Устройство измерения расстояния и способ измерения расстояния

Иллюстрации

Показать все

Предложены устройство измерения расстояния и способ измерения расстояния Достигаемым техническим результатом изобретения являются простота исполнения, возможность измерения малых расстояний, уменьшение ошибок измерения. Заявленное устройство измерения расстояния включает в себя источник сигнала, предназначенный для вывода сигнала, имеющего множество различных частотных компонентов в пределах определенной полосы пропускания, модуль передачи, предназначенный для передачи сигнала в виде волнового колебания, модуль детектирования смешанной волны, предназначенный для детектирования смешанной волны VC, полученной в результате смешения переданной бегущей волны VT и отраженной волны VRk, состоящей из бегущей волны VT, отраженной от объекта измерения, модуль анализа частотного компонента, предназначенный для анализа частотного компонента детектируемой смешанной волны VC, и модуль расчета расстояния, предназначенный для получения спектра расстояния, в результате дополнительной обработки проанализированных данных с использованием спектрального анализа, и рассчитывающий, таким образом, расстояние до объекта измерения. 6 н. и 16 з.п. ф-лы, 24 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к устройству измерения расстояния и способу измерения расстояния, и более конкретно, к устройству измерения расстояния и способу измерения расстояния, которые детектируют смешанную волну, состоящую из бегущей волны, выводимой из источника сигнала, и отраженной волны, полученной от бегущей волны, отраженной от объекта измерения, и измеряют расстояние до объекта измерения.

Уровень техники

В качестве обычных устройств измерения расстояния известно использование электрической волны, импульсного радара, радара FMCW (НЧМС, непрерывный частотно-модулированный сигнал) и других радаров.

Импульсный радар передает импульсный сигнал, измеряет время, в течение которого этот импульсный сигнал отражается объектом измерения, и определяет расстояние до объекта измерения. Кроме того, радар FMCW передает непрерывный сигнал с колебанием частоты и измеряет расстояние до объекта измерения по разности частот между переданными сигналами и отраженными сигналами. В дополнение к этому существуют радар с расширенным спектром, радар с кодированным импульсом и другие, но эти радары измеряют расстояние на основе времени распространения сигналов до измеряемого объекта и обратно, как и в случае импульсного радара.

Одновременно с этим, упомянутые выше радары, в принципе, измеряют время распространения сигналов до измеряемого объекта и обратно и имеют недостаток, связанный с тем, что их разрешающая способность составляет несколько десятков метров, поэтому трудно выполнять измерения на близком расстоянии в пределах нескольких десятков метров. Кроме того, в связи с тем, что радар FMCW измеряет расстояние до объекта измерения по разности частот между переданными сигналами и отраженными сигналами, в нем возникает проблема, связанная с необходимостью поддержания линейности изменения частоты передаваемых сигналов, а также проблема "фальшивого объекта", связанная с утечкой передаваемых сигналов на сторону приема; в нем также требуется (на высоком уровне) поддерживать точность выходных сигналов для удовлетворения линейности изменения частоты, требуется использовать отдельные антенны для стороны приема и стороны передачи с тем, чтобы исключить утечку передаваемых сигналов на сторону приема, для исключения возникновения явления "фальшивого объекта" и других проблем, кроме того, на этой основе трудно построить простую конструкцию.

Таким образом, существует устройство измерения расстояния, такое как показано на фиг. 23, которое основано на концепции, состоящей в том, что стоячая волна генерируется в случае, если существует отражение (отраженная волна) от объекта измерения, когда электромагнитную волну, которая имеет только один частотный компонент, передают к объекту измерения, в качестве бегущей волны, от источника генерирования электромагнитной волны; устройство передает электромагнитную волну, которая имеет только один частотный компонент, к объекту измерения, одновременно ступенчато переключая частоту, детектирует стоячую волну, генерируемую при возникновении интерференции между передаваемой волной и волной, отраженной от объекта измерения, и определяет расстояние между точкой детектирования и объектом измерения на основе результата расчета переменного периода амплитуд этой стоячей волны (см. патентный документ 1).

Устройство измерения расстояния, описанное в патентном документе 1, детектирует стоячую волну, генерируемую при возникновении интерференции между бегущей волной, которая имеет только один частотный компонент, и отраженной волной, получаемой в результате отражения бегущей волны от объекта измерения; поэтому в устройстве измерения расстояния не требуется предотвращать утечку передаваемого сигнала на сторону приема, как в случае радара FMCW, и т.д., и может быть построена простая конструкция. Кроме того, по сравнению с импульсным радаром, радаром FMCW и другими радарами, устройство измерения расстояния, представленное в патентном документе 1, позволяет выполнять точные измерения, даже при измерениях на близком расстоянии.

Устройство измерения расстояния, представленное в патентном документе 1, однако, эффективно, когда скорость перемещения между объектом измерения и устройством измерения расстояния относительно мала, и расстоянием перемещения в пределах времени измерения можно пренебречь, но когда скорость перемещения между объектом измерения и устройством измерения расстояния велика, и расстоянием перемещения в пределах времени измерения пренебречь нельзя, с помощью такого устройства измерения расстояния трудно получить правильно измеренные значения из-за эффекта Доплера.

Для точного измерения расстояния до движущегося объекта измерения используется устройство измерения расстояния, которое увеличивает и уменьшает частоту сигнала, которое имеет только один частотный компонент, соответствующий заданному ступенчатому переключению частоты, передает его в виде бегущей волны, детектирует амплитуду стоячей волны, генерируемой в результате интерференции между такой бегущей волной и отраженной волной, образовавшейся при отражении бегущей волны от объекта измерения, рассчитывает сигналы, которые соответствуют детектируемой амплитуде, и определяют расстояние между точкой детектирования и объектом измерения (см., например, патентный документ 2 и непатентный документ 1).

Устройство измерения расстояния, описанное в патентном документе 2 и непатентном документе 1, позволяет рассчитывать сигналы, которые соответствуют амплитуде стоячей волны, генерируемой в результате интерференции между бегущей волной, частота которой повышается и понижается в соответствии с заданным ступенчатым переключением частоты, и отраженной волной, и одновременно измерять расстояние между точкой детектирования и объектом измерения, а также относительную скорость объекта измерения. Кроме того, в случае устройства измерения расстояния, представленного в патентном документе 1, расстояние между точкой детектирования и объектом измерения определяют путем использования стоячей волны, и при этом может быть получена простая конструкция устройства измерения расстояния.

Патентный документ 1: Публикация № 2002-357656 находящейся на экспертизе заявки на японский патент

Патентный документ 2: Публикация № 2004-325085 находящейся на экспертизе заявки на японский патент

Непатентный документ 1: Short-Range High-Resolution Radar Utilizing Standing Wave for Measuring of Distance and Velocity of a Moving Target," FUJIMORI Shingo, UEBO Tetsuji, and IRITANI Tadamitsu, IEICE Transactions, vol. J87-B, No. 3, pp. 437-445, March 2004.

Сущность изобретения

Решаемые технические проблемы

В устройстве измерения расстояния, представленном в патентном документе 2 и непатентном документе 1, когда измеряемый объект представляет собой единичный объект как расстояния до измеряемого объекта, так и относительную скорость можно измерять с высокой точностью; однако, в случае, когда существует множество объектов измерения, расстояние между объектами измерения мало и разность скоростей велика, расстояние до каждого объекта измерения невозможно определить однозначно, и иногда получают ошибочные результаты измерения.

Кроме того, в устройстве измерения расстояния, в котором используется стоячая волна, описанном в упомянутых выше патентных документах 1 и 2, а также в непатентном документе 1, частота сигнала, выводимого из источников сигнала, изменяется ступенчато, таким образом, что сигнал (волновые колебания) с частотой fa в определенной полосе частот выводят в течение периода Δt, как показано на фиг. 23, и после этого выводят сигнал с частотой fa+Δf в течение периода Δt. Сигнал, выводимый источником сигнала, передают через передающую антенну и т.д., отражается объектом измерения и возвращается, попадая в точку детектирования как отраженная волна. В таком случае, бегущая волна с частотой fa и отраженная волна, которая соответствует бегущей волне, с частотой fa, образуют интерференцию, т.е. накладываются друг на друга в точке детектирования; в результате генерируется стоячая волна. Таким образом, стоячая волна не генерируется от момента вывода бегущей волны с частотой fa, до момента времени, когда отраженная волна, которая соответствует этой частоте fa, достигнет точки детектирования, и для генерирования стоячей волны необходимо время от момента излучения бегущей волны с частотой fa, до момента, когда бегущая волна с этой частотой отразится от объекта измерения, и отраженная волна достигнет точки детектирования.

Следовательно, временной интервал Δt переключения частоты невозможно сделать более коротким, чем время от момента, когда частота изменилась, до момента, когда образуется стоячая волна. Устройство измерения расстояния, в котором используется стоячая волна, поэтому рассчитывает спектр расстояния по взаимосвязи между полученным уровнем сигнала и частотой, и получает расстояние до объекта измерения, но когда объект измерения перемещается с относительной скоростью v, происходит девиация пика спектра расстояния из-за эффекта Доплера, и, как показано на фиг. 24, вырабатывается ошибка измерения vΔt/ΔfΔ·f0.

С учетом этих проблем задача заявленного изобретения состоит в создании устройства измерения расстояния и способа измерения расстояния, которые имеют свойства "простой конструкции", "возможности измерения на коротком расстоянии" и "малых ошибок измерения", которые были бы аналогичны устройствам измерения расстояния, в которых используется стоячая волна, и одновременно, в которых фактически отсутствовало бы влияние эффекта Доплера.

Средство решения проблемы

В первом аспекте в соответствии с настоящим изобретением предусмотрено устройство измерения расстояния, которое включает в себя источник сигнала, предназначенный для вывода сигнала, имеющего множество разных частотных компонентов в пределах определенной полосы частот, модуль передачи, предназначенный для передачи сигнала в виде волнового колебания, модуль детектирования смешанной волны, предназначенный для детектирования смешанной волны, состоящей из бегущей волны, включающей в себя либо волновое колебание, передаваемое модулем передачи, или сигнал, выводимый источником сигнала, и отраженной волны, представляющей собой волновое колебание, переданное модулем передачи, отраженное от объекта измерения, модуль анализа частотного компонента, предназначенный для анализа частотного компонента смешанной волны, детектируемой модулем детектирования смешанной волны, и модуль расчета расстояния, предназначенный для определения спектра расстояния путем выполнения в отношении данных проанализированных модулем анализа частотного компонента, дополнительного анализа спектра и, таким образом, расчета расстояния до объекта измерения.

В способе измерения расстояния, в соответствии с настоящим изобретением, передают сигнал, имеющий множество различных частотных компонентов в определенной полосе частот, в виде волнового колебания, детектируют смешанную волну, состоящую из бегущей волны, включающей в себя либо переданное волновое колебание, или сигнал, и отраженной волны в виде переданного волнового колебания, отраженного от объекта измерения, анализирует частотный компонент детектируемой смешанной волны, определяют спектр расстояния дополнительно подвергая данные, проанализированные с использованием анализа частотного компонента, спектральному анализу, и, таким образом, рассчитывая расстояние до объекта измерения.

Следовательно, в связи с тем, что смешанную волну, состоящую из бегущей волны и отраженной волны, детектируют и на основе смешанной волны рассчитывают расстояние до объекта измерения, нет необходимости разделять бегущую волну (передаваемый сигнал) и отраженную волну (принимаемый сигнал), и может быть получено устройство измерения расстояния с простой конструкцией и простое в использовании. Кроме того, в устройстве измерения расстояния, в котором используется стоячая волна, стоячая волна не генерируется от момента изменения частоты и до момента, когда отраженная волна, которая соответствует этой частоте, не вернется в точку детектирования и, кроме того, частота должна переключаться многоэтапно, и поэтому измерение расстояния, в принципе, невозможно выполнять с высокой скоростью, но в заявленном изобретении, в котором не используется стоячая волна, не применяется концепция переключения частоты, и, следовательно, в принципе, не существует время, требуемое для переключения частоты, по сравнению с устройством измерения расстояния, в котором используется стоячая волна, при этом устройство измерения расстояния в соответствии с настоящим изобретением обеспечивает высокоскоростное измерение расстояния.

Источник сигнала может включать в себя множество генераторов одиночной частоты, каждый из которых генерирует разный компонент одиночной частоты, и сумматор, который синтезирует сигналы, генерируемые множеством генераторов одиночной частоты.

Кроме того, источник сигнала может включать в себя генератор одиночной частоты, который генерирует компонент одиночной частоты, и модулятор, который модулирует сигнал, генерируемый генератором одиночной частоты.

Кроме того, источник сигнала может включать в себя источник шума, который выводит частотный компонент в пределах определенной полосы частот.

Модуль анализа частотного компонента может включать в себя АЦ (AD, аналогово-цифровой) преобразователь, который преобразует смешанную волну, детектируемую модулем детектирования смешанной волны, в цифровой сигнал, и процессор сигналов, который анализирует частотные компоненты выходных данных АЦ преобразователя и рассчитывает размер каждого частотного компонента.

Кроме того, модуль анализа частотного компонента может включать в себя множество полосовых фильтров и модуль детектирования уровня, который детектирует выходной уровень полосовых фильтров.

Модуль расчета расстояния может рассчитывать спектр расстояния, подвергая анализируемые данные анализу Фурье в модуле анализа частотного компонента.

Множество модулей детектирования смешанной волны могут быть установлены в разных положениях, модуль анализа частотного компонента может анализировать частотные компоненты для каждой смешанной волны, детектируемой модулями детектирования смешанной волны, и модуль расчета расстояния может рассчитывать спектр расстояния, используя проанализированные данные частотного компонента для множества полученных смешанных волн.

Второй аспект в соответствии с заявленным изобретением направлен на устройство измерения расстояния, которое включает в себя источник сигнала, который выводит частотно-модулированный сигнал, полученный путем модуляции частоты несущей волны с определенной частотой сигналом с произвольной частотой, модуль передачи, который передает частотно-модулированный сигнал в качестве волнового колебания, модуль детектирования смешанной волны, который детектирует смешанную волну, состоящую из бегущей волны, включающей в себя либо волновое колебание, передаваемое модулем передачи, или частотно-модулированный сигнал, выводимый из источника сигнала и отраженной волны в виде волнового колебания, передаваемого модулем передачи, отраженного объектом измерения, модуль детектирования амплитудного компонента, который детектирует амплитудный компонент смешанной волны, детектируемой модулем детектирования смешанной волны, и модуль расчета расстояния, который определяет спектр расстояния путем выполнения дополнительного спектрального анализа в отношении амплитудного компонента, детектируемого модулем детектирования амплитудного компонента и рассчитывает, таким образом, расстояние до объекта измерения.

В способе измерения расстояния, в соответствии с заявленным изобретением, передают сигнал, полученный путем частотной модуляции несущей волны с определенной частотой сигналом с произвольной частотой, в качестве волнового колебания, детектируют смешанную волну, состоящую из бегущей волны, включающей в себя либо переданное волновое колебание, или частотно-модулированный сигнал, и отраженной волны в виде переданного волнового колебания, отраженного от объекта измерения, детектируют амплитудный компонент детектируемой смешанной волны, определяют спектр расстояния, дополнительно подвергая амплитудный компонент спектральному анализу, и рассчитывая, таким образом, расстояние до объекта измерения.

Следовательно, в связи с тем, что смешанную волну, состоящую из бегущей волны и отраженной волны, детектируют и на основе смешанной волны, рассчитывают расстояние до объекта измерения, нет необходимости разделять антенны передающей и приемной сторон для исключения утечки бегущей волны (передаваемого сигнала) на сторону приема, и может быть получено устройство измерения расстояния с простой конструкцией и простое при использовании. Кроме того, в устройстве измерения расстояния, в котором используется стоячая волна, стоячая волна не генерируется от момента переключения частоты до момента, когда отраженная волна, которая соответствует этой частоте, не вернется к точке детектирования и, кроме того, частота должна переключаться многоэтапно, и поэтому, в принципе, невозможно измерение расстояния, с высокой скоростью, но заявленное изобретение, в котором не используется стоячая волна, не содержит концепцию переключения частоты, и, следовательно, в принципе, в нем не требуется время для переключения частоты, и по сравнению с устройством измерения расстояния, в котором используется стоячая волна, устройство измерения расстояния в соответствии с настоящим изобретением обеспечивает возможность высокоскоростного измерения расстояния.

Модуль расчета расстояния может рассчитывать спектр расстояния путем выполнения анализа Фурье для амплитудного компонента, детектируемого модулем детектирования амплитудного компонента.

Множество модулей детектирования смешанной волны могут быть установлены в разных положениях, при этом модуль детектирования амплитудного компонента может детектировать амплитудные компоненты для каждой смешанной волны, детектируемой модулями детектирования смешанной волны, модуль расчета расстояния может рассчитывать спектр расстояния, используя проанализированные данные амплитудного компонента множества полученных смешанных волн.

В третьем аспекте в соответствии с заявленным изобретением предусмотрено устройство измерения расстояния, которое включает в себя источник сигнала, который выводит сигнал с двойной модуляцией, полученный в результате двойной модуляции несущей волны с определенной частотой вторым модулирующим сигналом, заранее частотно-модулированным первым модулирующим сигналом, модуль передачи, который передает сигнал с двойной модуляцией в качестве волнового колебания, модуль детектирования смешанной волны, который детектирует смешанную волну, состоящую из бегущей волны, включающей в себя либо волновое колебание, передаваемое модулем передачи, или сигнал с двойной модуляцией, выводимый из источника сигнала, и отраженной волны в виде волнового колебания, переданного из модуля передачи, отраженного от объекта измерения, модуль детектирования амплитудного компонента, который детектирует амплитудный компонент смешанной волны, детектируемой модулем детектирования смешанной волны, модуль выбора одиночной частоты, который выбирает определенный компонент одиночной частоты из компонентов амплитуды, детектируемых модулем детектирования амплитудного компонента, модуль детектирования уровня сигнала, который детектирует уровень сигнала, полученный модулем выбора одиночной частоты, и модуль расчета расстояния, который рассчитывает расстояние до объекта измерения по уровню сигнала, полученного модулем детектирования уровня сигнала.

В способе измерения расстояния, в соответствии с заявленным изобретением, передают сигнал с двойной модуляцией, полученный в результате двойной модуляции несущей волны с определенной частотой вторым модулирующим сигналом, заранее частотно-модулированным первым модулирующим сигналом, в качестве волнового колебания, детектирует смешанную волну, состоящую из бегущей волны, включающей в себя либо переданное волновое колебание, или сигнал с двойной частотной модуляцией, и отраженной волны в виде волнового колебания, переданного модулем передачи, отраженного от объекта измерения, детектируют амплитудный компонент детектируемой смешанной волны, выбирают один определенный частотный компонент из амплитудных компонентов, детектируют уровень сигнала выбранного частотного компонента и по уровню сигнала рассчитывают расстояние до объекта измерения.

Следовательно, в связи с тем, что смешанную волну, состоящую из бегущей волны и отраженной волны, детектируют, и на основе смешанной волне рассчитывают расстояние до объекта измерения, нет необходимости разделять бегущую волну (передаваемый сигнал) и отраженную волну (принимаемый сигнал), и устройство измерения расстояния может быть получено с простой конструкцией и простым при использовании. Кроме того, в устройстве измерения расстояния, в котором используется стоячая волна, стоячая волна не генерируется от момента переключения частоты до момента, когда отраженная волны, которая соответствует этой частоте, не вернется в точку детектирования, и, кроме того, частоту требуется переключать многоэтапно, и поэтому измерение расстояния, в принципе, невозможно выполнить с высокой скоростью, но в заявленном изобретении, в котором не используется стоячая волна, не применяется концепция переключения частоты и, следовательно, в принципе, не существует время, требуемое для переключения частоты, и по сравнению с устройством измерения расстояния, в котором используется стоячая волна, устройство измерения расстояния в соответствии с настоящим изобретением обеспечивает высокоскоростное измерение расстояния.

Источник сигнала может генерировать первый модулирующий сигнал, который генерирует первый модулирующий сигнал, второй модулирующий сигнал, модулированный первым модулирующим сигналом, и несущую волну, соответственно.

Кроме того, источник сигнала может иметь средство сохранения второго модулирующего сигнала, в котором заранее сохраняют второй модулирующий сигнал.

Или источник сигнала может иметь средство сохранения второго модулирующего сигнала, в котором заранее сохраняют второй модулирующий сигнал, и средство генерирования несущей волны, которое генерирует несущую волну.

Первый модулирующий сигнал может представлять собой сигнал, форма колебаний которого ступенчато повышается или понижается в течение определенного первого периода, и второй модулирующий сигнал может представлять собой сигнал, полученный в результате модуляции пилообразного колебания с более коротким периодом, чем первый период, модулированный первым модулирующим сигналом.

Эффект изобретения

Устройство измерения расстояния и способ измерения расстояния в соответствии с заявленным изобретением, сформированные, как описано выше, детектируют смешанную волну, состоящую из бегущей волны и отраженной волны, отраженной от объекта измерения; при этом нет необходимости предотвращать утечку бегущей волны в приемную антенну, может быть получена простая конструкция, и может быть получено устройство измерения расстояния с малой стоимостью и малым размером.

Кроме того, при определении спектра расстояния по смешанной волне, состоящей из бегущей волны, имеющей множество разных частотных компонентов, и ее отраженной волны, расстояние между объектом измерения и модулем детектирования смешанной волны может быть определено по расстоянию, в спектре которого возникает пик амплитуды.

Когда расстояние до объекта измерения измеряют путем использования стоячей волны, в принципе, невозможно переключать частоту за время, меньшее, чем время, требуемое для формирования стоячей волны, от момента переключения частоты бегущей волны, и, поэтому, измерение подвергается влиянию эффекта Доплера, и генерируется ошибка измерения, но в заявленном изобретении, в принципе, отсутствует концепция переключения частоты, поэтому время наблюдения можно сократить до такого уровня, что влияние эффекта Доплера можно фактически игнорировать, и правильное расстояние можно измерять независимо от скорости перемещения и направления перемещения объекта измерения.

Кроме того, даже когда расстояние между множеством объектов измерения мало, и разность скоростей велика, что трудно измерять устройством измерения расстояния, в котором используется стоячая волна, положение каждого объекта измерения может быть правильно измерено.

Кроме того, множество модулей детектирования смешанной волны установлено в разных положениях, соответственно, и спектр расстояния определяют по множеству смешанных волн, детектируемых множеством модулей детектирования смешанной волны; поэтому можно выполнять измерение расстояния с еще большей надежностью и большей точностью.

Кроме того, когда из источника сигнала выводят сигнал с двойной модуляцией, нет необходимости использовать микропроцессор с большой стоимостью и т.д., который позволяет выполнять анализ спектра с высокой скоростью, и процессор сигналов выполнен как детектор огибающей, квадратичный детектор, синхронный детектор, квадратурный детектор, полосовой фильтр, согласованный фильтр и другие устройства, и детектирует интенсивность спектра расстояния (уровень сигнала), и поэтому при малых затратах может быть получен процессор сигналов, выполняющий обработку со скоростью, почти равной скорости процессора сигналов, в котором используется микропроцессор и т.д. Таким образом, может быть получено устройство измерения расстояния с малой стоимостью и высокой скоростью обработки сигнала.

Краткое описание чертежей

На фиг. 1 показана блок-схема, которая поясняет структуру устройства измерения расстояния в соответствии с первым вариантом воплощения;

на фиг. 2 показана иллюстрация устройства измерения расстояния, которое выполняет моделирование в первом варианте воплощения;

на фиг. 3 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 10 м, и движущегося со скоростью 0 км/ч в первом варианте воплощения;

на фиг. 4 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 10 м и движущегося со скоростью +300 км/ч в первом варианте воплощения;

на фиг. 5 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 40 м и движущегося со скоростью -50 км/ч в первом варианте воплощения;

на фиг. 6 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 5 м и движущегося со скоростью +100 км/ч, а также на расстоянии 12,5 м и движущегося со скоростью -300 км/ч, в первом варианте воплощения;

на фиг. 7 представлена иллюстрация устройства измерения расстояния, оборудованного множеством модулей детектирования смешанной волны, в первом варианте воплощения;

на фиг. 8 представлена блок-схема устройства измерения расстояния, в соответствии со вторым вариантом воплощения;

на фиг. 9 показана иллюстрация устройства измерения расстояния, выполняющего моделирование, в соответствии со вторым вариантом воплощения;

на фиг. 10 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 10 м и движущегося со скоростью 0 км/ч, во втором варианте воплощения;

на фиг. 11 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 10 м и движущегося со скоростью +300 км/ч, во втором варианте воплощения;

на фиг. 12 показан график, на котором представлены результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 40 м и движущегося со скоростью -50 км/ч, во втором варианте воплощения;

на фиг. 13 показан график, на котором показаны результаты моделирования измерения расстояния до объекта измерения, расположенного на расстоянии 5 м и движущегося со скоростью +100 км/ч и расположенного на расстоянии 12,5 м и движущегося со скоростью -300 км/ч, во втором варианте воплощения;

на фиг. 14 представлена иллюстрация устройства измерения расстояния, оборудованного множеством модулей детектирования смешанной волны, во втором варианте воплощения;

на фиг. 15 показана блок-схема, которая поясняет структуру устройства измерения расстояния, в соответствии с третьим вариантом воплощения;

на фиг. 16 показана блок-схема, которая поясняет другой пример источника сигнала в третьем варианте воплощения;

на фиг. 17 показан график, который поясняет форму колебаний второго модулирующего сигнала;

на фиг. 18 показан график, который поясняет форму колебаний первого модулирующего сигнала;

на фиг. 19 представлена иллюстрация устройства измерения расстояния, в котором используется квадратурный детектор, в третьем варианте воплощения;

на фиг. 20 показан график, который представляет результаты моделирования измерения расстояния до объектов измерения, расположенных на расстоянии 12 м и 20 м в устройстве измерения расстояния, в котором используется квадратурный детектор, в третьем варианте воплощения;

на фиг. 21 представлена иллюстрация устройства измерения расстояния, в котором используются полосовые фильтры, в третьем варианте воплощения;

на фиг. 22 показан график, который представляет результаты моделирования измерения расстояния для объектов измерения, расположенных на расстоянии 12 м и 20 м в устройстве измерения расстояния, в котором используются полосовые фильтры, в третьем варианте воплощения;

на фиг. 23 представлена иллюстрация изменения частоты источника сигнала в устройстве измерения расстояния, в котором используется стоячая волна; и

на фиг. 24 представлена иллюстрация, поясняющая влияние эффекта Доплера в устройстве измерения расстояния, в котором используется стоячая волна.

Краткое описание номеров ссылочных позиций

1. Источник сигнала

2. Модуль передачи

3. Модуль детектирования смешанной волны

4. Модуль анализа частотного компонента

5. Модуль расчета расстояния

6. Объект измерения

7. Сигнальный процессор

8. Преобразователь с понижением частоты

8a. Гетеродин

8b. Смеситель

9. Источник сигнала

9a. Источник сигнала несущей волны

9b. Источник модулирующего сигнала

10. Модуль детектирования амплитудного компонента

11. Модуль расчета расстояния

12. Сигнальный процессор

13. Источник сигнала

13a. Источник сигнала несущей волны

13b. Источник второго модулирующего сигнала

13c. Источник первого модулирующего сигнала

13d. Средство генерирования второго модулирующего сигнала

13e. Средство сохранения второго модулирующего сигнала

13f. Средство генерирования сигнала c двойной модуляцией

13g. Средство сохранения сигнала с двойной модуляцией

14. Сигнальный процессор

15. Модуль детектирования амплитудного компонента

16. Модуль выбора одиночной частоты

17. Модуль детектирования уровня сигнала

18. Модуль расчета расстояния

19. Сигнальный процессор

20. Детектор огибающей

21. Квадратурный детектор

22. Модуль детектирования уровня

23. Модуль расчета расстояния

24. Сигнальный процессор

25. Детектор огибающей для детектирования амплитудного компонента

26. Полосовой фильтр

27. Детектор огибающей для детектирования уровня сигнала

28. Модуль расчета расстояния

Подробное описание изобретения

Устройство измерения расстояния и способ измерения расстояния, относящиеся к заявленному изобретению, представлены на фигурах 1, 8 и 15, и предназначены для передачи сигналов, выводимых через источники 1, 9 и 13 сигнала из модуля 2 передачи, в виде волнового колебания, и детектируют смешанную волну без разделения отраженной волны VR этого волнового колебания (бегущей волны VT), отраженной от объекта 6 измерения в модуле 3 детектирования смешанной волны.

Источник сигнала в заявленном изобретении выводит сигнал, который имеет множество различных частотных компонентов в определенной полосе частот, выводит частотно-модулированный сигнал, полученный в результате частотной модуляции несущей волны на определенной частоте произвольным периодическим сигналом, или выводит сигнал с двойной модуляцией, полученный в результате двойной частотной модуляции несущей волны с определенной частотой вторым модулирующим сигналом, который был заранее частотно-модулирован первым модулирующим сигналом. Таким образом, сигналы, выводимые источниками 1, 9 и 13 сигнала, представляют собой сигналы, постоянно имеющие множество различных частотных компонентов.

Кроме того, бегущая волна в заявленном изобретении представляет собой волновое колебание, которое представляет собой сигналы, выводимые из источников 1, 9 и 13 сигнала, которые передает модуль 2 передачи, или сигналы, выводимые из источников 1, 9 и 13 сигнала. Таким образом, бегущая волна в заявленном изобретении представляет собой волновое колебание или сигнал (волну сигнала), которое постоянно имеет множество частотных компонентов. Кроме того, отраженная волна, относящаяся к заявленному изобретению, представляет собой волновое колебание, постоянно имеющее множество частотных компонентов и отраженное от объекта 6 измерения.

Смешанная волна в заявленном изобретении также представляет собой волновое колебание, полученное путем смешения (синтеза) бегущей волны и отраженной волны. Таким образом, волновое колебание, полученное путем наложения бегущей волны, имеющей множество частотных компонентов, на отраженную волну, имеющую множество частотных компонентов, представляет собой смешанную волну в заявленном изобретении, и это не означает волновое колебание, в котором наложено множество волновых колебаний (волн), имеющих компоненты одиночной частоты.

В следующих вариантах воплощения приведено пояснение электромагнитной волны, упомянутой как пример волнового колебания, но волновые колебания света, звуковой волны, тока, волны в материале, которая распространяется внутри материала, и другие представляют собой волновые колебания в соответствии с заявленным изобретением.

Следует отметить, что в устройстве измерения расстояния, в котором используется стоячая волна, как представлено в упомянутых выше патентных документах 1 и 2 и непатентном документе 1 и т.д., сигналы, выводимые из источников сигнала, представляют собой сигналы, частота которых переключается, и в которых компонент одиночной частоты ступенчато изменяется в зависимости от времени, как показано на фиг. 23, и не представляют собой сигналы, которые постоянно имеют множество различных частотных компонентов, как в случае заявленного изобретения. Кроме того, амплитуда волновых колебаний, генерируемых в результате интерференции между бегущей волной, передаваемой на основе сигнала, имеющего компонент одиночной частоты, и отраженной бегущей волны, имеющей этот компонент одиночной частоты, которая была отражена от объекта измерения, не изменяется во времени и получает разные значения в зависимости от положения в пространстве. В частности, амплитуда представлена периодической функцией относительно положения, и это называется стоячей волной.

В интерференции между бегущей волной, которая основана на сигналах, имеющих множество частотных компонентов, и отраженной волной, как в случае заявленного изобретения, взаимозависимость между положением в пространстве и амплитудой смешанной волны изменяется во времени и формирует явление, отличающееся от стоячей волны.

Следовательно, в устройстве измерения расстояния, которое относится к заявленному из