2P(O)(OH)2)2]2), аминотриметиленфосфоновая кислота АМФ (AMP) (N(CH2P(O)(OH)2)3), полиаминополиэфирметиленфосфоновая кислота ПАПЭМФК (РАРЕМР) (((HO)2P(O)CH2)2NCH(CH3)CH2(OCH2CH(CH3))2N(CH2)6N(CH2P(O)(OH)2)2), гексаметилендиаминотетраметиленфосфорная кислота ГМДТМФК (HMDTMP) (((HO)2P(O)CH2)2N(CH2)6N(CH2P(O)(OH)2)2), гидроксиэтилиминобис(фосфоновая кислота) ГЭИБФК (НЕВРМ) (N(CH2P(O)(OH)2)2CH2CH2OH) и аналогичные соединения.

Термин "органические фосфаты" означает органические производные фосфорной кислоты Р(O)(ОН)3, содержащие одинарную связь С-Р, включая триэфир фосфорной кислоты и триэтаноламина (N(CH2CH2OP(O)(ОН)2)3) и аналогичные соединения.

Термин "карбоновые кислоты" означает органические соединения, содержащие одну или более карбоксильных групп -С(O)ОН, предпочтительно аминокарбоновые кислоты, содержащие одинарную связь C-N, смежную (вицинальную) со связью С-CO2H, такие как этилендиаминотетрауксусная кислота ЭДТК (EDTA) ((НО2ССН2)2NCH2CH2N(СН2СО2Н)2), диэтилентриаминопентауксусная кислота ДТПК (DTPA) ((HO2CCH2)2NCH2CH2N(CH2CO2H)CH2CH2N(CH2CO2H)2) и аналогичные соединения и их соли с щелочными и щелочноземельными металлами.

"Дитиокарбаматы" включают мономерные дитиокарбаматы, полимерные дитиокарбаматы, полидиаллиламино-дитиокарбаматы, 2,4,6-тримеркапто-1,3,5-триазин, динатрия этилен-бис-дитиокарбамат, динатрия диметилдитиокарбамат и аналогичные соединения.

В одном из воплощений данного изобретения хелатообразующий агент выбирают из группы, состоящей из диэтилентриаминопентаметиленфосфоновой кислоты (ДТМФК, DTMPA) и ее солей, диэтилентриаминопентауксусной кислоты (ДТПК, DTPA) и ее солей и этилендиаминтетрауксусной кислоты (ЭДТК, EDTA) и ее солей.

Заявитель также обнаружил, что применение окислителей в сочетании с оптически отбеливающими веществами (ООВ) усиливает действие оптически отбеливающих веществ (ООВ). Окислители также улучшают цветовую схему. Это позволяет снизить количество ООВ и осветлителей, таких как синие красители, необходимых для достижения сопоставимых яркости и цвета. Замена некоторых ООВ и красителей окислителями позволяет производителям бумажной массы и бумаги снизить себестоимость производства и понизить общее количество присутствующих ООВ и красителей, при этом сохраняя приемлемый уровень яркости бумажного изделия и достигая заданного цвета. В некоторых случаях можно полностью исключить красители и сохранить цвет.

Таким образом, в другом воплощении данного изобретения в беленую бумажную массу или бумажное изделие добавляют одно или более оптически отбеливающих веществ (ООВ).

"Оптически отбеливающие вещества" представляют собой флуоресцентные красители или пигменты, которые поглощают ультрафиолетовое излучение и повторно излучают его с более высокой частотой в видимом диапазоне спектра (синем), посредством этого вызывая появление белизны и яркости в листе бумаги при добавлении в состав сырья. Типичные представители оптически отбеливающих веществ включают (но не ограничиваются перечисленным) азолы, производные бифенила, производные кумарина; производные фурана; ионные осветлители, включая анионные, катионные и анионные (нейтральные) соединения, такие как соединения Eccobrite® и Eccowhite®, доступные от компании Eastern Color & Chemical Co. (Провиденс (Providence), шта