Способ и устройство для распределенного обнаружения спектра для беспроводной связи

Иллюстрации

Показать все

Заявленное изобретение относится к области связи. Технический результат заключается в возможности определения, присутствует ли сигнал, представляющий интерес, например лицензируемый сигнал, имеющий или превышающий предопределенную напряженность поля, в беспроводном спектре, и/или такие, которые способствуют такому определению. Сигналом, представляющим интерес, может быть, например, телевизионный сигнал или сигнал беспроводного микрофона, использующего лицензируемый телевизионный спектр. Предопределенная напряженность поля может быть задана или правилом, или постановлением правительства. Для этого выполняют предварительное локальное обнаружение сигнала, представляющего интерес, в радиочастотном спектре беспроводного канала; определяют меру доверия, соответствующую тому, обнаружен сигнал или нет; и передают результат локального обнаружения и меру доверия для комбинирования с предварительным локальным обнаружением от удаленного сенсора в устройстве централизованного пункта назначения, которое выполняет глобальное определение, присутствует ли сигнал, представляющий интерес. 21 н. и 75 з.п. ф-лы, 10 ил., 4 табл.

Реферат

Родственные заявки

По настоящей заявке на патент испрашивается приоритет по дате подачи предварительной заявки на патент США № 60/883 429, поданной 4 января 2007 г., права на которую принадлежат правообладателю этой заявки и которая полностью включена в этот документ посредством ссылки.

Область техники, к которой относится изобретение

Различные аспекты относятся к системам связи и, более конкретно, к способам и устройствам для определения, присутствует ли сигнал, представляющий интерес, например лицензируемый сигнал, имеющий или превышающий предопределенную напряженность поля, в беспроводном спектре, и/или к способам и устройствам, которые способствуют такому определению.

Уровень техники

Недавно Федеральная комиссия по связи (FCC) предложила новые правила, которые обеспечивают возможность нелицензируемым когнитивным радио работать на неиспользуемых в (данном) географическом районе телевизионных (TV) каналах. Несмотря на то, что новые правила могут ввести множество каналов для использования когнитивными радио, несколько лицензируемых передач занимают телевизионные каналы, в том числе аналоговое телевидение, цифровое телевидение и профессиональные радиомикрофоны. Если какая-либо из этих лицензируемых передач присутствует выше определенного порога мощности, то считается, что этот телевизионный канал занят, в противном случае считается, что телевизионный канал не занят и, следовательно, доступен для использования нелицензируемой радиосвязью. Соответственно, существует потребность в способах и устройствах для определения, присутствует ли сигнал, представляющий интерес, например лицензируемый сигнал, такой как сигнал телевизионного вещания, имеющий или превышающий предопределенную напряженность поля, в беспроводном спектре, и/или в способах и устройствах, которые способствуют такому определению.

Раскрытие изобретения

Описаны способы и устройства для определения, присутствует ли сигнал, представляющий интерес, например лицензируемый сигнал, имеющий или превышающий предопределенную напряженность поля, в беспроводном спектре, и/или способы и устройства, которые способствуют такому определению.

Сигналом, представляющим интерес, может быть, например, телевизионный сигнал или сигнал беспроводного микрофона, использующий лицензируемый телевизионный спектр. Предопределенная напряженность поля может быть задана или правилом или постановлением правительства.

Система может включать в себя множество станций, например, беспроводных терминалов, которые выполняют измерения сигнала и принимают решения относительно присутствия сигнала, представляющего интерес, на основе одного или нескольких измерений сигнала. Решения передаются в некоторых вариантах осуществления в станцию, например, узел управления, который обрабатывает эти решения и/или другую информацию, обеспечиваемую различными терминалами для принятия решения относительно присутствия или отсутствия сигнала, представляющего интерес. Измерения могут включать в себя измерения напряженности поля. Когда в этом документе упоминаются измерения напряженности поля, то следует понимать, что имеются в виду измерения напряженности электромагнитного поля. Измерения напряженности поля могут быть основаны, например, на мощности принятого сигнала, представляющего интерес, и сведений об антенне, используемой для приема сигнала, представляющего интерес.

Согласно некоторым, но не обязательно всем аспектам, терминалы передают в узел управления не только свое решение, но также и меру доверия, соответствующую их решению. Мера доверия может использоваться при обработке отдельных решений для принятия решения в узле управления относительно того, присутствует или нет сигнал, представляющий интерес. Использование решений из множества узлов вместе с доверительной информацией обеспечивает более надежное решение в узле управления, чем то, которое могло быть принято любым отдельным беспроводным терминалом.

В некоторых, но не во всех аспектах, терминалы передают информацию о напряженности поля в узел управления. Кроме того, в узел управления может быть передана надежность информации о напряженности поля. Для передачи в узел управления решений, доверительной информации, информации о напряженности поля и информации о надежности используются сообщения. Для передачи информации из терминала в узел управления могут использоваться разные сообщения или одно сообщение.

Узел управления может отправлять и согласно некоторым, но не обязательно всем аспектам, отправляет одно или несколько управляющих сообщений. Управляющие сообщения могут быть направлены в отдельные беспроводные терминалы, обеспечивающие результаты обнаружения сигнала, или включены в широковещательное сообщение, вещаемое во множество беспроводных терминалов, которые должны управляться с использованием идентичного набора управляющей информации. Пороги обнаружения и/или способы обнаружения, предназначенные для использования, могут быть переданы в управляющих сообщениях, отправляемых терминалам. Могут передаваться явно задаваемые пороги или информация о частоте ложных тревог, которая может использоваться приемным терминалом для определения порога, который будет использоваться.

Хотя узел, который принимает информацию и/или решения из множества беспроводных терминалов и затем осуществляет определение, присутствует или нет сигнал, представляющий интерес, исходя из информации и/или решений, принятых из множества устройств, описан как узел управления с целью объяснения изобретения, этот узел необязательно обеспечивает функции управления и может просто осуществлять определение на основе множества принятых сигналов в зависимости от конкретного варианта осуществления.

Хотя выше в раскрытии изобретения обсуждались различные варианты осуществления, следует понимать, что необязательно все варианты осуществления включают в себя одни и те же признаки и некоторые из признаков, описанных выше, не являются обязательными, но могут быть желательными в некоторых вариантах осуществления. В нижеследующем подробном описании обсуждаются многочисленные дополнительные признаки, варианты осуществления и преимущества различных вариантов осуществления.

Краткое описание чертежей

На фиг.1 изображена иллюстративная система, реализуемая в соответствии с различными аспектами.

На фиг.2 изображены этапы способа, используемого в некоторых вариантах осуществления.

На фиг.3 изображены этапы способа, используемого узлом, принимающим измерения напряженности поля из множества узлов, согласно некоторым аспектам.

На фиг.4 изображен терминал, например, станция, которая может использоваться для выполнения операций обнаружения, определения присутствия сигнала и представления отчета о результате определения в другой узел, а также приема определений и другой информации из множества узлов в случае, где иллюстративное устройство действует как узел управления и/или принятия решений.

На фиг.5 изображен компонент обнаружения вместе с входами в него и выходами из него, который может использоваться в терминале по фиг.4 и в различных терминалах, описанных в настоящей заявке.

На фиг.6 изображена иллюстративная система, реализуемая в соответствии с некоторыми вариантами осуществления.

На фиг.7 изображен узел управления, который может использоваться в иллюстративной системе, изображенной на фиг.6.

На фиг.8 изображен терминал, например мобильный узел, который может использоваться в иллюстративной системе, изображенной на фиг.6.

На фиг.9 изображен иллюстративный способ работы беспроводного терминала согласно различным аспектам.

На фиг.10 изображен иллюстративный способ работы узла управления, например, базовой станции, согласно различным аспектам.

Осуществление изобретения

Согласно некоторым аспектам когнитивное радио обнаруживает радиочастотный (RF) спектр с целью идентификации неиспользуемого спектра. На фиг.1 изображена система, содержащая иллюстративные области 100 и 104. В одном или нескольких аспектах устройство 106 пользователя, которое может быть любой беспроводной станцией, например точкой доступа для приложения WLAN, может быть сконфигурировано для работы с использованием 802.11, CDMA, WCDMA, OFDMA или другого протокола связи по всему телевизионному каналу или его части. Устройство 106 пользователя может быть устройством когнитивного радио. Кроме того, в этих аспектах станция может динамично переключаться между одним или несколькими телевизионными каналами, в зависимости от области, в которой базовая станция или терминал абонента находятся. Например, ноутбук или прибор бытовой электроники, например телевизор, мультимедиа-проигрыватель, аудиоплейер и т.д., может быть сконфигурирован для связи с переключением между этими каналами в зависимости от того, куда он перемещен, например в другой город, штат или другое географическое место назначения.

Устройство когнитивного радио может идентифицировать спектр, в котором оно может работать. Например, в некоторых вариантах осуществления устройство когнитивного радио может работать с использованием одного или нескольких телевизионных каналов, когда они доступны, и может сканировать спектр или предопределенные его части в зависимости от параметров устройства и обнаруживать присутствие лицензируемого сигнала при определенном низком отношении сигнал/шум (SNR). Причиной для потенциальных возможностей низкого SNR является то, что когнитивное радио может находиться в зоне замирания сигнала и должно, тем не менее, быть в состоянии обнаруживать лицензируемые передачи. Как используется в этом документе, низкое SNR находится существенно, например, на несколько дБ, ниже порога для обеспечения возможности телевизионному приемнику, например приемнику 102, работать в пределах области 100 при требуемом усилении, согласно требованию FCC или другого регулятивного органа.

В одном аспекте обнаружение спектра может быть реализовано путем развертывания множества спектральных сенсоров там, где данная нелицензируемая сеть или группа устройств должна работать, например множество устройств 106, обменивающихся друг с другом информацией. Сведения о спектре, собранные спектральными сенсорами, предоставляются в одну или несколько платформ обработки, например, станцию управления сетью, например, точку 108 доступа или другое устройство. В одном аспекте сенсоры могут быть реализованы в устройствах, которые обмениваются информацией согласно разным протоколам, но в сходной области, например бытовая электроника, компьютеры и другие приборы в пределах дома или офиса. Это может обеспечить возможность реализации домашней или офисной сети для разных типов данных, отличных от первичного протокола, используемого для устройства. Например, данные сенсора могут быть переданы на других частотах, отличных от частот 802.11, используемых компьютерами или другими устройствами, а также на частотах телевизионных или других лицензируемых передач в данной области.

В общем, измерения обнаружения спектра посредством множества распределенных сенсоров, которые передают информацию в одно устройство, могут включать в себя информацию относительно одного или нескольких из того:

◦ Какой канал обнаруживать

◦ Как долго обнаруживать на канале

◦ Как часто сообщать о результатах обнаружения. В некотором аспекте это может быть использовано только там, где множество когнитивных радио передают свои результаты обнаружения для обеспечения возможности лучшего представления о состояниях спектра, например, в базовой станции или точке доступа.

◦ Какой тип сигнала обнаруживать

◦ Порог обнаружения

В одном или нескольких аспектах разные типы сигнала, которые должны обнаруживаться, могут включать в себя: (i) IEEE 802.22, (ii) ATSC, (iii) NTSC, (iv) Часть 74 и (v) DVB. Когнитивное радио может обнаруживать один или несколько разных типов сигнала.

В аспекте, где отчеты с обнаружением спектра обеспечиваются из множества когнитивных радио, эти отчеты могут быть одним битом, указывающим, был ли обнаружен сигнал, или "значением", указывающим разную информацию в отношении спектра.

На фиг.2 изображены этапы 210, 220, 230, 240 и 242, выполняемые согласно некоторым аспектам. В одном аспекте отдельные сенсоры передают один бит, указывающий, был ли обнаружен конкретный тип сигнала в данном телевизионном канале или другом канале, как представлено на этапе 210 (фиг.2). Локальные решения объединяются в глобальное решение, как представлено на этапе 220, в точке доступа или другом сервере. Существует множество способов для объединения локальных решений в глобальное решение. В каждом подходе глобальная частота ложных тревог зависит от способов объединения локальных решений в глобальное решение и локальной частоты ложных тревог. Следовательно, частота ложных тревог в локальном сенсоре может корректироваться и может задаваться узлом в сети, который объединяет локальные решения в глобальное решение. Узел, в котором объединяются локальные решения, как правило, является базовой станцией или точкой доступа, но может быть любым узлом, то есть устройством в сети, которое предназначено для объединения локальных решений в глобальное решение.

В одном аспекте объединение локальных решений в глобальное решение является схемой голосования. Например, если количество локальных решений, обнаруживающих присутствие сигнала заданного типа, превышает порог, то глобальным решением является то, что сигнал присутствует, в противном случае глобальным решением является то, что сигнал отсутствует в заданном телевизионном канале.

Далее на этапе 230 принимается решение относительно того, обновлять ли локальные пороги обнаружения. Если обновление имеет место, то в одно или несколько устройств отправляют сообщение для обновления их порогов и/или другой информации. Это происходит на этапе 240. Локальные пороги могут формироваться отдельно для разных сенсоров или могут использоваться для всех или некоторых сенсоров. Далее изображено, что операция заканчивается на этапе 242, но следует понимать, что процесс и этапы, изображенные на фиг.2, повторяются через некоторый период времени.

Сообщение для установки локальной вероятности ложной тревоги представлено в таблице 1. В таблице представлено название сообщения и действие, которое приемный узел предпримет после того, как он примет сообщение. Это сообщение отправляют из узла, принимающего глобальное решение, в каждый из узлов, принимающих локальные решения.

Таблица 1Установка локальной вероятности сообщенияо ложной тревоге
Сообщение Действие
Установить локальную вероятность ложной тревоги Корректировка порога обнаружения для достижения заданной локальной вероятности ложной тревоги

Другим сообщением, которое может быть использовано, является сообщение, задающее способ обнаружения. Существует много способов обнаружения, которые могут быть использованы. Каждый из способов обнаружения основывается на обнаружении признака типа сигнала, который должен быть обнаружен. Для каждого типа сигнала существуют различные признаки сигнала, которые могут быть использованы в способе обнаружения. В данной работе перечислены только некоторые из возможных способов обнаружения. Другие будут изобретены в будущем, поэтому управляющие сообщения должны быть расширяемыми для обеспечения возможности учета будущих способов.

Сигнализация для задания способа обнаружения представлена в таблице 2.

Таблица 2Установка локального способа обнаружения
Сообщение Действие
Установить локальный порог обнаружения Установка локального порога обнаруженияОбнаружения энергииОбнаружения мощности пилот-сигнала ATSCОбнаружения последовательности PN ATSCОбнаружения спектрального анализа плот-сигнала ATSCДругого, …

Это сообщение может быть дополнительным этапом к способу по фиг.2, например вместе с обновлением локального порога на этапе 240, или может быть независимым от него.

Кроме только передачи однобитового решения относительно того, был ли обнаружен тип сигнала в данном канале, можно добавлять к этому битовому отчету меру доверия для этого решения; например, этап 210 на фиг.2 может включать в себя меру доверия с битом или битами, а этап 220 может включать в глобальное решение учет меры доверия, связанной с битом или битами. Это можно рассматривать как аналог мягкого декодирования в цифровой системе связи. Детектор передает не только решение, но и метрику, которая указывает на доверие к этому решению. Далее узел, объединяющий все эти локальные решения в глобальное решение, может взвешивать локальное решение на основе значения метрики доверия.

На основе используемого способа обнаружения существует много способов, посредством которых может быть задано доверительное значение. В одном аспекте, если статистика критерия, используемая в способе обнаружения, только немного превышает порог детектора, то метрике доверия присваивается доверительное значение низшего уровня. Если статистика критерия значительно превышает порог детектора, то метрике доверия присваивается доверительное значение высшего уровня. Аналогично, если статистика критерия только немного ниже порога детектора, то присваивается низкий доверительный порог, в то время как, если статистика критерия намного меньше порога детектора, то присваивается высокое доверительное значение.

Сигнализация для передачи решений об обнаружении с метрикой доверия представлена в таблице 3.

Таблица 3Сигнализация отчета об обнаружении конкретного типа сигнала в конкретном телевизионном канале
Отчет Значение
Локальное решение Один бит, указывающий, был ли обнаружен сигнал в полосе TV или не был обнаружен сигнал в полосе TV
Достоверность Значение, указывающее достоверность локального решения

В других аспектах, где большее количество информации, то есть больше чем бит или биты с мерой доверия, может быть передано из каждого из сенсоров в сенсор, объединяющий информацию, может быть принято лучшее глобальное решение.

Диапазон, который задает, какие телевизионные приемники ATSC защищены от критических помех, задается в терминах напряженности поля сигнала ATSC. Кроме того, диапазон зоны обзора может быть определен в терминах напряженности поля сигнала ATSC. Следовательно, очень полезной информацией является оценка напряженности поля ATSC в сенсоре. Аналогично, для других типов сигнала оценка напряженности поля также полезна. Каждый блок оценки имеет связанную с ним ошибку. В узле, который принимает глобальное решение, очень полезно иметь не только оценку напряженности поля, но также и меру ошибки оценки. Типичной мерой ошибки оценки является вариация ошибки. В качестве альтернативы также может использоваться среднеквадратичное отклонение ошибки блока оценки, так как оно является только квадратным корнем из вариации ошибки.

При знании усиления антенны и рабочей частоты (или длины волны) можно выполнять взаимные преобразования между напряженностью поля и мощностью сигнала. Следовательно, альтернативным значением, которое должно сигнализироваться, является оценка мощности сигнала, этап 310, которая в некоторых аспектах может включать в себя меру ошибки оценки. С учетом того, что сигнал, представляющий интерес (например, ATSC), может быть очень слабым, неприемлемо использовать типичный индикатор уровня сигнала приемника, так как им, как правило, является сумма мощности сигнала и мощности шума. Если отношение сигнал/шум является большим, то RSSI является разумной метрикой, однако при обнаружении спектра система часто работает с отрицательным SNR, поэтому использование RSSI не является эффективной метрикой.

Математически примем напряженность поля в сенсоре равной F. Оценка напряженности поля в сенсоре равна . Тогда ошибка в оценке задается как

Вариация ошибки оценки задается как

Сигнализация для передачи оценки напряженности поля и вариации блока оценки приведена в таблице 4.

Таблица 4Сигнализация сообщаемой оценки напряженности поля и ошибки оценки
Отчет Значение
Оценка напряженности поля Оценка напряженности поля заданного сигнала в заданном канале TV
Вариация (или среднеквадратичное отклонение) ошибки оценки Вариация (или среднеквадратичное отклонение) ошибки оценки

Далее может быть принято решение на основе информации о напряженности поля, этап 320.

Согласно фиг.4 изображено устройство 400 связи, которое может быть базовой станцией, точкой доступа, устройством пользователя, терминалом, терминалом доступа или любым другим устройством. Устройство 400 связи включает в себя компонент 500 обнаружения, который обнаруживает спектр согласно одному или нескольким способам, описанным выше. Устройство 400 также включает в себя приемопередатчик 408 и антенну 410 для обмена информацией с другими устройствами. Процессор 402 обменивается информацией с компонентом 500 обнаружения и приемопередатчиком 408 через шину 406. Процессор 402 выполняет определение относительно спектра, как обсуждалось согласно фиг.2 и фиг.3 в отношении устройства, которое объединяет данные сенсора из множества распределенных сенсоров. В качестве альтернативы он формирует измерения напряженности поля или доверительную информацию посредством решений об обнаружении для передачи в сенсор, который обеспечивает информацию для распределенного обнаружения.

На фиг.5 изображен компонент обнаружения вместе с входами в него и выходами из него, которые могут использоваться в терминале по фиг.4 и в различных терминалах, описанных в настоящей заявке. Слева на фиг.5 изображены входы сигнала, в то время как справа изображены выходы. Компонент обнаружения в варианте осуществления по фиг.5 формирует решение о присутствии сигнала, представляющего интерес, в то время как в других вариантах осуществления решение принимается модулем, отдельным от модуля, который осуществляет обнаружение.

На фиг.6 показан вид 600, включающий в себя иллюстративную когнитивную сеть 622, которая может использовать разные части спектра в разных областях для беспроводной связи. Иллюстративная когнитивная сеть 622 включает в себя узел управления и множество терминалов (терминал 1 626,..., терминал N 628). В некоторых вариантах осуществления узел 624 управления является узлом доступа, например базовой станцией, или контроллером когнитивной сети. В некоторых вариантах осуществления терминалы являются терминалами доступа, например, беспроводного терминалами, например, мобильными узлами. В соответствии с одним аспектом когнитивная сеть 622 реализует распределенное, скоординированное и/или совместное обнаружение спектра при принятии решения о том, какая часть спектра в настоящее время доступна для использования в ее текущем местоположении.

В соответствии с другим аспектом узел 624 управления принимает окончательное решение об использовании спектра на основе принимаемых информационных отчетов об обнаружении спектра, передаваемых из множества распределенных сенсоров, например, передаваемых из множества терминалов (626,...,628), включающих в себя сенсоры. В соответствии с одним иллюстративным признаком узел 624 управления отправляет управляющую информацию в терминалы (626, 628) для конфигурирования и/или корректировки их обнаружения спектра и/или передачи, например, сообщения корректировки локальных ложных тревог обнаружения, управляющего сообщения локального способа обнаружения и т.д. В различных вариантах осуществления информация корректировки установки ложных тревог, передаваемая из узла 624 управления в терминалы (626, 628), корректируется как функция количества терминалов, сообщающих информацию обнаружения спектра в узел 624 управления. В некоторых вариантах осуществления локальный тип способа обнаружения, передаваемый из узла 624 управления в терминалы (626, 628), выбирается как функция ожидаемого типа сигнализации лицензируемого спектра, который, как ожидается, используется в зоне, если используется часть спектра.

В соответствии с другим признаком терминал (626, 628) передает информацию о своем локальном решении относительно своего обнаружения спектра в отчете, например, сообщении с отчетом, включающем в себя поле с локальным решением и доверительное поле. В соответствии с еще одним признаком терминал (626, 628) отправляет отчет о напряженности поля в узел 624 управления, включающий в себя значение оценки напряженности поля и статистический параметр, связанный с ошибкой оценки передаваемого значения напряженности поля.

Вид 600 на фиг.6 также иллюстрирует две станции (602, 612) телевизионного вещания, расположенные в разных местах и использующие разные части спектра, например, в соответствии с разными лицензиями на спектр и/или разными решениями поставщика услуг. В этом примере предположим, что канал 1 связан с первой частью спектра, канал 2 связан со второй частью спектра, и что канал 3 связан с третьей частью спектра, и что эти три части спектра, например, три полосы частот, не перекрываются.

Станция 602 телевизионного вещания вещает на каналах 1 и 3. Круг 608 представляет внешнюю границу области обслуживания для станции 602 телевизионного вещания. Однако в пределах области 608 существуют мертвые зоны охвата 610, например, из-за преград, топологии, отражений, затенения, замирания, многолучевого распространения и т.д. Телевизионные приемники (604, 606) в хороших областях приема могут принимать сигналы телевизионного вещания из станции 602 телевизионного вещания.

Станция 612 телевизионного вещания вещает на каналах 1 и 2. Круг 618 представляет внешнюю границу области обслуживания для станции 612 телевизионного вещания. Однако в зоне 618 существуют мертвые зоны охвата 620. Телевизионные приемники (614, 616) в хороших областях приема могут принимать сигналы телевизионного вещания из станции 612 телевизионного вещания

Рассмотрим случай, когда когнитивная сеть находится за пределами областей 608 и 618, тогда когнитивная сеть может обнаружить, что полосы частот, соответствующие каналам 1, 2 и 3, не использованы и доступны для использования когнитивной сетью. Если когнитивная сеть будет расположена в области 608, но вне мертвой зоны 610, как указывается стрелкой 630, то когнитивная сеть может обнаружить, что полосы частот, соответствующие каналам 1 и 3, не доступны для использования, и может обнаружить, что полоса частот, соответствующая каналу 2, доступна для использования когнитивной сетью 622. Если когнитивная сеть будет расположена в области мертвой зоны 610, как указывается стрелкой 632, то когнитивная сеть может обнаружить, что полосы частот, соответствующие каналам 1, 2 и 3, доступны для использования когнитивной сетью 622. Если когнитивная сеть расположена в области 618, но вне мертвой зоны 620, как указывается стрелкой 634, то когнитивная сеть может обнаружить, что полосы частот, соответствующие каналам 1 и 2, не доступны для использования, и может обнаружить, что полоса частот, соответствующая каналу 3, доступна для использования когнитивной сетью 622. Если когнитивная сеть будет расположена в мертвой зоне 620, как указывается стрелкой 636, то когнитивная сеть может обнаружить, что полосы частот, соответствующие каналам 1, 2 и 3, доступны для использования когнитивной сетью 622.

Фиг.7 показывает иллюстративный узел 700 управления, например базовую станцию, узел доступа или узел управления когнитивной сети в соответствии с различными вариантами осуществления. Иллюстративный узел 700 управления является, например, узлом 624 управления по фиг.6. Иллюстративная точка 700 доступа включает в себя модуль 702 приемника, например, приемник OFDM, модуль 704 передатчика, например, передатчик OFDM, процессор 706, интерфейс 708 ввода-вывода и память 710, соединенные через шину 712, по которой различные элементы могут обмениваться данными и информацией. Память 710 содержит процедуры 714 и данные/информацию 716. Процессор 706, например CPU, исполняет процедуры 714 и использует данные/информацию в памяти 710 для управления работой узла 700 управления и осуществления способов, например, согласно блок-схеме способа 1000 по фиг.10.

Модуль 702 приемника соединен с приемной антенной 703, через которую узел управления принимает сигналы из терминалов. Принятые сигналы включают в себя, например, сообщение из терминала, передающего определение присутствия канала спектра и меру доверия, связанную с этим результатом определения. Модуль 702 приемника принимает множество решений в отношении присутствия сигнала, представляющего интерес, в спектре беспроводного канала, например, сигнала лицензируемой передачи в спектре беспроводного канала. Принятые сообщения (732,...,734) представляют сообщения, передающие такие решения. Принятые сигналы также включают в себя, например, сообщение из терминала, передающего значение измерения напряженности поля, соответствующее каналу, представляющему интерес, и связанное с индикатором надежности измеренного значения напряженности поля. Принятые сообщения (750,...,752) являются примерами принятых сообщений о напряженности поля.

Модуль 704 передатчика соединен с передающей антенной 705, через которую узел 700 управления передает сигналы в терминалы. Переданные сигналы включают в себя, например, управляющее сообщение, указывающее способ обнаружения, используемый терминалом, при определении, присутствует ли сигнал в данном канале спектра. Переданные сигналы также включают в себя управляющие сообщения, указывающие способ обнаружения, используемый при определении, присутствует ли сигнал в данном канале спектра. Иллюстративными передаваемыми управляющими сообщениями являются сообщения 742 и 746.

Интерфейс 708 ввода-вывода, включенный в некоторые варианты осуществления, соединяет узел 700 управления с другими узлами сети и/или Интернетом.

Процедуры 714 включают в себя процедуру 718 связи и процедуры 720 управления. Процедура 718 связи реализует различные протоколы связи, используемые узлом 700 управления. Процедуры 720 управления включают в себя модуль 722 обработки, модуль 726 объединения решений, модуль 728 обновления способа обнаружения и первый модуль 730 формирования управляющего сообщения, второй модуль 733 формирования управляющего сообщения и модуль 731 обновления порога. Модуль 722 обработки включает в себя модуль 726 объединения решений. В некоторых вариантах осуществления модуль 722 обработки включает в себя модуль 724 объединения напряженности поля.

Данные/информация 716 включают в себя множество принятых сообщений с решением (принятое сообщение 732 с решением терминала 1,..., принятое сообщение 734 с решением терминала N), решение 740 узла управления, сформированное управляющее сообщение 742, включающее в себя индикатор 744 порога, сформированное управляющее сообщение 746, включающее в себя индикатор 748 способа обнаружения. В некоторых вариантах осуществления данные/информация 716 включают в себя множество сообщений, передающих информацию о напряженности поля из разных терминалов (принятое сообщение 750 о напряженности поля терминала 1,..., принятое сообщение 752 о напряженности поля терминала N). В некоторых вариантах осуществления данные/информация 716 включают в себя объединенную информацию 758 о напряженности поля. Принятые сообщения с решением включают в себя поле с решением о присутствии сигнала и поле c доверительной информацией, например, сообщение 732 включает в себя поле 736 с решением о присутствии сигнала и поле 738 с доверительной информацией. Принимаемые сообщения с напряженностью включают в себя поле со значением напряженности поля и связанное с ним поле с информацией об ошибке оценки, например, сообщение 750 включает в себя поле 754 со значением напряженности поля и поле 756 с информацией об ошибке оценки.

Модуль 722 обработки обрабатывает множество принятых решений для определения, включает ли в себя спектр беспроводного канала сигнал, представляющий интерес, например, сигнал лицензируемой передачи. Модуль 726 объединения решений объединяет множество однобитовых решений и доверительную информацию, связанную с каждым из множества однобитовых решений. Модуль 724 объединения напряженности поля объединяет множество измерений напряженности поля, используемых для определения присутствия сигнала. Объединенная информация 758 о напряженности поля является выходом модуля 724. В некоторых вариантах осуществления обработка содержит объединение ошибки оценки, связанной с каждым из измерений напряженности поля для определения, включают ли в себя один или несколько каналов спектра мешающую лицензируемую передачу.

Модуль 728 обновления способа обнаружения определяет, когда отправлять сигнал управления способом обнаружения, по меньшей мере, в одно устройство, обеспечивающее результат определения. Первый модуль 730 формирования управляющего сообщения формирует управляющее сообщение, включающее в себя индикатор способа обнаружения, указывающий способ обнаружения, который будет использоваться, например сообщение 746.

Второй модуль 733 формирования управляющего сообщения формирует управляющее сообщение, включающее в себя индикатор порога, обеспечивающий информацию о пороге, которая будет использоваться приемным устройством при принятии решения в отношении присутствия сигнала, представляющего интерес, в спектре беспроводного канала, например, сообщении 742. Модуль 731 обновления порога определяет, когда отправлять сигнал обновления порога, по меньшей мере, в одно устройство, обеспечивающее результат определения. В некоторых вариантах осуществления модуль 731 обновления порога принимает решение как функцию изменения количества устройств, передающих сигналы присутствия сигнала в устройство 700.

В некоторых вариантах осуществления формируется и передается управляющее сообщение, которое передает и информацию с указанием порога и информацию с индикатором способа обнаружения в одном сообщении.

Фиг.8 показывает иллюстративный терминал 800, например мобильный узел, согласно различным вариантам осуществления. Иллюстративным терминалом 800 является, например, терминал 626 или 628 по фиг.6. Иллюстративный терминал 800 включает в себя модуль 802 приемника, например, приемника OFDM, модуль 804 передатчика, например, передатчика OFDM, процессор 806, устройства 808 ввода-вывода пользователя и память 810, соединенные через шину 812, по которой различные элементы могут обмениваться данными и информацией. Память 810 содержит процедуры 814 и данные/информацию 816. Процессор 806, например CPU (центральный процессор), исполняет процедуры 814 и использует данные/информацию 816 в памяти 810 для управления работой терминала 800 и реализации способов, например, способа блок-схемы последовательности операций способа 900 по фиг.9.

Модуль 802 приемника соединен с приемной антенной 803, через которую терминал принимает сигналы из узла управления. Принимаемые сигналы включают в себя, например, управляющее сообщение, указывающее способ обнаружения, который должен использоваться терминалом 800 в определении, присутствует ли сигнал в данном канале спектра. Принимаемые сигналы также включают в себя управляющее сообщение, указывающее порог обнаружения, который должен использоваться в определении, присутствует ли сигнал в данном канале спектра.

Модуль 804 передатчика соединен с передающей антенной 805, через которую терминал 800 передает сигналы в узел управления. Передаваемые сигналы включают в себя, например, сообщение из терминала 800, передающего результат определения присутствия канала спектра и меру доверия, связанную с этим результатом определения. Передаваемые сигналы также включают в себя, например, сообщение из терминала 800, передающего значение измерения напряженности поля, соответствующее каналу, представляющему интерес, и