Способ обнаружения и локализации воздушных объектов

Иллюстрации

Показать все

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и отраженных от воздушных объектов сигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения является повышение помехоустойчивости (чувствительности) обнаружения и пространственной локализации широкого класса воздушных объектов одной станцией обнаружения-пеленгования в условиях априорной неопределенности. Повышение помехоустойчивости (чувствительности) обнаружения и локализации воздушных объектов достигается за счет: выбора передатчиков, излучающих линейно-частотно-модулированные радиосигналы; применения радиоэлектронной компенсации помех; извлечения дополнительной информации, получаемой путем идентификации и выделения из множества принятых сигналов подмножества энергетически эффективных отраженных сигналов и использования выделенного подмножества сигналов для избирательного поиска и пространственной локализации воздушных объектов. 2 н.п. ф-лы, 10 ил.

Реферат

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и отраженных от воздушных объектов сигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Достижение высокой эффективности обнаружения, локализации и идентификации воздушных объектов ограничивается существенной априорной неопределенностью размеров, ориентации в пространстве, отражающих свойств и параметров движения объектов, а также несовершенством известных способов обнаружения и слежения за воздушными объектами.

Технология пассивного обнаружения и слежения за воздушными объектами, использующая естественную "подсветку" воздушных целей, создаваемую на множестве частот радиоизлучениями передатчиков различного назначения (связные, измерительные, навигационные и др.) в диапазонах коротких, метровых, дециметровых и сантиметровых волн, пока еще не получила достаточного распространения, несмотря на то что может существенно повысить скрытность и эффективность обнаружения и пространственной локализации широкого класса подвижных объектов.

Известен способ обнаружения и локализации воздушных объектов [1], заключающийся в том, что

принимают решеткой антенн многочастотные радиосигналы в полосе приема, во много раз превышающей ширину спектра одиночного радиосигнала передатчика,

формируют комплексные временные спектры радиосигналов каждой антенны и спектр мощности радиосигнала опорной антенны,

по спектру мощности радиосигнала опорной антенны обнаруживают сигналы передатчиков,

по комплексным временным спектрам формируют двумерные комплексные угловые спектры обнаруженных передатчиков,

по угловым спектрам определяют азимутальные и угломестные пеленги передатчиков,

а после сравнения угломестных пеленгов β с порогом разделяют передатчики на наземные и воздушные и определяют наклонную дальность R до передатчиков воздушных целей по формуле R=H/sinβ, где Н - известная высота полета цели.

Данный способ обеспечивает эффективное обнаружение воздушных объектов, оснащенных передатчиками радиосигналов. Однако в условиях радиомолчания данный способ теряет свою эффективность.

Более эффективным является способ обнаружения и локализации воздушных объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:

выбирают передатчики, излучающие радиосигналы с расширенным спектром,

синхронно принимают решеткой антенн на множестве частот поиска многолучевые радиосигналы, включающие прямые радиосигналы передатчиков и отраженные от объектов радиосигналы этих передатчиков,

синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы,

на каждой частоте поиска из цифровых сигналов формируют цифровые прямые и сжатые отраженные сигналы, которые используют для поиска и пространственной локализации воздушных объектов.

Способ-прототип не требует наличия на борту обнаруживаемого воздушного объекта передатчика, излучающего радиосигналы, так как обеспечивает обнаружение и слежение за воздушными объектами, используя естественную "подсветку" воздушных объектов, создаваемую на множестве частот радиоизлучениями передатчиков различного назначения. Эффективность способа-прототипа зависит от ряда факторов. Из которых наиболее важно геометрическое расположение источников излучения, их мощность и эффективная площадь рассеяния цели.

Однако данный способ обладает низкой помехоустойчивостью (чувствительностью) обнаружения и пространственной локализации воздушных объектов одной станцией обнаружения-пеленгования.

Это обусловлено тем, что принятый многолучевой радиосигнал, как правило, включает мощные прямые сигналы и отраженные от земной инфраструктуры компоненты сигнала выбранного передатчика, задержанные по времени и сдвинутые на частоту доплеровского смещения отраженные от воздушных объектов сигналы, а также сигналы других неконтролируемых источников, работающих на частоте, совпадающей с частотой приема.

Для повышения эффективности обнаружения и пространственной локализации широкого класса воздушных объектов (большие, средние, малые самолеты и беспилотные летательные аппараты, вертолеты, ракеты, спускаемые аппараты) необходимо качественное выделение слабых отраженных от объектов сигналов на фоне мощного прямого сигнала выбранного передатчика, а также на фоне сигналов других нежелательных источников. В то же время способ-прототип из всех возможных способов борьбы с помехами использует только способ пространственной селекции на основе направленных свойств антенны и стандартный способ корреляционной обработки сигналов.

Техническим результатом изобретения является повышение помехоустойчивости (чувствительности) обнаружения и пространственной локализации широкого класса воздушных объектов одной станцией обнаружения-пеленгования в условиях априорной неопределенности.

Повышение помехоустойчивости (чувствительности) обнаружения и локализации воздушных объектов достигается за счет:

- выбора передатчиков, излучающих ЛЧМ радиосигналы;

- применения радиоэлектронной компенсации помех;

- извлечения дополнительной информации, получаемой путем идентификации и выделения из множества принятых сигналов подмножества энергетически эффективных отраженных сигналов и использования выделенного подмножества сигналов для избирательного поиска и пространственной локализации широкого класса воздушных объектов.

Технический результат достигается тем, что в способе обнаружения и локализации воздушных объектов, заключающемся в том, что выбирают передатчики, излучающие радиосигналы с расширенным спектром, синхронно принимают решеткой антенн на множестве частот поиска многолучевые радиосигналы, включающие прямые радиосигналы передатчиков и отраженные от объектов радиосигналы этих передатчиков, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, на каждой частоте поиска из цифровых сигналов формируют цифровые прямые и сжатые отраженные сигналы, которые используют для поиска и пространственной локализации воздушных объектов, согласно изобретению выбирают передатчики, излучающие непрерывные линейно-частотно-модулированные (ЛЧМ) радиосигналы с расширенным спектром, периодически синхронно с облучающим сигналом принимают на множестве частот поиска многолучевые радиосигналы, а выделение сжатых отраженных сигналов, поиск и пространственную локализацию воздушных объектов осуществляют путем формирования в моменты времени zk на каждой частоте fk дискретной сетки частот поиска зависящих от частотного сдвига комплексных корреляционных функции (КФЧ) между синхронно принятым каждой антенной решетки цифровым сигналом и прямым сигналом, синхронизированным с облучающим сигналом, усреднения по антеннам модулей комплексных КФЧ, определения по максимумам усредненной КФЧ числа сжатых отраженных сигналов в принятом на частоте fk многолучевом радиосигнале и фиксации значения частотного сдвига ωkp каждого p-го сжатого отраженного сигнала, идентификации соответствующих отдельному максимуму усредненной КФЧ составляющих комплексных КФЧ как сжатый по спектру отраженный сигнал , выделения каждого сжатого сигнала , вычисления временной задержки τkpkp/2πν, где ν - скорость изменения частоты ЛЧМ радиосигнала, и абсолютного доплеровского сдвига а также определения азимутально-угломестного направления прихода каждого сжатого сигнала, выделения и запоминания энергетически эффективных сжатых отраженных сигналов и соответствующего им сокращенного множества частот поиска, использования энергетически эффективных сжатых сигналов для избирательного поиска и пространственной локализации широкого класса воздушных объектов.

Возможны частные случаи осуществления способа:

1. Формирование комплексных КФЧ осуществляют путем периодического несинхронного и синхронного с облучающим сигналом приема на множестве частот поиска многолучевых радиосигналов, формирования на каждой частоте fk поиска зависящей от частотного сдвига комплексной КФЧ(н) между несинхронно принятым отдельной антенной решетки цифровым сигналом и опорным сигналом, несинхронизированным с облучающим сигналом, запоминания комплексной КФЧ(н) и использовавшегося при формировании КФЧ(н) несинхронно принятого цифрового сигнала формирования зависящей от частотного сдвига комплексной КФЧ(с) между синхронно принятым отдельной антенной решетки цифровым сигналом и опорным сигналом, синхронизированным с облучающим сигналом, запоминания комплексной КФЧ(с) и использовавшегося при формировании КФЧ(с) синхронно принятого цифрового сигнала , формирования комплексного коэффициента корреляции между КФЧ(н) и КФЧ(с), сравнения модуля комплексного коэффициента корреляции с порогом, вычисления при превышении порога разностного цифрового сигнала , формирования зависящей от частотного сдвига комплексной КФЧ между разностным цифровым сигналом и опорным сигналом, синхронизированным с облучающим сигналом.

Это повышает помехоустойчивость (чувствительность) поиска и пространственной локализации воздушных объектов.

2. Выделение энергетически эффективных сжатых отраженных сигналов и соответствующего им сокращенного множества частот поиска осуществляют путем формирования по множеству частот поиска трехмерной выборочной функции распределения (ВФР) сжатых отраженных сигналов по азимуту, углу места и временной задержке, определения количества максимумов ВФР, идентификации каждого максимума ВФР как отдельное направление прихода сжатых отраженных сигналов с соответствующими этим максимумам значениями азимута, угла места и задержки, а также формирования по сжатым сигналам амплитудно-частотного распределения (АЧР) сигналов отдельного направления, сравнения АЧР с порогом и выделения энергетически эффективных сжатых отраженных сигналов направления и соответствующего им сокращенного множества частот поиска.

Это повышает эффективность обнаружения и точность пространственной локализации широкого класса объектов за счет адаптации к флуктуациям отраженных сигналов, интенсивность которых существенно зависит от отношения характерных размеров объектов и длины волны (частоты) облучения, а также от направлений облучения и приема сигнала.

3. Избирательный поиск и пространственную локализацию широкого класса воздушных объектов осуществляют путем усреднения на сокращенном множестве частот значений задержки, относительного доплеровского сдвига, азимутов и углов места сжатых сигналов каждого i-го направления, обнаружения и формирования пространственных координат i-го воздушного объекта по усредненным значениям задержки, относительного доплеровского сдвига, азимута и угла места сжатых сигналов i-го направления.

Это также повышает точность пространственной локализации. Кроме того, это повышает вычислительную эффективность поиска широкого класса воздушных объектов.

Таким образом, за счет выбора передатчиков, излучающих ЛЧМ радиосигналы, применения радиоэлектронной компенсации помех, а также дополнительной информации, извлекаемой путем идентификации и выделения из множества принятых сигналов подмножества энергетически эффективных отраженных сигналов, и использования выделенного подмножества сигналов для избирательного поиска и пространственной локализации широкого класса воздушных объектов удается решить поставленную задачу с достижением указанного технического результата.

Операции способа поясняются чертежами:

Фиг.1. Структурная схема устройства, реализующего предложенный способ обнаружения и локализации воздушных объектов;

Фиг.2. Схема функционирования устройства, реализующего предложенный способ обнаружения и локализации воздушных объектов;

Фиг.3. Пример компенсации интерференционной помехи;

Фиг.4. Усредненная корреляционная функция, зависящая от частотного сдвига, для случая трехлучевого сигнала;

Фиг.5. Трехмерная выборочная функция распределения сжатых отраженных сигналов;

Фиг.6. Особенности формирования элементов трехмерной выборочной функции распределения;

Фиг.7. Диаграммы рассеяния объекта;

Фиг.8. Схема выделения энергетически эффективных сжатых отраженных сигналов и соответствующего им сокращенного множества частот поиска;

Фиг.9. Схема определения координат воздушных объектов;

Фиг.10. Схема определения координат воздушного объекта при использовании одного передатчика.

Устройство (фиг.1), в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2 и вычислительную систему 3.

В свою очередь система приема и предварительной обработки 1 включает К устройств приема и обработки 1-k, каждое из которых состоит из антенной решетки 1-k-1, , преобразователя частоты 1-k-2, аналого-цифрового преобразователя (АЦП) 1-k-3, формирователя прямого сигнала 1-k-4, формирователя сжатых отраженных сигналов 1-k-5, АЦП 1-k-6, преобразователя частоты 1-k-7 и антенной решетки 1-k-8.

Вычислительная система 3 включает устройство идентификации 3-1, формирователь сокращенного множества сигналов 3-2, устройство обнаружения и локализации объектов 3-3 и устройство отображения 3-4.

При этом система 2 соединена с входами устройств 3-3 и 3-4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, устройство 3 имеет выход, предназначенный для подключения к внешним системам.

Подсистема 1 является аналогово-цифровым устройством и предназначена для многоканального приема на множестве К частот поиска и предварительной обработки прямых сигналов передатчиков и отраженных от воздушных объектов сигналов этих передатчиков.

Каждое устройство 1-k предназначено для приема на отдельной k-й частоте многолучевого радиосигнала и формирования из принятого радиосигнала цифрового прямого сигнала передатчика и цифровых сжатых отраженных от воздушных объектов сигналов этого передатчика. При этом антенная решетка 1-k-1, преобразователь 1-k-2, АЦП 1-k-3 и формирователь 1-k-4 предназначены для формирования прямого сигнала передатчика, а антенная решетка 1-k-8, преобразователь 1-k-7, АЦП 1-k-6 и формирователь 1-k-5 предназначены для формирования сжатых отраженных от воздушных объектов радиосигналов этого передатчика.

Отметим, что возможны случаи, когда ЛЧМ радиосигнал передатчика априорно известен. В таких случаях прямой ЛЧМ сигнал передатчика может быть сформирован путем моделирования в системе 2. При этом канал приема и обработки, включающий антенную решетку 1-k-1, преобразователь 1-k-2, АЦП 1-k-3 и формирователь 1-k-4, может быть использован для приема и формирования сжатых отраженных сигналов на дополнительной частоте. В связи с этим число используемых передатчиков и, следовательно, одновременно контролируемых частот может достигать 2К.

Устройства 1-k системы 1 могут быть идентичными. Для этого эти устройства должны быть выполнены в сверхширокополосном исполнении. Более простым может быть вариант построения устройств 1-k, при котором эти устройства перекрывают смежные поддиапазоны рабочих частот.

Антенные решетки 1-k-1 и 1-k-8 состоят из N антенн с номерами . Каждая антенна является направленной и содержит экран для улучшения направленности. Пространственная конфигурация антенной решетки должна обеспечивать измерение азимутально-угломестного направления прихода радиосигналов и может быть произвольной пространственной конфигурации: плоской прямоугольной, плоской кольцевой или объемной, в частности конформной. Для улучшения различения сигналов не только по пространству, но и по поляризации требуется существенное различие поляризационных откликов антенн решетки, то есть антенная решетка должна быть неоднородной (гетерогенной), то есть иметь антенные элементы с отличающимися векторными диаграммами направленности.

Преобразователи частоты 1-k-2 и 1-k-7 являются N-канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов.

АЦП 1-k-3 и 1-k-6 также являются N-канальными и синхронизированы сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан).

Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, как, например, в KB диапазоне, то вместо преобразователей частоты 1-k-2 и 1-k-7 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, каждый преобразователь частоты 1-k-2 и 1-k-7 обеспечивает подключение одной из антенн вместо всех антенн решетки для периодической калибровки каналов по внешнему источнику сигнала с целью устранения их амплитудно-фазовой неидентичности. Возможна калибровка по внутреннему источнику сигнала. При этом может быть использован генератор шума, выход которого также подключается вместо всех антенн для периодической калибровки каналов.

Формирователи 1-k-4 и 1-k-5 представляют собой вычислительные устройства и предназначены для формирования соответственно прямого и сжатых отраженных цифровых сигналов отдельных лучей принятых многолучевых радиосигналов.

Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления совокупности передатчиков, облучающих заданную область воздушного пространства ЛЧМ радиосигналами с расширенным спектром, а также формирования модельных ЛЧМ сигналов выбранных передатчиков.

Вычислительная система 3 предназначена для идентификации направлений прихода отраженных сигналов или, другими словами, разделения всего множества отраженных сигналов на группы, отличающиеся направлениями прихода сигналов. Кроме того, система 3 предназначена для формирования сокращенного множества энергетически эффективных сжатых отраженных сигналов каждого направления, обнаружения воздушных объектов с использованием сокращенного множества энергетически эффективных сжатых отраженных сигналов, формирования пространственных координат и идентификации типа обнаруженных воздушных объектов.

Укрупненная схема функционирования устройства, реализующего предложенный способ обнаружения и локализации воздушных объектов, представлена на фиг.2. Схема включает четыре передатчика РПД 1, …, РПД 4, излучающих ЛЧМ радиосигналы с расширенным спектром на множестве частот fk=1, …, fk=4, a также станцию обнаружения-пеленгования (СОП). Радиосигналы передатчиков РПД 1, …, РПД 4 распространяются земной волной, которая принимается станцией обнаружения-пеленгования в виде прямых радиосигналов, а также облучающей заданную область воздушного пространства прямой волной, принимаемой станцией обнаружения-пеленгования в виде отраженных от воздушного объекта радиосигналов.

В станции обнаружения-пеленгования на каждой частоте fk формируется прямой ЛЧМ сигнал, который используется в качестве опорного сигнала при корреляционном разделении многолучевого сигнала на отдельные лучи, т.е. при формировании сжатых отраженных от воздушных объектов сигналов. Из отраженных сигналов выделяются энергетически эффективные сжатые отраженные сигналы и соответствующее им сокращенное множество частот поиска, которые используются для обнаружения, пространственной локализации и идентификации воздушных объектов.

Передатчики РПД 1, …, РПД 4 могут быть условно разделены на два класса: неконтролируемые (неуправляемые) и контролируемые (управляемые). Например, если передатчики РПД 1, РПД 2 и РПД 4 специально не создавались для совместной работы со станцией обнаружения-пеленгования и не имеют линий связи со станцией обнаружения-пеленгования, они могут рассматриваться как неконтролируемые (неуправляемые). В качестве неконтролируемых передатчиков могут быть выбраны любые системы или устройства, излучающие в диапазонах коротких, метровых, дециметровых и сантиметровых волн ЛЧМ радиосигналы с расширенным спектром и удовлетворяющие следующим требованиям: пространственное положение должно обеспечивать прямую видимость между передатчиком и системой обнаружения (если параметры радиосигнала с точностью до синхронизации априорно известны, то прямая видимость между передатчиком и системой обнаружения не требуется); частота и мощность излучаемого радиосигнала должны обеспечивать эффективное обнаружение широкого класса воздушных объектов. Примером неконтролируемых передатчиков могут быть ЛЧМ передатчики связных, информационных и измерительных радиосистем различного назначения. Если передатчик РПД 3 специально создан для решения задачи обнаружения воздушных объектов совместно со станцией обнаружения-пеленгования, то этот передатчик может быть отнесен к классу контролируемых (управляемых). При этом для управления режимами работы передатчика РПД 3 предусмотрена линия связи (см. фиг.2) со станцией обнаружения-пеленгования.

Устройство работает следующим образом.

В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных передатчиках, поступающих от формирователей 1-k-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется совокупность передатчиков, излучающих непрерывные ЛЧМ радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации воздушных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования. Кроме того, в системе 2 формируются модельные непрерывные ЛЧМ сигналы передатчиков, которые могут быть использованы вместо реальных прямых ЛЧМ сигналов передатчиков при априорно известных параметрах синхронизации.

Параметры выбранного множества передатчиков (номер j=1,…,J, несущая частота, ширина спектра, форма и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно СОП) запоминаются в подсистеме 2, поступают в устройства 3-3 и 3-4, а также используются для настройки преобразователей 1-k-2 и 1-k-7. С целью упрощения цепи управления преобразователями не показаны.

По сигналу системы 2 каждая пара преобразователей частоты 1-k-2 и 1-k-7 перестраивается на заданную частоту приема fk.

Многолучевые радиосигналы, включающие прямые непрерывные ЛЧМ сигналы передатчиков с расширенным спектром и отраженные от объектов сигналы этих передатчиков, периодически синхронно с облучающим сигналом принимаются K парами антенных решеток 1-k-1 и 1-k-8 на множестве частот поиска fk, . При этом обеспечивается одновременный прием радиосигналов, излучаемых выбранным множеством J=K передатчиков.

Принятый каждым антенным элементом с номером n каждой антенной решетки 1-k-1 и 1-k- зависящий от времени t радиосигнал xkn(t) фильтруется по частоте и переносится на более низкую частоту в каждом преобразователе 1-k-2 и 1-k-7.

Сформированный в преобразователях 1-k-2 и 1-k-7 ансамбль радиосигналов xkn(t) синхронно преобразуется с помощью АЦП 1-k-3 и 1-k-6 в цифровые сигналы xkn(z), где z - номер временного отсчета сигнала, который поступает в формирователи 1-k-4 и 1-k-5.

В каждом формирователе 1-k-4 из цифровых сигналов xkn(z) формируется цифровой прямой сигнал j-го передатчика, излучающего на частоте fk, и определяются параметры сформированного сигнала.

Формирование цифрового прямого сигнала передатчика может быть осуществлено различными способами, например путем адаптивной пространственной фильтрации цифровых сигналов xkn(z) [3, стр.7].

Сформированный цифровой прямой сигнал j-го передатчика поступает в формирователь 1-k-5. Кроме того, цифровой прямой сигнал и его параметры (частота fk, азимутально-угломестное направление прихода и уровень сигнала) поступают в систему 2, где запоминаются.

В каждом формирователе 1-k-5 из цифровых сигналов xkn(z) и цифрового прямого сигнала передатчика, поступившего от формирователя 1-k-4, формируются цифровые сжатые отраженные от объектов на частоте fk сигналы.

Выделение сжатых отраженных сигналов и определение их параметров (временная задержка τkp, абсолютный доплеровский сдвиг Fkp, азимутальное αkp и угломестное βkp направление прихода, амплитуда akp, где р - номер сформированного сжатого сигнала на частоте fk) осуществляется следующим образом:

- формируются в моменты времени zk на каждой частоте fk дискретной сетки частот поиска зависящие от частотного сдвига ω комплексные корреляционные функции (КФЧ)

между синхронно принятым каждой n-й антенной решетки цифровым сигналом xkn(z) и прямым сигналом y0(z), синхронизированным с облучающим сигналом.

Для повышения помехоустойчивости (чувствительности) формирование комплексных КФЧ в формирователе 1-k-5 осуществляется следующим образом:

- периодически несинхронно и синхронно с облучающим сигналом принимаются на множестве частот поиска многолучевые радиосигналы;

- формируется на каждой частоте fk поиска зависящая от частотного сдвига комплексная КФЧ(н) между несинхронно принятым отдельной антенной решетки цифровым сигналом и опорным сигналом, несинхронизированным с облучающим сигналом;

- запоминается комплексная КФЧ(н) и использовавшийся при формировании КФЧ(н) несинхронно принятый цифровой сигнал ;

- формируется зависящая от частотного сдвига комплексная КФЧ(с) между синхронно принятым отдельной антенной решетки цифровым сигналом и опорным сигналом, синхронизированным с облучающим сигналом;

- запоминается комплексная КФЧ(с) и использовавшийся при формировании КФЧ(с) синхронно принятый цифровой сигнал ;

- формируется комплексный коэффициент корреляции между КФЧ(н) и КФЧ(c);

- сравнивается модуль комплексного коэффициента корреляции с порогом;

- при превышении порога вычисляется разностный цифровой сигнал ;

- формируется зависящая от частотного сдвига комплексная КФЧ между разностным цифровым сигналом и опорным сигналом, синхронизированным с облучающим сигналом.

Комплексные КФЧ могут быть более эффективно вычислены с применением быстрого алгоритма на основе БПФ.

Пример компенсации реальной интерференционной помехи представлен на фиг.3. Из фиг.3а и фиг.3б следует, что в данном примере за счет компенсации удается повысить отношение сигнал/помеха более чем на 10 дБ.

- усредняются по антеннам модули комплексных КФЧ ;

- определяется по максимумам усредненной КФЧ число сжатых отраженных сигналов в принятом на частоте fk многолучевом радиосигнале и фиксируется значение частотного сдвига ωkp каждого p-го сжатого отраженного сигнала.

Пример усредненной КФЧ , сформированной для случая трехлучевого сигнала, приведен на фиг.4;

- идентифицируются соответствующие отдельному максимуму усредненной КФЧ составляющие комплексных КФЧ как сжатый по спектру отраженный сигнал ;

- выделяется каждый сжатый сигнал ;

-вычисляется временная задержка τkpkp/2πν и абсолютный доплеровский сдвиг а также определяется азимутально-угломестное направление прихода каждого сжатого сигнала.

Отметим, что в тех случаях, когда радиосигнал передатчика априорно известен, выделение сжатых отраженных сигналов может осуществляться путем формирования зависящих от частотного F сдвига комплексных КФЧ между синхронно принятым каждой n-й антенной решетки цифровым многолучевым сигналом xkn(z) и сформированным в системе 2 цифровым модельным прямым ЛЧМ сигналом, синхронизированным с облучающим сигналом.

При определении в формирователе 1-k-5 азимутально-угломестных направлений прихода сжатых отраженных сигналов, например, с использованием способа [5], по выделенным значениям каждого сжатого отраженного сигнала синтезируется комплексный двумерный угловой спектр, по максимумам модуля которого определяется азимутально-угломестное направление прихода (αkp, βkp) p-го сжатого сигнала.

Таким образом, на данном этапе в формирователях 1-k-5 на каждой частоте fk выбранного множества частот поиска fk=1,…,fk=K сформированы и выделены сжатые отраженные сигналы , а также определены временная задержка τkp, абсолютный доплеровский сдвиг Fkp и азимутально-угломестное направление прихода (αkp, βkp) и амплитуда каждого p-го сжатого сигнала.

Сформированные на заданных частотах поиска fk=1,…,fk=K сжатые отраженные сигналы и их параметры поступают на вход устройства 3-1, где запоминаются.

В устройстве 3-1 на множестве частот поиска идентифицируются направления прихода сжатых отраженных сигналов.

С целью повышения информативности идентификация направлений прихода сжатых отраженных сигналов на множестве частот поиска осуществляется следующим образом:

- формируется на множестве частот поиска трехмерная выборочная функция распределения (ВФР) сжатых отраженных сигналов по азимуту α, углу места β и временной задержке τ;

- определяется количество максимумов ВФР;

- идентифицируется каждый максимум ВФР как отдельное направление прихода сжатых отраженных сигналов с соответствующими этим максимумам значениями азимута αi, угла места βi и временной задержки τi, где i - номер идентифицированного направления прихода сжатых отраженных сигналов.

В качестве события, используемого при формировании трехмерной ВФР, выбирается событие, заключающееся в попадании оценок азимута αkp, угла места βkp и задержки τkp сжатых отраженных сигналов в трехмерный элемент объема [ανν+Δα; βµµ,+Δβ; τll+Δτ], где - номер элемента (ячейки) ВФР по азимуту, - номер элемента ВФР по углу места, - номер элемента ВФР по задержке, а [Δα; Δβ; Δτ] - размер элементов объема по азимуту, углу места и задержке соответственно.

Размер элемента (ячейки) ВФР определяется исходя из требуемой разрешающей способности по азимуту α, углу места β и задержке τ.

В наиболее типичной ситуации размеры ячеек равны: по азимуту и углу места соответственно 3 и 5 градусов, а по задержке 1-5 мкс в зависимости от скорости перестройки частоты.

На фиг.5 представлена трехмерная ВФР для случая прихода отраженных сигналов по пяти направлениям: 1 - (α=60°, β=10°); 2 - (α=60°, β=50°); 3 - (α=230°, β=40°); 4 - (α=30°, β=15°); 5 - (α=290°, β=15°).

На фиг.6 показаны особенности формирования элементов трехмерной выборочной функции распределения по множеству частот поиска fk=1,…,fk=K. При этом на плоскости "азимут-задержка" (фиг.6а) наблюдается четыре направления прихода отраженных сигналов, отличающиеся азимутами. Два направления α=30° и α=290° содержат сигналы, совпадающие по задержке, равной τk=8 мкс. С другой стороны, на плоскости "угол места - задержка" (фиг.6б) также наблюдается четыре направления, отличающиеся углами места. Сигналы двух направлений совпадают по задержке, равной τk=1 мкс. Однако из совместного рассмотрения фиг.6а и фиг.6б следует, что на множестве частот поиска fk=1,…,fk=5 наблюдается пять направлений прихода отраженных сигналов: для τk=1 мкс - (α=60°, β=10°) и (α=60°, β=50° ); для τk=4 мкс - (α=230°, β=40°); для τk=8 мкс - (α=30°, β=15°) и (α=290°, β=15°).

Физически это соответствует случаю, когда на дальности, соответствующей задержке τk=4 мкс, присутствует один объект, а на дальностях, соответствующих задержкам τk=1 мкс и τk=8 мкс, присутствуют по две цели, в первом случае, совпадающие по азимуту, а во втором случае, совпадающие по углу места.

Идентифицированные направления прихода сжатых отраженных сигналов (азимут αi и угол места βi) и соответствующие значения временных задержек τi, а также сжатые отраженные сигналы каждого направления и их параметры (множество частот поиска fk=1,…,fk=K, временная задержка абсолютный доплеровский сдвиг и азимутально-угломестное направление прихода и амплитуда каждого p-го сжатого сигнала) поступают в формирователь 3-2.

В формирователе 3-2 из сжатых отраженных сигналов каждого i-го направления выделяются и запоминаются энергетически эффективные сжатые отраженные сигналы и соответствующее им сокращенное множество частот поиска.

Для повышения отношения сигнал/помеха в формирователе 3-2 выделение энергетически эффективных сжатых отраженных сигналов каждого направления и соответствующего им сокращенного множества частот поиска осуществляется следующим образом:

- формируется амплитудно-частотное распределение (АЧР) сжатых отраженных сигналов направления;

- сравнивается АЧР с порогом и при превышении порога выделяются энергетически эффективные сжатые отраженные сигналы направления и соответствующее сокращенное множество частот поиска.

Порог выбирается исходя из минимизации вероятности пропуска цели.

На фиг.7 представлены типичные диаграммы рассеяния воздушного объекта, одновременно полученные на двух частотах. Из фиг.7 следует, что уровень отраженного сигнала, принимаемого на разных частотах f1 и f2 в точке размещения СОП, может существенно (на 10 дБ и более) отличаться. Отсюда вытекает необходимость исключения слабых отраженных сигналов и выделения энергетически эффективных сигналов для каждого направления прихода и соответствующего им сокращенного множества частот поиска.

На фиг.8 приведена схема выделения энергети