Способ автоматизированного неразрушающего контроля теплофизических свойств фильтрующе-поглощающих систем

Иллюстрации

Показать все

Настоящее изобретение касается способа автоматизированного неразрушающего контроля свойств фильтрующе-поглощающих изделий. Заявленный способ включает измерение температуры, контроль теплового эффекта процесса сорбции при поглощении углеродными сорбентами газо-воздушной смеси с эталонными веществами в динамических условиях. При этом дистанционным методом компьютерной визуализации тепловых полей регистрируют изменение температуры поверхности сорбента при прохождении через него газо-воздушной смеси с поглощаемым компонентом и осуществляют контроль за степенью исчерпания защитных свойств фильтрующе-поглощающих изделий. Данный способ позволяет проводить экспресс-оценку теплофизических свойств фильтрующе-поглощающих систем. 2 ил.

Реферат

Изобретение относится к области неразрушающих методов контроля качественного состояния фильтрующе-поглощающих изделий от паров токсичных химикатов и может быть использовано для оценки степени отработки шихты по загрязняющим веществам, поглощающими как на основе физической адсорбции, так и хемосорбции.

Предлагаемым способом можно проводить экспресс-оценку и прогнозировать их защитные характеристики (предельной сорбционной способности) по различным веществам.

Известен способ автоматизированного неразрушающего контроля материалов и изделий (Патент РФ №2287149, МПК G01N 21/63, G01N 21/91). Сущность способа состоит в поочередном облучении светом, вызывающим люминесценцию используемого при магнитопорошковой или капиллярной дефектоскопии материала, и светом, не вызывающим люминесценции, с последующей фиксацией полученных изображений и сравнением их посредством вычислительного устройства.

Недостатками этого способа является ограниченность его применения. Кроме того, способ не предназначен для определения теплофизических свойств фильтрующе-поглощающих систем.

Известен способ неразрушающего контроля теплофизических свойств материалов и изделий (Патент РФ №2301996, МПК G01N 25/00). Сущность способа состоит в том, что проводят тепловое воздействие на поверхность исследуемого объекта и регистрируют тестовую термограмму, по которой оценивают теплопроводность исследуемого объекта или разность температур.

Данный способ не предназначен для определения теплофизических свойств фильтрующе-поглощающих систем.

Известен способ определения дефектов в изделии методом теплового неразрушающего контроля (Патент РФ №2315983, МПК G01N 25/00). Сущность способа состоит в определении дефектов в изделии нагревом его и последующим охлаждением, а затем измерением температуры изделия и темпа охлаждения для каждой элементарной площадки поверхности изделия.

Недостатками способа являются трудоемкость, энергоемкость и не невозможность определения теплофизических свойств фильтрующе-поглощающих систем.

Сущность заявляемого способа заключается в регистрации теплого эффекта, сопровождающего процесс поглощения паров различных органических сорбтивов углеродными адсорбентами методом ИК-термографии.

Техническим результатом является создание дешевого, эффективного и экспрессного способа оценки степени отработки шихты фильтрующе-поглощающих изделий и аппаратов парами токсичных химикатов, поглощающимися по различным механизмам сорбции.

Технический результат достигается тем, что определение изменения температуры поверхности сорбента при прохождении через него газовоздушной смеси с поглощаемым компонентом регистрируется методом компьютерной визуализации тепловых полей. Наблюдается также регистрируемое изменение температуры выходящего очищенного от загрязняющих веществ газо-воздушного потока.

Таким образом, при использовании данного способа определения теплофизических свойств фильтрующе-поглощающих изделий и аппаратов значительно экономятся поглощающие материалы, и повышается эффективность контроля за степенью исчерпания их защитных свойств.

Для проведения способа неразрущающего контроля фильтрующе-поглощающей изделий при воздействии паров загрязнителей поглощающими углеродными адсорбентами с использованием метода ИК-термографии применяют динамическую трубку, снаряженную исследуемыми адсорбентами.

В качестве объектов исследований используют адсорбаты - бензол (стандартное вещество) и воду, а также угольные адсорбенты БАУ и КТ-1. характеризующиеся различными физическими свойствами и строением микропористой структуры. Адсорбенты снаряжаются в стеклянные динамические трубки объемом 15 см3 высотой слоя 10 мм. Экспериментальные исследования проводятся при следующих условиях:

- температура воздуха в лаборатории 16-20°С;

- равновесная влажность сорбентов (Wp) 40±3%;

- относительная влажность газо-воздушной смеси (φ) 45-90%;

- скорость паро-воздушного потока - 1 л/мин на образец.

Для измерения теплового эффекта процесса поглощения паров воды и бензола и получения термограмм в составе испытательного комплекса используется тепловизор «Иртис-200», работающий в диапазоне длин волн 3-5 мкм.

Общий вид получаемых в ходе экспериментов термоизображений представлены на фиг.1, 2.

После компьютерной обработки (визуализации) термоизображений были получены зависимости роста температуры сорбентов во времени при пропускании через динамическую трубку паров бензола и воды.

Анализ полученных термограмм показывает, что процесс поглощения (адсорбции) паров бензола и воды характеризуется различной скоростью изменения температуры сорбентов в динамических трубках.

Из фиг.1 и 2 видно, что в промежуток времени (до 5 минут от момента подачи газо-воздушной смеси на динамическую трубку) происходит резкое увеличение температуры сорбентов. По достижении максимума, в последующие промежутки времени происходит плавное снижение температуры сорбентов до исходных температур, что соответствует предельной величине сорбции. Следовательно, чем больше время достижения исходной температуры сорбента, тем больше предельная величина сорбции, и следовательно, защитные свойства сорбентов по исследуемым веществам.

Технологический процесс неразрушающего контроля теплофизических свойств фильтрующе-поглощающих систем осуществляется следующим образом: динамическую трубку наполняют исследуемым сорбентом с известной величиной равновесного увлажнениям подсоединяют к магистрали прибора, обеспечивающего замкнутую циркуляцию воздуха с заданным параметром относительной влажности. Трубку помещают в термососуд для поддержания заданного значения температуры. При помощи тепловизора «Иртис-200» снимают показания (значения температурных полей) при пропускания газо-воздушного потока со стандартным веществом (бензолом или парами воды) через динамическую трубку. Испытания производят до снижения температуры динамической трубки, соответствующей температуре термостатирования. Полученные видеоизображения процесса через цифровую плату вводятся в память компьютера для дальнейшей обработки изображения. Через аналого-цифровой преобразователь в памяти компьютера синхронно с видеозаписью регистрируются результаты измерения температуры в образце. Информацию об интенсивности излучений отдельно взятой точки или участка изображения можно получить как в числовом виде, так и в виде гистограммы.

На фиг.1 и 2 в качестве примера показана последовательность видеокадров процесса поглощения (адсорбции) паров бензола и воды угольными адсорбентами БАУ и КТ-1.

Таким образом, активная сорбция загрязняющих веществ сорбентами способствует выделению тепла, изменяя внутреннюю энергию тела, которая в состоянии термодинамического равновесия пропорциональна температуре вещества.

Телевизионный метод измерения температуры через регистрацию интенсивности излучения нагретого тела цветной аналоговой или цифровой видеокамерой с последующей компьютерной обработкой изображения позволяют получать:

- распределение температуры в течение выбранного времени;

- температурный профиль по любой оси с расчетом минимума, максимума и среднего значения;

- разность температур в двух или нескольких точках;

- отображение выделенных фрагментов в различных масштабах и их детальное описание с выводом отчетной документации.

В настоящее время на объектах по уничтожению химического оружия в технологии дегазации газообразных отходов используются следующие методы очистки: механические, химические, физико-химические. Из перечисленных методов наиболее распространен адсорбционный.

На основе этого метода разработаны различные способы средств обезвреживания газообразных отходов в зависимости от объема очищаемого воздуха, концентрации в нем токсичных веществ и их стойкости, а также технической и экономической целесообразности.

Содержание токсичных химикатов в абгазах на выходе из каждого рабочего адсорбера контролируется автоматически химическим методом. При превышении концентрации токсичного химиката выше предельной допустимости концентрации после первого по ходу газа адсорбера предусмотрено переключение адсорберов: первый по ходу абгазов адсорбер выключается из работы и в нем производится замена сорбента, второй адсорбер становится первым, а резервной - вторым по ходу абгазов. Таким образом, в технологической линии всегда используются три аппарата. По нашему мнению, при использовании предлагаемого способа неразрушающего контроля теплофизических свойств адсорберов (за счет визуализации тепловых полей выходящим газо-воздушным потоком) можно использовать два аппарата и сэкономить - один, а также обеспечить максимальную эффективность технологического процесса по очистке абгазов.

Таким образом, предлагаемый способ неразрушающего контроля фильтрующе-поглощающей изделий с использованием метода ИК-термографии направлен на решение актуальной научно-технической задачи, имеющей важное теоретическое и практическое значение.

Способ автоматизированного неразрушающего контроля свойств фильтрующе-поглощающих изделий, включающий измерение температуры, отличающийся тем, что контролируют тепловой эффект процесса сорбции при поглощении углеродными сорбентами газовоздушной смеси с эталонными веществами в динамических условиях, при этом дистанционным методом компьютерной визуализации тепловых полей регистрируют изменение температуры поверхности сорбента при прохождении через него газовоздушной смеси с поглощаемым компонентом и осуществляют контроль за степенью исчерпания защитных свойств фильтрующе-поглощающих изделий.