Устройство (варианты) и способ (варианты) получения свойств флюидов скважинных флюидов

Иллюстрации

Показать все

Изобретение относится к анализу пластовых флюидов для оценки и проверки геологической формации в целях разведки и разработки нефтяных или газовых скважин. Техническим результатом является повышение точности определения свойств скважинных флюидов. Для этого в одном варианте получают первый флюид в первом пункте в скважине. Захватывают первый флюид в устройство. Получают второй флюид во втором пункте в скважине. При по существу одинаковых скважинных условиях выполняют анализ флюидов упомянутым устройством в скважине для получения данных о свойствах флюидов. Квантифицируют неопределенность в полученных свойствах флюида. При этом устройство в одном варианте оборудовано скважинным инструментом, включающим в себя трубопровод с оптической ячейкой, избирательно действующее устройство, анализатор флюида и, по меньшей мере, один процессор. При этом избирательно действующее устройство связано с трубопроводом для обеспечения протока и захвата, по меньшей мере, первого и второго флюида через оптическую ячейку. Анализатор флюида оптически связан с ячейкой и выполнен для выработки данных о свойствах флюида в отношении первого и второго флюида, протекающего через ячейку. Процессор связан со скважинным инструментом и включает в себя средство для получения данных о свойствах флюида от скважинного инструмента. Причем данные о свойствах флюида вырабатываются в по существу одних и тех же скважинных условиях. При этом упомянутый процессор выполнен для квантифицирования неопределенности в свойствах флюида. 6 н. и 19 з.п. ф-лы, 27 ил., 3 табл.

Реферат

Настоящая заявка испрашивает в соответствии с § 119 Раздела 35 Свода законов США приоритет по дате подаче предварительной заявки номер 60/642781 (Номер дела поверенного 60.1601) с указанием L.Venlcataramanan и других в качестве изобретателей, поданной 11 января 2005, и в соответствии с § 120 Раздела 35 СЗ США, как частично продолжающаяся непредварительная заявка номер 11/132545 (Номер дела поверенного 26.0290) с указанием L.Venlcataramanan и других в качестве изобретателей и поданной 19 мая 2005, находящейся в настоящее время на рассмотрении, вышеуказанные заявки включены в настоящие материалы посредством ссылки.

Область техники, к которой относится изобретение

Настоящее изобретение относится к анализу пластовых флюидов для оценки и проверки геологической формации в целях разведки и разработки углеводорододобывающих скважин таких, как нефтяные или газовые скважины. Более конкретно настоящее изобретение направлено на обеспечение системы и способов получения свойств флюидов пластовых флюидов из скважинных спектроскопических измерений, таких как спектроскопические измерения, которые менее чувствительны к систематическим ошибкам в измерении.

Уровень техники

Анализ скважинных флюидов (АСФ) представляет собой важную и эффективную исследовательскую технологию, обычно используемую для установления характеристик и сущности геологических формаций, имеющих залежи углеводородов. АСФ используют при разведке и разработке месторождений нефти для определения нефтефизических, минералогических свойств и свойств флюидов залежей углеводорода. АСФ является классом анализа флюидов залежи, включающим в себя состав, свойства флюидов и фазовое поведение скважинных флюидов для того, чтобы характеризовать углеводородные флюиды и залежи.

Обычно в скважине в формациях залежи обнаруживается сложная смесь флюидов таких, как нефть, газ и вода. Скважинные флюиды, которые также называют пластовыми флюидами, помимо других свойств флюидов имеют характеристики, включающие в себя давление, цвет газированной нефти, плотность дегазированной сырой нефти, газовый фактор (ГФ, GOR), которые служат указателями для характеристики залежи углеводорода. При этом залежи углеводорода анализируют и характеризуют, основываясь, в частности, на свойствах флюидов пластовых флюидов в залежах.

Для того чтобы оценить и проверить подземные формации, окружающие скважину, часто желательно получить образцы пластовых флюидов для целей определения характеристик флюидов. Были разработаны инструменты, которые позволяют брать образцы из формации при проведении каротажа или в ходе бурения. Приборы Опробователь Пласта Залежи (ОПЗ, Reservoir Formation Tester (RFT)) и Модульный Опробователь Динамики Пласта (МОДП, Modular Formation Dynamics Tester, (MDT)) фирмы Schlumberger представляют собой примеры осуществления пробоотборников для извлечения образцов пластовых флюидов для поверхностного анализа.

Недавние разработки в области АСФ включают в себя технологии для внутрискважинного определения характеристик пластовых флюидов в скважине или стволе скважины. При этом инструмент МОДП фирмы Schlumberger может включать в себя один или несколько модулей анализа флюидов, таких как Анализатор Смешанного Флюида (АФС, Composition Fluid Analyzer (CFA)) и Анализатор Газированного Флюида (АГФ, (LFA)) фирмы Schlumberger, для анализа скважинных флюидов, отобранных инструментом, при нахождении флюидов по-прежнему внутри скважины.

В подобных упомянутых выше модулях АСФ пластовые флюиды, которые необходимо проанализировать внутри, протекают около модулей датчиков таких, как модули спектрометра, которые анализируют протекающие флюиды, например, посредством абсорбционной спектроскопии ближней инфракрасной части спектра (БИЧС). Принадлежащие заявителю патенты США под номерами 6476384 и 6768105 представляют собой примеры патентов, относящихся к вышеупомянутым технологиям, и их содержание полностью включено в настоящие материалы посредством ссылки. Пластовые флюиды также могут быть отобраны в отборные камеры, связанные с модулями АСФ, и имеющими датчики, такие как измерители давления/температуры, встроенные в них для измерения свойств флюидов отобранных пластовых флюидов.

Скважинные измерения, такие как измерения оптической плотности пластовых флюидов с использованием спектрального анализатора, подвержены систематическим ошибкам в измерениях. Эти ошибки могут включать в себя температурные изменения в измерениях, дрейф в электронике, приводящий к смещенным данным, интерференцию с другими воздействиями, такими как систематические толчки от насоса, помимо прочих систематических ошибок в измерениях. Такие ошибки оказывают ярко выраженное воздействие на характеристики флюидов, получаемые из измеренных данных. Эти систематические ошибки трудно охарактеризовать заранее, при калибровке инструмента.

Сущность изобретения

В соответствии с вышеизложенным уровнем техники и другими факторами, которые известны в области анализа скважинных флюидов, заявители создали способы и системы для анализа в реальном времени пластовых флюидов посредством получения свойств флюида для флюидов и результатов ответа на основании предсказанных свойств флюида по дифференциальным свойствам флюида, которые менее чувствительны к систематическим ошибкам в измеренных данных.

В предпочтительных вариантах осуществления изобретения данные от скважинных измерений такие, как спектроскопические данные, с уменьшенными ошибками в измерениях используют для вычисления уровней загрязнения. Алгоритм контроля загрязнения бурового раствора на углеводородной основе (КЗБУ) используют для определения уровней загрязнения, например, от фильтрата бурового раствора на углеводородной основе (БРУ), в скважинных флюидах. Для скважинных флюидов свойства флюида, такие как цвет газированной нефти, плотность дегазированной сырой нефти, ГФ, флуоресценция, помимо прочих, предсказывают на основании уровней загрязнения. Неопределенность в предсказанных свойствах флюида получают из неопределенности в измеренных данных и неопределенности в предсказанном загрязнении. Статистическая структура обеспечена для сравнения флюидов, чтобы выработать устойчивые результаты ответа в реальном времени, относящиеся к пластовым флюидам и залежам.

Заявители разработали методологию и системы моделирования, которые позволяют выполнять в реальном времени АСФ посредством сравнения свойств флюида. Например, в предпочтительных вариантах осуществления изобретения технологию и системы моделирования используют для обработки данных анализа флюида, таких как спектроскопические данные, относящихся к осуществлению выборки скважинных флюидов и сравнения двух или большего числа флюидов для целей получения аналитических результатов на основании сравнительных свойств флюидов.

Заявители выявили, что уменьшение или устранение систематических ошибок в измеренных данных посредством использования новых процедур отбора проб и скважинного анализа по настоящему изобретению приведут к обеспечению надежного и точного сравнения пластовых флюидов на основе предсказанных свойств флюида и уменьшенных ошибок в скважинных измерениях.

Заявители выявили, что квантифицирование уровней загрязнения в пластовых флюидах и определение неопределенностей, связанных с квантифицированными уровнями загрязнения для флюидов, будет обеспечивающими преимущество этапами по получению интересующих результатов ответа в разведке и разработке месторождений нефти.

Заявители также выявили, что неопределенность в измеренных данных и в квантифицированных уровнях загрязнения может быть распространена на соответствующие неопределенности в других интересующих свойствах флюидов таких, как цвет газированной нефти, плотность дегазированной сырой нефти, ГФ, флуоресценция, помимо прочих.

Заявители дополнительно выявили, что квантифицирование неопределенности в предсказанных свойствах флюидов пластовых флюидов обеспечит преимущественное основание для сравнения в реальном времени флюидов и является менее чувствительным к систематическим ошибкам в данных.

В соответствии с изобретением способ получения свойств флюидов скважинных флюидов и обеспечения результатов ответа из данных спектроскопических измерений скважины включает в себя получение, по меньшей мере, первого флюида и второго флюида, и при, по существу, одинаковых скважинных условиях выполнение анализа первого и второго флюида устройством в скважине для выработки данных о свойстве флюида для первого и второго флюида. В одном варианте осуществления изобретения способ дополнительно включает в себя получение соответствующих свойств флюида для флюида на основании данных о свойствах флюида для первого и второго флюида; квантифицирование неопределенности в полученных свойствах флюида; и сравнение флюидов на основании полученных свойств флюида и неопределенности в свойствах флюида.

Полученные свойства флюидов могут быть одним или несколькими из цвета газированной нефти, плотности дегазированной сырой нефти, ГФ и флуоресценции. В одном варианте осуществления изобретения способ может включать в себя обеспечение результатов ответа, включающих в себя оптимизацию отбора проб скважинным устройством на основании соответствующих свойств флюидов, полученных для флюидов. В другом варианте осуществления изобретения данные о свойстве флюида включают в себя оптическую плотность от одного или нескольких спектроскопических каналов устройства в скважине, а способ дополнительно включает в себя получение данных неопределенности в отношении оптической плотности.

В еще одном варианте осуществления способ может включать в себя размещение устройства в скважине в положении на основании свойства флюида для флюидов. Другой вариант осуществления изобретения может включать в себя квантифицирование уровня загрязнения и его неопределенности для каждого из двух флюидов. Еще один вариант осуществления изобретения может включать в себя предоставление результатов ответа на основании данных о свойствах флюида, относящихся к одному или нескольким из секционирования, градиентов состава и оптимального процесса отбора проб в отношении оценки и проверки геологической формации.

Один способ по настоящему изобретению включает в себя обесцвечивание данных о свойствах флюида; определение соответствующих составов флюидов; получение объемной доли легких углеводородов для каждого из флюидов; и обеспечение объемного коэффициента формации для каждого из флюидов.

Данные о свойствах флюида для каждого флюида могут быть получены из метанового канала и цветового канала скважинного спектрального анализатора. Другие варианты осуществления изобретения могут включать в себя квантифицирование уровня загрязнения и его неопределенности для каждого из каналов для каждого флюида; получение линейной комбинации уровней загрязнения для каналов и неопределенности в отношении объединенного уровня загрязнения для каждого флюида; определение состава каждого флюида; предсказание ГФ для каждого флюида на основании состава каждого флюида и объединенного уровня загрязнения; и получение неопределенности, связанной с предсказанным ГФ каждого флюида. Флюиды могут быть сравнены на основании предсказанного ГФ и полученной неопределенности, связанной с предсказанным ГФ каждого флюида. В одном аспекте изобретения сравнение флюидов включает в себя определение вероятности того, что флюиды являются различными.

Один способ по изобретению может включать в себя получение, по меньшей мере, одного из первого и второго флюидов от каждой формации, пройденной скважиной. Другой аспект изобретения может включать в себя получение, по меньшей мере, одного из первого и второго флюидов из первого источника, а другого из первого и второго флюидов из иного второго источника. Первый и второй источники могут включать в себя разные местоположения земной формации, пройденной скважиной. По меньшей мере, один из первого и второго источников может включать в себя сохраненный флюид. Первый и второй источники могут включать в себя флюиды, полученные в разные моменты времени в одном и том же местоположении земной формации, пройденной скважиной.

В еще одном варианте осуществления изобретения способ уменьшения систематических ошибок в скважинных данных включает в себя получение скважинных данных последовательно для, по меньшей мере, первого и второго флюида по существу при одних и тех же скважинных условиях устройством в скважине.

Еще один вариант осуществления изобретения обеспечивает устройство для характеризации скважинного флюида, имеющее модуль анализа флюида, трубопровод для протока флюидов, забранных из формации, через модуль анализа флюида; избирательно действующее устройство, структурированное и выполненное в отношении трубопровода для попеременного протока, по меньшей мере, первого и второго флюидов через модуль анализа флюида; и, по меньшей мере, один датчик, связанный с модулем анализа флюида для выработки данных о свойствах флюида для первого и второго флюида при, по существу, одних и тех же скважинных условиях. В одном варианте осуществления изобретения избирательно действующее устройство содержит, по меньшей мере, один клапан, связанный с трубопроводом. Клапан может включать в себя один или большее число обратных клапанов в выкачивающем модуле и скважинный выпускной клапан, связанный с трубопроводом. В одном аспекте изобретения избирательно действующее устройство включает в себя устройство с множеством контейнеров для хранения для избирательного хранения и выпуска флюидов, забранных из формации.

В еще одном варианте изобретения система для характеризации пластовых флюидов и обеспечения результатов ответа на основании характеризации включает в себя скважинный инструмент, имеющий трубопровод с, по меньшей мере, одним датчиком для обнаружения, по меньшей мере, одного параметра флюидов в трубопроводе; и избирательно действующее устройство, связанное с трубопроводом, для обеспечения протока, по меньшей мере, первого и второго флюида через трубопровод так, чтобы находиться во взаимосвязи с датчиком, причем датчик вырабатывает данные о свойствах флюида при нахождении первого и второго флюида в по существу одинаковых скважинных условиях. По меньшей мере, один процессор, связанный со скважинным инструментом, может включать в себя средство для получения данных о свойствах флюида от датчика, а процессор может быть конфигурирован для получения соответствующих свойств флюида первого и второго флюида на основании данных о свойствах флюида.

В других аспектах изобретения используемый компьютером носитель с читаемым компьютером программным кодом на нем, который при исполнении компьютером, приспособленным для использования со скважинной системой для характеризации скважинных флюидов, включает в себя получение данных о свойстве флюида, для, по меньшей мере, первого и второго скважинных флюидов, причем данные о свойствах флюида первого и второго флюида выработаны устройством в скважине при, по существу, одних и тех же скважинных условиях; и вычисление соответствующих свойств флюидов для флюидов на основании полученных данных.

Дополнительные преимущества и новые признаки изобретения сформулированы в описании, которое следует далее, или могут быть изучены специалистами в данной области техники путем прочтения настоящих материалов или осуществления изобретения на практике. Преимущества изобретения могут быть достигнуты с помощью средств, раскрытых в приложенной формуле изобретения.

Краткое описание чертежей

Сопроводительные чертежи представляют собой предпочтительные варианты осуществления настоящего изобретения и являются частью описания. Вместе с нижеследующим изложением чертежи отображают и разъясняют принципы настоящего изобретения.

Фиг.1 - схематическое представление в разрезе приводимой в качестве примера операционной среды настоящего изобретения.

Фиг.2 - схематическое представление одной системы для сравнения пластовых флюидов в соответствии с настоящим изобретением.

Фиг.3 - схематическое представление одного модульного устройства анализа флюида для сравнения пластовых флюидов в соответствии с настоящим изобретением.

Фиг.4 - схематическое представление камеры отбора проб в соответствии с настоящим изобретением для сбора или захвата пластовых флюидов в устройство модуля анализа флюида.

Фиг.5A-5Д - блок-схемы, представляющие собой предпочтительные способы сравнения скважинных флюидов в соответствии с настоящим изобретением и получения их результатов ответа.

Фиг.6A - графическое представление примера измеренных (пунктирная линия) и предсказанных (сплошная линия) спектров сырого дегазированного углеводорода, а на Фиг.6Б представлена эмпирическая корреляция между критической длиной волны и спектром дегазированного сырого состояния.

Фиг.7 иллюстрирует графически изменение ГФ (в scf/stb) ретроградного газа как функцию объемного загрязнения. При малых уровнях загрязнения ГФ очень чувствителен к объемному загрязнению; малая неопределенность в загрязнении может привести в результате к большой неопределенности в ГФ.

Фиг.8A - графическое представление ГФ и соответствующей неопределенности для флюидов А (синим) и В (красным) как функции объемного загрязнения (флюиды А и B были предварительно упомянуты выше). Конечное загрязнение флюида А является ηА=5%, тогда как конечное загрязнение для флюида B является ηВ=10%. На Фиг.8Б графически представлено расстояние К-С как функция загрязнения. ГФ этих двух флюидов лучше всего сравнивать в ηВ, где чувствительность к различению этих двух флюидов максимальна, что можно свести к сравнению оптических плотностей двух флюидов, когда уровень загрязнения является ηА.

Фиг.9 - графическое представление оптической плотности (ОП) из метанового канала (на 1650 нМ) для трех пунктов А (синим), B (красным) и D (ярко-красным). Аппроксимация из модели загрязнения показана пунктирным черным контуром для всех трех кривых. Загрязнение как раз перед забором выборок для пунктов A, B и D равно 2,6, 3,8 и 7,1%, соответственно.

Фиг.10 - графическое представление сравнения измеренных ОП (пунктирными контурами) и спектров газированных флюидов (сплошной контур) для пунктов А (синим), B (красным) и D (ярко-красным). Флюид в пункте D более темный и статистически отличается от пунктов А и B. Флюиды в пунктах А и B статистически различны с вероятностью 0,72. Флюиды были упомянуты на Фиг.9 выше.

Фиг.11 - графическое представление сравнения спектров газированных флюидов (пунктирные контуры) и предсказанных спектров дегазированного сырого состояния (сплошные контуры) для этих трех флюидов в пунктах A, B и D (также упомянуты выше).

Фиг.12 - графическое представление критической длины волны, полученной из спектра дегазированного сырого состояния и его неопределенности для трех флюидов в пунктах A, B и D (также упомянутых выше). Эти три флюида в пунктах А (синим), B (красным) и D (ярко-красным) статистически подобны в показателях критической длины волны.

Фиг.13 - график, показывающий плотность в дегазированном сыром состоянии для всех трех флюидов в пунктах A, B и D (также упомянутых выше) близко к 0,83 г/см3.

Фиг.14A - графическая иллюстрация того, что ГФ флюидов в пунктах А (синим) и B (красным) статистически подобны, а на Фиг.14Б представлено, что ГФ флюидов в пунктах B (красным) и D (ярко-красным) также статистически подобны. Флюиды были предварительно упомянуты выше.

Фиг.15 - графическое представление данных оптической плотности из пункта A, соответствующих флюиду A, и данным из пункта B, соответствующие флюидам А и B.

Фиг.16 - представляет графические данные из канала цвета для флюида А (синим) и флюида В (красным), измеренные в пунктах А и B, соответственно (также упомянуты на Фиг.15). Черная линия является аппроксимацией измеренных данных посредством алгоритма контроля загрязнения бурового раствора на углеводородной основе (КЗБУ). В конце подачи уровень загрязнения флюида А был 1,9%, а флюида B был 4,3%.

Фиг.17A - графическое изображение переднего фронта данных в пункте B, соответствующих флюиду А, а Фиг.17Б, которая графически представляет передний фронт данных для одного из каналов в Пункте B, показывает, что измеренная оптическая плотность является почти постоянной (в пределах шумового диапазона в измерении).

Фиг.18 - графическое сравнение цветов газированных флюидов, оно показывает, что эти два флюида А и B нельзя отличить на основании цвета.

Фиг.19 - графическое сравнение спектров дегазированных сырых состояний, оно показывает, что эти два флюида А и B неразличимы в показателях цвета дегазированного сырого состояния.

На чертежах идентичные ссылочные номера указывают схожие, но не обязательно, идентичные элементы. В то время как изобретение применимо в различных модификациях и альтернативных формах, для примера на чертежах представлены и далее подробно раскрыты конкретные варианты его осуществления. Очевидным является, что изобретение не ограничено конкретными раскрытыми вариантами. Наоборот, изобретение предполагается охватывающим все модификации, эквиваленты и альтернативы, попадающие в объем изобретения, определенный в соответствии с формулой изобретения.

Далее представлены иллюстративные варианты осуществления настоящего изобретения. В целях ясности изложения в описании приведены не все признаки фактического выполнения. Разумеется, что для специалистов в данной области техники очевидно, что при разработке любого такого фактического варианта осуществления должны быть сделаны многочисленные решения, определенные вариантом выполнения, для достижения определенных целей разработчиков, таких как согласование с системно-зависимыми и относящимися к деловой сфере ограничениями, которые будут отличаться в одном выполнении от другого. Кроме того, очевидным является, что такие усилия разработчиков могут быть сложными и требующими много времени, но тем не менее все равно будут для специалистов в данной области техники следованием путем, очевидным благодаря представленному в настоящих материалах раскрытию.

Настоящее изобретение применимо к разведке и разработке месторождений нефти в таких областях, как анализ скважинных флюидов кабельными приборами, с использованием модулей анализа флюидов, таких как модули Анализатора Состава Флюида (АСФ) фирмы Шлюмберже (Schlumberger) и/или Анализатора Газированного Флюида (АГФ), в инструменте-опробователе пласта, например, Модульном Опробователе Динамики Пласта (МОДП). Как он использован в настоящем описании, термин «реальное время» относится к обработке данных и анализу, которые являются по существу одновременными с получением части или всех данных, например, когда скважинное устройство находится в скважине или на буровой площадке, задействованной в операциях каротажа или бурения; термин «результат ответа» относится к промежуточным и/или конечным интересующим результатам в отношении разведки, разработки месторождения нефти и нефтедобычи, которые выведены из или получены посредством обработки и/или анализа данных скважинного флюида; термин «секционирование» относится к литологическим барьерам для потока флюида, которые препятствуют рассмотрению залежи углеводорода как единого сегмента разработки; термины «загрязнение» и «загрязняющие вещества» относятся к нежелательным флюидам, таким как фильтрат бурового раствора на углеводородной основе, полученного при осуществлении выборки для флюидов залежи; и термин «неопределенность» относится к оцененной величине или проценту, на которое наблюдаемое или расчетное значение может отличаться от истинного значения.

Понимание заявителями секционирования в залежах углеводорода обеспечивает основание для настоящего изобретения. Как правило, сообщение по давлению между слоями в формации представляет собой меру, используемую для идентификации секционирования. Однако сообщение по давлению не обязательно переходит в сообщение по потоку между слоями и, если предположить, что оно переходит, может привести к секционированию с отсутствием потока. Недавно было установлено, что измерения давления являются недостаточными при оценке секционирования залежи и градиентов состава. Так как сообщение по давлению имеет место по геологическим возрастам, для двух дисперсных песчаных горизонтов будет возможным пребывать друг с другом в сообщении по давлению, но не обязательно в сообщении по потоку.

Заявители осознали, что ошибка в идентификации секционирования может привести к существенным ошибкам, сделанным в параметрах добычи, таких как дренируемый объем, дебит потока, размещение скважины, определение размеров средств обслуживания и оборудования для заканчивания и ошибок в предсказании добычи. Заявители также осознали текущую потребность в применении надежных и точных методов моделирования и новых процедур пробоотбора к идентификации секционирования и градиентов состава и других интересующих характеристик в залежах углеводорода.

В настоящее время решения о секционировании и/или градиентах состава получают из прямого сравнения свойств флюидов, такого как газовый фактор (ГФ) между двумя соседними зонами в формации. Оценочные решения, такие как возможная инверсия ГФ или инверсия плотности, которые являются маркерами для секционирования, сделаны на основании прямого сравнения свойств флюидов. Заявители осознали, что такие способы являются приемлемыми, когда две соседних зоны имеют выраженное различие в свойствах флюидов, но прямое сравнение свойств флюидов из близлежащих зон в формации менее удовлетворительно, когда флюиды в них имеют изменяющиеся уровни загрязнения и различие между свойствами флюидов является малым, но тем не менее существенным при анализе залежи.

Заявители далее осознали, что часто в некоторых геологических условиях инверсии плотности флюида могут быть малыми и проходящими на малые расстояния по вертикали. В условиях, когда инверсия плотности, или эквивалентно градиент ГФ, является малой, текущий анализ может ошибочно идентифицировать секционированную залежь как единый сегмент потока с дорогостоящими последствиями при добыче в результате ошибочной идентификации. Точно так же неточные оценки пространственных изменений свойств флюида могут перерасти в существенные погрешности в предсказаниях относительно добычи пластового флюида.

В силу вышеизложенного Заявители поняли, что критическим является установление и квантифицирование малых различий в свойствах флюидов между смежными слоями в геологической формации, содержащей залежи углеводорода. Дополнительно, как только начата добыча залежи, часто существенным является контролировать восстановление углеводорода из секторов, таких, как слои, ограниченные сбросом блоки и т.д., в пределах залежи. Ключевыми данными для того, чтобы точно контролировать восстановление углеводорода, являются составы и свойства углеводорода такие, как оптические свойства, и различия в составах и свойствах флюидов для различных секторов месторождения нефти.

Как следствие понимания заявителями факторов, изложенных в настоящих материалах, настоящее изобретение обеспечивает системы и способы сравнения скважинных флюидов с использованием надежных статистических основ, которые сравнивают свойства флюида двух или большего числа флюидов, имеющих одни и те же или различные свойства флюида, например, одни и те же или различные уровни загрязнения фильтратами бурового раствора. Этим настоящее изобретение обеспечивает системы и способы для сравнения скважинных флюидов, используя рентабельные и эффективные инструменты статистического анализа. Статистическое сравнение в реальном времени свойств флюидов, которые предсказаны для скважинных флюидов, сделано с целью характеризации залежей углеводорода, например, посредством идентификации секционирования и градиентов состава в залежах. Заявители осознали, что свойства флюида, например ГФ, плотность флюида, как функции измеренной глубины обеспечивают полезные маркеры для характеристик залежи. Например, если производная ГФ как функции глубины является ступенчатой, то есть не непрерывна, вероятным является секционирование залежи. Точно так же другие свойства флюида могут быть использованы как индикаторы градиентов состава и/или секционирования.

В одном аспекте изобретения спектроскопические данные от скважинного инструмента, такого, как МОДП, используют для сравнения двух флюидов, имеющих одни и те же или различные уровни загрязнения фильтратом бурового раствора. В другом аспекте изобретения скважинные флюиды сравнивают, квантифицируя неопределенности в различных предсказанных свойствах флюида.

Системы и способы по настоящему изобретению используют концепцию асимптотического уменьшения доли фильтрата бурового раствора во времени. Настоящее изобретение в предпочтительных вариантах осуществления использует спектроскопические данные колориметрического измерения оптической плотности и измерения газового фактора (ГФ) в ближней инфракрасной области спектра (БИС) для получения уровней загрязнения в двух или большем числе спектроскопических каналов в отношении отобранных проб флюидов. Эти способы более подробно раскрыты в следующих патентах, каждый из которых включен в настоящие материалы посредством ссылки во всей своей полноте: патенты США номер 5939717; 6274865 и 6350986.

Технология по настоящему изобретению обеспечивает надежные статистические рамки для сравнения свойств флюидов для двух или большего числа флюидов с одним и тем же или различными уровнями загрязнения. Например, два флюида, обозначенные А и В, могут быть соответственно получены в двух Пунктах А и В. Свойства флюидов, такие как цвет газированного флюида, плотность дегазированного сырого флюида, флюоресценция и газовый фактор (ГФ), могут быть предсказаны для обоих флюидов по измеренным данным. Неопределенность в свойствах флюидов может быть вычислена из неопределенности в измеренных данных и неопределенности в загрязнении, которую получают для флюидов из измеренных данных. Как случайные, так и систематические ошибки вносят вклад в неопределенность измеренных данных, таких как оптическая плотность, которую получают, например, посредством модуля или модулей анализа скважинных флюидов. Как только свойства флюидов и соответствующие им неопределенности квантифицированы, свойства сравнивают в статистической структуре. Дифференциальные свойства флюидов для флюидов получают из различия соответствующих свойств флюидов для двух флюидов. Неопределенность в квантифицировании дифференциальных свойств флюидов отражает как случайные, так и систематические ошибки в измерениях, и может быть весьма большой.

Заявители открыли новые и преимущественные процедуры отбора проб и анализа скважинных флюидов, которые обеспечивают сбор данных, отбор проб и анализ данных, соответствующие двум или большему числу флюидов, таким образом, что дифференциальные свойства флюидов менее чувствительны к систематическим ошибкам в измерениях. В общепринятых процедурах отбора скважинных проб отобранные пробы пластовых флюидов или анализируемые пластовые флюиды в первом пункте не захватывают и не переносят во второй пункт. В результате вычисления неопределенности в дифференциальных свойствах флюидов отражают как случайные, так и систематические ошибки в измеренных данных и могут быть весьма большими.

В отличие от этого в предпочтительных способах отбора проб по настоящему изобретению систематические ошибки в измерениях минимизированы. Соответственно полученные различия в свойствах флюидов более надежно и точно отражают дифференциальные свойства флюидов.

На Фиг.1 схематически в поперечном разрезе представлена приводимая в качестве примера операционная среда по настоящему изобретению. Хотя на Фиг.1 представлена наземная операционная среда, настоящее изобретение не ограничено наземным вариантом и применимо в водных приложениях, включая глубоководную разработку нефтяных залежей. Кроме того, хотя в настоящем описании используют условия нефтяной и газовой разведки и добычи, полагается, что настоящее изобретение имеет применимость и для других условий, таких как водные залежи.

На Фиг.1 обслуживающее транспортное средство 10 расположено на буровой площадке со скважиной 12 и скважинным инструментом 20, подвешенным в ней на конце проводной линии 22. Как правило, скважина 12 содержит комбинацию флюидов таких, как воды, буровой раствор, пластовые флюиды и т.д. Скважинный инструмент 20 и проводная линия 22 обычно структурированы и устроены по отношению к обслуживающему транспортному средству 10, как схематически показано на Фиг.1, в приводимой в качестве примера компоновке.

На Фиг.2 раскрыта одна приводимая в качестве примера в соответствии с настоящим изобретением система 14 для сравнения скважинных флюидов и выработки аналитических результатов на основании сравнительных свойствах флюидов, например, пока обслуживающее транспортное средство 10 расположено на буровой площадке (см. Фиг.1). Скважинная система 14 включает в себя скважинный инструмент 20 для тестирования земных формаций и анализа состава флюидов, которые извлечены из формации и/или скважины. В наземных условиях таких, как представлены на Фиг.1, скважинный инструмент 20 обычно подвешивают в скважине 12 (см. Фиг.1) на нижнем конца многожильного каротажного кабеля или проводной линии 22, намотанной на лебедку (снова см. Фиг.1) на поверхности формации. В обычной системе каротажный кабель 22 электрически связан с находящейся на поверхности электрической системой 24 управления, имеющей соответствующую электронику и системы обработки для управления скважинным инструментом 20.

Как показано также на Фиг.3, скважинный инструмент 20 включает в себя удлиненный корпус 26, заключающий в себе разнообразные электронные компоненты и модули, которые схематически представлены на Фиг.2 и 3, для обеспечения необходимых и желательных функциональных возможностей скважинной инструментальной колонне 20. Избирательно расширяемый узел 28 впуска флюида и избирательно расширяемый инструментальный анкерный элемент 30 (см. Фиг.2) обеспечены соответственно на противоположных сторонах удлиненного корпуса 26. Избирательно расширяемый узел 28 впуска флюида задействуют для избирательного перекрытия или изолирования отобранных частей стенки 12 скважины таким образом, что устанавливается сообщение по давлению или потоку со смежной земной формацией. При этом узел 28 впуска флюида может быть однодатчиковым модулем 29 (представлен на Фиг.3) и/или пакерным модулем 31 (также схематично представлен на Фиг.3).

В корпусе инструмента 26 обеспечены один или несколько модулей 32 анализа флюида. Флюиды, полученные из формации и/или скважины, протекают по трубопроводу 33 через модуль или модули 32 анализа и далее могут быть выведены через проход в выкачивающем модуле 38 (см. Фиг.3). Альтернативно пластовые флюиды в трубопроводе 33 могут быть направлены к одной или нескольким камерам 34 и 36 сбора флюидов, таким, как 1, 2ѕ или 6-галлоновые отборные камеры и/или шесть многоотборных модулей по 450 куб.см, для приема и сохранения флюидов, полученных из формации, для транспортировки на поверхность.

Узлами доступа флюидов, одним или несколькими модулями анализа флюидов, путем потока и камерами сбора, а также другими эксплуатационными элементами скважинной инструментальной колонны 20, управляют электрическими системами управления, такими как наземная электрическая система 24 управления (см. Фиг.2). Предпочтительно электрическая система 24 управления и другие системы управления, расположенные в корпусе 26 инструмента, например, обеспечены процессорными возможностями для получения свойств флюида, сравнения флюидов и выполнения других желательных или необходимых функций в отношении пластовых флюидов в инструменте 20, как описано более подробно далее.

Система 14 по настоящему изобретению в его различных вариантах осуществления предпочтительно включает в себя процессор 40, операционно сое