Способ и устройство для передачи или приема информации между внутрискважинным оборудованием и поверхностью
Иллюстрации
Показать всеИзобретение относится к беспроводной телеметрии в скважине и предназначено для приема и/или передачи информации между первым местоположением и вторым местоположением в скважине, при этом скважина содержит обсадную колонну, связанную с геологической формацией. Сущность: размещают первый преобразователь (14), располагаемый на первом местоположении. Первый преобразователь содержит два электрода, которые являются первым (141) и вторым (142) нижестоящими электродами. Первый и второй нижестоящие электроды находятся в электрическом контакте с обсадной колонной. Размещают второй преобразователь (15), располагаемый на указанном втором местоположении. Второй преобразователь содержит два электрода, которые являются первым (151) и вторым (152) вышестоящими электродами. Излучают электрический сигнал первым преобразователем или вторым преобразователем, прикладывая указанный сигнал между соответствующими электродами. Принимают электрический сигнал вторым преобразователем, или первым преобразователем, регистрируя сигнал соответствующими электродами. Технический результат: независимость от геометрических характеристик скважины и импеданса флюида, насосно-компрессорной колоны, обсадной колонны, формации и т.д. 20 з.п. ф-лы, 13 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение в широком смысле относится к беспроводной телеметрии. Более конкретно, изобретение относится к устройству и связанному с ним способу для передачи или приема информации между внутрискважинным оборудованием, соединенным с подземной насосно-компрессорной колонной или обсадной колонной, и наземным прибором.
Описание предшествующего уровня техники
Нефтяные и газовые скважины являются дорогостоящими в сооружении, и предпочтительно, чтобы эти скважины эксплуатировались по возможности более эффективно. Один способ обеспечения повышенной эффективности при эксплуатации скважин заключается в размещении внутрискважинного оборудования в стволе скважине под управлением другого оборудования, расположенного на поверхности. Таким оборудованием могут быть измерительные датчики, которыми поставляется полезная информация для последующей эксплуатации скважины, например данные относительно давления, характера встречающихся пород и флюидов, температуры и т.д. Оборудование может быть другим управляемым или контролируемым оборудованием, которое поставляет важные команды с поверхности для регулирования различных параметров скважины или коллектора с помощью оборудования и приборов, таких как клапаны, защитные крышки и т.д. Поэтому важно иметь возможность передавать информацию с поверхности к различному внутрискважинному оборудованию. В нескольких способах из предшествующего уровня техники делалась попытка обеспечить линии электрической или электромагнитной связи между наземным оборудованием и внутрискважинным оборудованием.
Традиционно в некоторых системах из предшествующего уровня техники имеются кабели, размещенные в стволе скважины, для обеспечения линий связи и также снабжения электроэнергией внутрискважинного оборудования. Достижение надежного и точного размещения кабелей внутри ствола скважины вдоль боковой поверхности трубной конструкции или колонны является трудным и отнимающим много времени занятием. Кроме того, для этого необходимо использовать дополнительное оборудование, что повышает затраты, относимые к скважине. Стволы скважин представляют собой агрессивную среду, и существуют многочисленные механизмы разрушения, которые являются причиной недопустимо низкой надежности таких систем. Кроме того, кабель, объединяющий такие датчики или подключаемый к управляющим устройствам, расположенным на значительной глубине, не может быть спущен в любой ситуации. Прокладка такого кабеля возможна в то время, когда скважину заканчивают, но становится практически невозможной после заканчивания скважины. В частности, кабель не может быть спущен, когда клапаны или отдельные приборы не могут быть обойдены кабелем, независимо от того, снабжен или нет кабель датчиками.
В некоторых системах из предшествующего уровня техники делалась попытка использовать беспроводную систему связи, основанную на присущей стволу скважины и трубной конструкции или колонне труб коаксиальной конфигурации. Однако в этих системах из предшествующего уровня техники обычно предусматривают более высокочастотный сигнал данных. В этих системах обычно используют тороидальные катушки или ферромагнитные дроссельные узлы, размещаемые на трубной конструкции или колоннах для получения достаточно большого последовательного импеданса для сигналов данных, чтобы возбуждать определенный участок трубной конструкции или колонны. В патенте США № 4839644 описаны такие способ и система для беспроводной связи в обсаженной буровой скважине, имеющей колонну труб.
Другие системы из предшествующего уровня техники основаны на излучении электромагнитных волн, направляемых металлической насосно-компрессорной колонной; такая система передачи более конкретно описана в патенте США № 5394141 (фигура 1). Излучатель 3 расположен в забое скважины и подводит электрические сигналы между двумя точками 1 и 2 на металлической насосно-компрессорной трубе 4. Электрический сигнал может проходить по металлической насосно-компрессорной трубе 4, обсадной колонне 5 или даже через проводящий флюид 6, заполняющий скважину; а вследствие достаточного импеданса металлической насосно-компрессорной колонны электрический сигнал проходит к наземному приемопередатчику 8. Однако необходимый достаточный импеданс сильно зависит от геометрических характеристик скважины и от импеданса окружающей среды: заполняющего флюида, металлической насосно-компрессорной колонны, обсадной колонны, формации и т.д. Будет лучше, если ограничивать или контролировать зависимость этих параметров. Например, если удельное сопротивление некоторых слоев является неадекватным, как в случае некоторых осадочных, третичных, периконтинентальных пород, аналогичных породам в Северном море или Мексиканском заливе, затухание вдоль скважины может стать чрезмерным, что сделает невозможным использование такого устройства в большей части морских скважин, если только не согласиться с резким уменьшением передаваемого информационного потока.
Поэтому будет полезно создать усовершенствованную систему для беспроводной связи в стволе скважины, не зависящую от всех этих параметров.
Сущность изобретения
Изобретением предоставляется способ приема и/или передачи информации в скважине, пробуренной в геологической формации, между первым местоположением и вторым местоположением, при этом указанная скважина содержит обсадную колонну, связанную с геологической формацией, содержащий этапы, при выполнении которых: (i) размещают первый преобразователь, располагаемый на указанном первом местоположении, при этом указанный первый преобразователь содержит два электрода, которые являются первым и вторым нижестоящими электродами, указанные первый и второй нижестоящие электроды находятся по существу в электрическом контакте с обсадной колонной; (ii) размещают второй преобразователь, располагаемый на указанном втором местоположении, при этом указанный второй преобразователь содержит два электрода, которые являются первым и вторым вышестоящими электродами; (iii) излучают электрический сигнал первым преобразователем, прикладывая указанный сигнал между первым и вторым нижестоящими электродами, или соответственно вторым преобразователем, прикладывая указанный сигнал между первым и вторым вышестоящими электродами; (iv) принимают указанный электрический сигнал вторым преобразователем, регистрируя указанный сигнал между первым и вторым вышестоящими электродами, или соответственно первым преобразователем, регистрируя указанный сигнал между первым и вторым нижестоящими электродами. Фактически, первый и второй нижестоящие электроды находятся по существу в электрическом контакте с обсадной колонной, поскольку реальный контроль идеального электрического контакта не может быть осуществлен при развертывании первого преобразователя в скважине. По меньшей мере первый и второй нижестоящие электроды имеют соответственно первое нижестоящее электрическое сопротивление и второе нижестоящее электрическое сопротивление при контакте с обсадной колонной, которые должны быть как можно меньше. В силу того, что имеется непроводящий буровой раствор внутри обсадной колонны или непроводящий материал на обсадной колонне, сопротивление не является нулевым. Предпочтительно, чтобы первое нижестоящее электрическое сопротивление и/или второе нижестоящее электрическое сопротивление составляли/составляло меньше 1000 Ом; более предпочтительно, меньше 100 Ом; наиболее предпочтительно, 10 Ом.
Согласно другому осуществлению скважина дополнительно содержит третий преобразователь, при этом указанный третий преобразователь расположен на третьем местоположении и содержит два электрода, которые являются первым и вторым скважинными электродами, указанные первый и второй скважинные электроды находятся по существу в электрическом контакте с обсадной колонной; и способ содержит этап, при выполнении которого: (i) излучают второй электрический сигнал третьим преобразователем, прикладывая указанный второй сигнал между первым и вторым скважинными электродами; и (ii) принимают третий электрический сигнал третьим преобразователем, регистрируя указанный третий сигнал между первым и вторым скважинными электродами. Скважина может дополнительно содержать множество добавочных преобразователей: каждый преобразователь может принимать и/или передавать информацию любому из преобразователей. Таким образом задается сеть преобразователей. По меньшей мере первый и второй скважинные электроды имеют соответственно первое скважинное электрическое сопротивление и второе скважинное электрическое сопротивление при контакте с обсадной колонной, которые должны быть как можно меньше. В силу того, что имеется непроводящий буровой раствор внутри обсадной колонны или непроводящий материал на обсадной колонне, сопротивление не является нулевым. Предпочтительно, чтобы первое скважинное электрическое сопротивление и/или второе скважинное электрическое сопротивление составляли/составляло меньше 1000 Ом; более предпочтительно, меньше 100 Ом; наиболее предпочтительно, 10 Ом.
Согласно еще одному осуществлению скважина дополнительно содержит ретрансляционный преобразователь, при этом указанный ретрансляционный преобразователь расположен на третьем местоположении и содержит два электрода, которые являются первым и вторым скважинными электродами, указанные первый и второй скважинные электроды находятся по существу в электрическом контакте с обсадной колонной; и способ дополнительно содержит этап, при выполнении которого: (i) принимают электрический сигнал третьим преобразователем, регистрируя указанный сигнал между первым и вторым скважинными электродами; и (ii) излучают электрический сигнал третьим преобразователем, прикладывая указанный сигнал между первым и вторым скважинными электродами. Скважина может дополнительно содержать множество добавочных ретрансляционных преобразователей. Преимущества от использования ретрансляторов заключаются в повышении дальности связи и/или в обеспечении связи с различными местоположениями в скважине. По меньшей мере первый и второй скважинные электроды имеют соответственно первое скважинное электрическое сопротивление и второе скважинное электрическое сопротивление при контакте с обсадной колонной, которые должны быть как можно меньше. В силу того, что имеется непроводящий буровой раствор внутри обсадной колонны или непроводящий материал на обсадной колонне, сопротивление не является нулевым. Предпочтительно, чтобы первое скважинное электрическое сопротивление и/или второе скважинное электрическое сопротивление составляли/составляло меньше 1000 Ом; более предпочтительно, меньше 100 Ом; наиболее предпочтительно, 10 Ом.
Способ может применяться, когда первое местоположение находится в скважине, а второе местоположение находится на поверхности геологической формации, или когда первое и второе местоположения находятся в скважине, и/или когда третье местоположение находится в скважине.
Предпочтительно, чтобы скважина содержала насосно-компрессорную колонну, и при этом изолируют электрически от насосно-компрессорной колонны по меньшей мере один из электродов, выбранный из перечня: первый нижестоящий электрод, второй нижестоящий электрод, первый вышестоящий электрод, второй вышестоящий электрод, первый скважинный электрод, второй скважинный электрод, электроды других преобразователей, кроме того, предпочтительно его дополнительно изолировать электрически от других проводящих элементов в скважине и, кроме того, предпочтительно дополнительно осуществить электромагнитное экранирование. Изоляция позволяет регулировать инжектируемый ток между электродами независимо от потенциала насосно-компрессорной колонны или других проводящих элементов. Эффекты от электрической изоляции электрода являются хорошо ощутимыми и полезными для повышения эффективности способа приема и/или передачи. Электрическая изоляция повышает отношение сигнала к шуму. Экранированием обеспечиваются защита от и исключение электрических помех, проникающих из скважины.
Предпочтительно, чтобы первое расстояние d 1 между первым и вторым нижестоящими электродами зависело от интенсивности электрического сигнала и от расстояния между первым и вторым нижестоящими электродами и первым и вторым вышестоящими электродами; и/или первое расстояние d 1 между первым и вторым нижестоящими электродами зависело от интенсивности электрического сигнала и от расстояния между первым и вторым нижестоящими электродами и первым и вторым скважинными электродами; и/или третье расстояние d 3 между первым и вторым скважинными электродами зависело от электрического сигнала и от расстояния между первым и вторым скважинными электродами и первым и вторым вышестоящими электродами. Зависимость в основном отражает то, что интенсивность электрического сигнала от одной точки к другой зависит от пройденного сигналом расстояния, от расстояния между электродами и от физических характеристик формации.
Согласно одному осуществлению первый и второй вышестоящие электроды находятся в электрическом контакте с формацией на поверхности.
Согласно второму осуществлению первый вышестоящий электрод находится в электрическом контакте с насосно-компрессорной колонной, а второй вышестоящий электрод находится в электрическом контакте с формацией на поверхности.
Первый преобразователь, второй преобразователь и/или третий преобразователь могут быть соединены с измерительным датчиком и/или оборудованием управления/контроля; кроме того, электрический сигнал, передаваемый преобразователями, содержит информацию от измерительного датчика и/или к оборудованию управления/контроля.
Согласно еще одному объекту изобретения раскрыто устройство для приема и/или передачи информации в скважине, пробуренной в геологической формации, между первым местоположением и вторым местоположением, при этом указанная скважина содержит обсадную колонну, связанную с геологической формацией, а устройство содержит: (i) первый преобразователь, расположенный на указанном первом местоположении, при этом указанный первый преобразователь содержит два электрода, которые являются первым и вторым нижестоящими электродами, указанные первый и второй нижестоящие электроды находятся по существу в электрическом контакте с обсадной колонной; и (ii) второй преобразователь, расположенный на указанном втором местоположении, при этом указанный второй преобразователь содержит два электрода, которые являются первым и вторым вышестоящими электродами. Фактически, первый и второй нижестоящие электроды находятся по существу в электрическом контакте с обсадной колонной, поскольку реальный контроль идеального электрического контакта не может быть осуществлен при развертывании первого преобразователя в скважине. По меньшей мере первый и второй нижестоящие электроды имеют соответственно первое нижестоящее электрическое сопротивление и второе нижестоящее электрическое сопротивление при контакте с обсадной колонной, которые должны быть как можно меньше. В силу того, что имеется непроводящий буровой раствор внутри обсадной колонны или непроводящий материал на обсадной колонне, сопротивление не является нулевым. Предпочтительно, чтобы первое нижестоящее электрическое сопротивление и/или второе нижестоящее электрическое сопротивление составляли/составляло меньше 1000 Ом; более предпочтительно, меньше 100 Ом; наиболее предпочтительно, 10 Ом.
Согласно другому осуществлению устройство дополнительно содержит по меньшей мере еще один, третий преобразователь, при этом указанный третий преобразователь расположен на третьем местоположении и содержит два электрода, которые являются первым и вторым скважинными электродами, указанные первый и второй скважинные электроды находятся по существу в электрическом контакте с обсадной колонной. Третий преобразователь может быть ретрансляционным преобразователем. Преимущества от использования ретрансляторов заключаются в повышении дальности связи и/или в обеспечении связи с различными местоположениями в скважине. По меньшей мере первый и второй скважинные электроды имеют соответственно первое скважинное электрическое сопротивление и второе скважинное электрическое сопротивление при контакте с обсадной колонной, которые должны быть как можно меньше. В силу того, что имеется непроводящий буровой раствор внутри обсадной колонны или непроводящий материал на обсадной колонне, сопротивление не является нулевым. Предпочтительно, чтобы первое скважинное электрическое сопротивление и/или второе скважинное электрическое сопротивление составляли/составляло меньше 1000 Ом; более предпочтительно, меньше 100 Ом; наиболее предпочтительно, 10 Ом.
Устройство может быть позиционировано относительно первого местоположения в скважине и второго местоположения на поверхности геологической формации или относительно первого и второго местоположения в скважине и/или относительно третьего местоположения в скважине.
Предпочтительно, чтобы скважина содержала насосно-компрессорную колонну, и при этом изолируют электрически от насосно-компрессорной колонны по меньшей мере один из электродов, выбранный из перечня: первый нижестоящий электрод, второй нижестоящий электрод, первый вышестоящий электрод, второй вышестоящий электрод, первый скважинный электрод и второй скважинный электрод, кроме того, предпочтительно его дополнительно изолировать электрически от других проводящих элементов в скважине и, кроме того, предпочтительно дополнительно осуществить электромагнитное экранирование. Изоляция позволяет регулировать инжектируемый ток между электродами независимо от потенциала насосно-компрессорной колонны или других проводящих элементов. Эффекты от электрической изоляции электрода являются хорошо ощутимыми и полезными для повышения эффективности способа приема и/или передачи. Электрическая изоляция повышает отношение сигнала к шуму. Экранированием обеспечиваются защита от и исключение электрических помех, проникающих из скважины.
Согласно одному осуществлению первый и второй вышестоящие электроды находятся в электрическом контакте с формацией на поверхности.
Согласно второму осуществлению первый вышестоящий электрод находится в электрическом контакте с насосно-компрессорной колонной, а второй вышестоящий электрод находится в электрическом контакте с формацией на поверхности.
Первый и/или второй вышестоящий и/или скважинный электрод могут быть любыми, выбранными из перечня: композиционный материал, который образован тонким слоем поликристаллической алмазной прессовки, металлическая пружинная дуга и металлический щуп.
Согласно еще одному осуществлению электроды могут быть размещены на одном или нескольких пакерах. Возможны различные осуществления:
- первый нижестоящий электрод может быть размещен на первом пакере;
- второй нижестоящий электрод может быть размещен на втором пакере;
- первый и второй нижестоящие электроды могут быть размещены на нижестоящем пакере;
- первый скважинный электрод может быть размещен на третьем пакере;
- второй скважинный электрод может быть размещен на четвертом пакере;
- первый и второй скважинные электроды могут быть размещены на скважинном пакере.
Предпочтительно, чтобы развертывание одного пакера или нескольких пакеров контролировалось по разности напряжений между первым и вторым нижестоящими электродами и/или первым и вторым скважинными электродами. В том случае, когда воздух из пакера выпущен, электроды могут быть защищены герметиком или красочным покрытием, при этом разность напряжений будет меньше между двумя электродами, соответствующими более высокому импедансу между обоими электродами. Герметик или красочное покрытие используют в случае, когда межтрубные флюиды являются сильно проводящими, если же межтрубные флюиды являются практически непроводящими, герметик не является обязательным, поскольку разность напряжений всегда будет небольшой. Когда пакер надувают и он начинает касаться внутренней стенки обсадной колонны, давлением развертывания герметик или изолирующая краска разрушается и электроды с силой вдавливаются в металл обсадной колонны. Таким образом, устанавливается электрический контакт между электродами и проводящей обсадной колонной. Соответственно возрастает ток между электродами, что указывает на успешное развертывание пакера.
Первый преобразователь, второй преобразователь, скважинный и/или трансляционный преобразователь могут быть соединены с измерительным датчиком и/или оборудованием управления/контроля.
Согласно еще одному объекту изобретения раскрыт способ определения профиля удельной проводимости формации со стороны скважины между первым местоположением на поверхности и вторым местоположением в буровой скважине, содержащий этапы, при выполнении которых: (i) размещают первый датчик, располагаемый на указанном первом местоположении, при этом указанный первый датчик регистрирует электрическое поле из формации, возникающее на указанном первом местоположении; (ii) размещают второй датчик, располагаемый на указанном втором местоположении, при этом указанный второй датчик регистрирует электрическое поле из формации, возникающее на указанном втором местоположении; (iii) получают первый сигнал указанным первым датчиком, регистрируя резонансы Шумана по указанному электрическому полю, возникающему на указанном первом местоположении; (iv) получают второй сигнал указанным вторым датчиком, регистрируя резонансы Шумана по указанному электрическому полю, возникающему на указанном втором местоположении; и (v) объединяют указанный первый и указанный второй сигналы для определения профиля удельной проводимости формации между указанным первым местоположением и указанным вторым местоположением.
Предпочтительно, чтобы первый сигнал был калибровочным сигналом, а этап объединения представлял собой этап, на котором сравнивают первый сигнал и второй сигнал. Способ может дополнительно содержать этап, на котором изменяют второе местоположение внутри буровой скважины и получают адекватные сигналы, регистрируя резонансы Шумана и объединяя эти адекватные сигналы, чтобы определить профиль удельной проводимости формации между буровой скважиной и поверхностью. Для первого сигнала, второго сигнала и адекватных сигналов по меньшей мере две частоты резонансов Шумана могут быть получены и вычислены.
Согласно еще одному объекту изобретения способ дополнительно содержит третье местоположение в буровой скважине и этапы, на которых: размещают третий датчик, располагаемый на указанном третьем местоположении, при этом указанный третий датчик регистрирует электрическое поле из формации, возникающее на указанном третьем местоположении; получают третий сигнал указанным третьим датчиком, регистрируя резонансы Шумана по указанному электрическому полю, возникающему на указанном третьем местоположении; объединяют указанный первый и указанный третий сигналы, чтобы определить профиль удельной проводимости формации между указанным первым местоположением и указанным третьим местоположением; и объединяют указанный второй и указанный третий сигналы, чтобы определить профиль удельной проводимости формации между буровой скважиной и поверхностью.
Предпочтительно, чтобы первый сигнал был калибровочным сигналом, а этап объединения представлял собой этап, на котором сравнивают первый сигнал и третий сигнал. Для первого сигнала, второго сигнала и третьего сигнала могут быть получены и вычислены по меньшей мере две различные частоты резонансов Шумана.
Согласно одному осуществлению способ определения профиля удельной проводимости с использованием резонансов Шумана реализуют устройством, описанным выше.
Согласно еще одному объекту изобретения раскрыто устройство для определения профиля удельной проводимости формации со стороны скважины между первым местоположением на поверхности и вторым местоположением в буровой скважине, содержащее: (i) первый датчик, расположенный на указанном первом местоположении, при этом указанный первый датчик регистрирует электрическое поле из формации, возникающее на указанном первом местоположении; и в то же самое время (ii) второй датчик, расположенный на указанном втором местоположении, при этом указанный второй датчик регистрирует электрическое поле из формации, возникающее на указанном втором местоположении.
Предпочтительно, чтобы имелись чувствительность и разрешающая способность первого и/или второго датчиков, достаточные для регистрации резонансов Шумана по указанному электрическому полю, возникающему на указанном первом местоположении и/или указанном втором местоположении, соответственно. Устройство опускают в буровую скважину с поверхности.
Краткое описание чертежей
Дополнительные варианты осуществления настоящего изобретения могут быть уяснены с помощью сопровождающих чертежей, на которых:
фигура 1 - схематический вид устройства для беспроводной связи из предшествующего уровня техники, предназначенного для использования при морском бурении;
фигура 2 - схематический вид устройства для беспроводной связи согласно осуществлению настоящего изобретения;
фигура 3 - схематический вид устройства для беспроводной связи согласно еще одному осуществлению настоящего изобретения;
фигура 4 - схематический вид устройства для беспроводной связи согласно еще одному осуществлению настоящего изобретения;
фигура 5А - схематическая диаграмма, поясняющая способ связи с поверхности в скважину в случае горизонтальной скважины;
фигура 5В - схематическая диаграмма, поясняющая способ связи из скважины на поверхность в случае горизонтальной скважины;
фигура 5С - схематическая диаграмма, поясняющая способ связи с поверхности в скважину в случае вертикальной скважины;
фигура 5D - схематическая диаграмма, поясняющая способ связи из скважины на поверхность в случае вертикальной скважины;
фигура 6 - разрез электрода из устройства согласно настоящему изобретению;
Фигуры 7А и 7В - схематические виды устройства для беспроводной связи согласно еще одному осуществлению настоящего изобретения;
фигуры 8А и 8В - схематические виды устройства для беспроводной связи согласно еще одному осуществлению настоящего изобретения;
фигура 9 - вид сетевого устройства согласно изобретению;
фигура 10 - пример архитектуры скважины с использованием устройства согласно изобретению;
фигура 11 - график резонансов Шумана в виде суперпозиции отдельных резонансных пиков Брейта-Вигнера при спектре фонового шума вида 1/f;
фигура 12 - схематический вид измерительного прибора с использованием резонансов Шумана; и
фигура 13 - график вертикального профиля удельной проводимости и спада сигнала для различных частот.
Подробное описание
На фигуре 2 представлен вид устройства в первом варианте осуществления согласно настоящему изобретению. Первый преобразователь 14, скважинный преобразователь, установлен в скважине 10, при этом скважина содержит насосно-компрессорную колонну 13 и обсадную колонну 11, окруженную формацией 12. Между обсадной колонной и насосно-компрессорной колонной образовано кольцевое пространство 18, которое заполнено межтрубным флюидом. Обсадная колонна и насосно-компрессорная колонна являются проводящими, обычно изготовленными из стали. Скважинный преобразователь имеет верхний электрод 141, который обеспечивает контакт с обсадной колонной в полюсе Е1, и продвинутый вглубь электрод 142, который также обеспечивает контакт с обсадной колонной в полюсе Е2. Предпочтительно изолировать электрически верхний электрод 141 и/или продвинутый вглубь электрод 142 от насосно-компрессорной колонны 13 изолятором 16. В дополнение к этому осуществляют изоляцию верхнего электрода 141 и/или продвинутого вглубь электрода 142 от других проводящих элементов в скважине, таких как сильно проводящие межтрубные флюиды. Изоляция позволяет регулировать инжектированный ток между электродами 141 и 142 независимо от потенциала насосно-компрессорной колонны или межтрубного флюида или даже других проводящих элементов. Кроме того, предпочтительно иметь экранирование для верхнего электрода 141 и/или продвинутого вглубь электрода 142. Изолированный металлический элемент, окружающий электроды, может обеспечить такое экранирование. Экранированием обеспечивается защита от и исключение электрических помех, проникающих из скважины, точнее, проникающих с внутренней стороны обсадной колонны, например, из межтрубного флюида или из насосно-компрессорной колонны. Конструкция электродов 141 и 142 будет пояснена более подробно ниже. Эффективность устройства пропорциональна расстоянию d 1 между Е1 и Е2. Полюсами Е1 и Е2 совместно с показанным расстоянием d 1 задается скважинный диполь D1. Диполь D1 может продолжаться на протяжении значительного участка обсадной колонны, составляющего от 10 футов (3 м) до 3000 футов (1000 м), предпочтительно выбирать участок в пределах от 30 футов (10 м) до 300 футов (100 м). В случае сильно проводящих межтрубных флюидов обсадная колонна может быть покрыта электроизоляционным слоем, например эпоксидной смолой. Такое покрытие будет значительно уменьшать электрические потери в проводящих межтрубных флюидах.
Второй преобразователь 15, поверхностный преобразователь, установлен на поверхности 20. Поверхностный преобразователь имеет первый электрод 151, который обеспечивает контакт с формацией в полюсе Е3, и второй электрод 152, который также обеспечивает контакт с формацией в полюсе Е4. Конструкция электродов 151 и 152 будет пояснена более подробно ниже. Кроме того, эффективность устройства пропорциональна расстоянию d 2 между Е3 и Е4. Полюсами Е3 и Е4 совместно с показанным расстоянием d 2 задается скважинный диполь D2. Диполь D2 может продолжаться на протяжении значительного участка формации, составляющего от 10 футов (3 м) до 3000 футов (1000 м), предпочтительно выбирать участок в пределах от 150 футов (50 м) до 600 футов (200 м).
Скважинный преобразователь 14 согласно настоящему изобретению может быть заключен в защитный корпус, содержащий электронный модуль и два изолированных кабеля, соединенных с электродами 141 и 142, соответственно. Электронный модуль обеспечивает функционирование преобразователя и содержит, например, блок обработки сигналов и блок питания. Блок обработки может дополнительно содержать передающий и приемный связной блок, программируемый микроконтроллер и запоминающее устройство. Защитный корпус скважинного преобразователя может быть расположен на внутренней или внешней поверхности насосно-компрессорной колонны или на внутренней или внешней поверхности обсадной колонны. Изолированные кабели соединяют защитный корпус с верхним и продвинутым вглубь электродами.
Электронный модуль может быть соединен с измерительными датчиками (непоказанными). Датчик может быть установлен на внешней или внутренней поверхности обсадной колонны или насосно-компрессорной колонны. Могут быть реализованы датчики и технологии различных видов. Датчики могут измерять свойства формации или, в качестве альтернативы, свойства инфраструктуры скважины, как, например, обсадной колонны или насосно-компрессорной колонны, или, в качестве еще одной альтернативы, свойства флюида внутри скважины; также возможна комбинация нескольких датчиков, измеряющих различные свойства. Такие датчики могут, например, измерять давление или скорость флюида внутри скважины или измерять давление флюида в окружающей формации, удельное сопротивление, соленость или регистрировать присутствие химических компонентов, таких как СО2 или H2S, при этом датчики также могут быть применены для измерения качественных показателей обсадной колонны или насосно-компрессорной колонны, таких как коррозия, деформация и напряжение. Например, могут быть реализованы датчики следующих видов:
- давления и температуры;
- удельного сопротивления (или удельной проводимости);
- напряжения или деформации обсадной колонны и насосно-компрессорной колонны;
- pH окружающих флюидов;
- химического содержания, например, контроля СО2 и H2S.
Кроме того, могут быть использованы мультидатчики, например два датчика для высокочувствительного измерения электрического и магнитного полей. Существенное преимущество использования датчиков электрического и магнитного полей заключается не в раздельном сборе их индивидуальных выходных сигналов, а в объединении их выходных сигналов для получения объединенного обработанного выходного сигнала электромагнитного устройства. Для снижения уровня шума или помех данные об электрическом и магнитном полях могут быть синтезированы объединением канальных данных с получением повышенной точности путем использования конкретных физических связей между данными об электрическом и магнитном полях для конкретных задач и окружающих условий. Кроме того, может быть использован мультидатчик другого вида, в котором объединены измерения электрического и магнитного полей и температуры или давления.
Электронный модуль также может быть соединен с оборудованием управления или контроля (непоказанным). Оборудование может быть пассивным или активным оборудованием управления, оно может приводиться в действие непосредственно с поверхности с помощью связного устройства согласно настоящему изобретению, кроме того, приведение в действие оборудования может подтверждаться на поверхность с помощью связного устройства; и дополнительно оборудование может автоматически приводиться в действие в забое скважины при достижении заданных характеристик скважины, при этом приведение в действие оборудования подтверждается на поверхность с помощью связного устройства. Таким оборудованием может быть, например: управляемый клапан, защитная крышка и расширяемый пакер.
Устройство согласно изобретению может быть использовано для контроля формации или контроля/регулирования характеристик скважины в различных областях, таких как:
- разведка и добыча нефти и газа;
- хранение воды;
- хранение газа;
- подземное захоронение отходов (химических и ядерных).
Каждый из электродов 141 и 142 может быть любым одним из электродов, представленных в настоящей заявке ниже, при этом они могут быть одинаковыми электродами или разными электродами.
На фигуре 6 показано осуществление электрода 141 или 142 в виде точечно-контактного электрода 41. Электрод 41 заключен в изоляционную втулку 52, изготовленную, например, из полиэфирэфиркетона. Основание электрода надежно присоединено, например, пайкой к опоре 53, которая взаимодействует с пружиной 50. Пружина 50 служит для непрерывного прижима электрода к поверхности измерения. В довершение всего узел, содержащий электрод 41, изоляционную втулку 52 и опору 53, сам поддерживается монтажной площадкой 54. Для примера, электрод выполнен коническим по форме. Это осуществление является особенно выгодным, когда электрод используют для обеспечения электрического контакта с внутренней поверхностью металлической обсадной колонны. Из-за особенно агрессивных условий внутри скважины металлическая обсадная колонна очень быстро покрывается слоем ржавчины, который должен быть пробит, чтобы гарантировать хороший контакт между электродом и обсадной колонной. Коническая форма является достаточно остроконечной для прокола указанного слоя.
Электрод изготовлен из композиционного материала, который образован тонким слоем поликристаллической алмазной прессовки, связанной с подложкой из амальгамированного карбида вольфрама, обогащенного приблизительно 7% кобальта. Обычно такой узел изготавливают, помещая алмазный порошок (предпочтительно, чтобы он был тонкоизмельченным) в пресс-форму из тугоплавкого мета