Устройство для эмиссии электронов и панель для создания изображения с использованием этого устройства, а также устройство для создания изображения и устройство для отображения информации

Иллюстрации

Показать все

Изобретение относится к устройству для эмиссии электронов, по типу относящемуся к устройствам с эмиссией под действием электрического поля. Настоящее изобретение также относится к панели для создания изображения, использующей устройство для эмиссии электронов, устройству для создания изображения, которое создает изображение на основе вводимого сигнала изображения, и устройству отображения информации, которое отображает сигнал, включенный во вводимый информационный сигнал как изображение. Технический результат - создание устройства для эмиссии электронов указанного типа с эмиссией под действием электрического поля для использования в устройстве для создания изображения, чтобы обеспечить продолжительную эмиссию электронов в устойчивом режиме при более низком рабочем напряжении и более низкой степени вакуума (более высоком давлении). Достигается тем, что устройство для эмиссии электронов включает поликристаллическую пленку из борида лантана и размер кристаллита, образующего эту поликристаллическую пленку, находится в диапазоне от 2,5 до 100 нм, включая границы диапазона; в предпочтительном случае толщина поликристаллической пленки составляет 100 нм или менее. 4 н. и 8 з.п. ф-лы, 19 ил., 4 табл.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к устройству для эмиссии электронов, по типу относящемуся к устройствам с эмиссией под действием электрического поля. Настоящее изобретение также относится к панели для создания изображения, использующей устройство для эмиссии электронов, устройству для создания изображения, которое создает изображение на основе вводимого сигнала изображения, и устройству отображения информации, которое отображает сигнал, включенный во вводимый информационный сигнал как изображение.

Уровень техники

Фиг.10 представляет собой вид в разрезе традиционного устройства для эмиссии электронов, по типу относящегося к устройствам с эмиссией под действием электрического поля. На подложке 1 расположен катодный электрод 2, а на катодном электроде 2 расположен проводящий элемент 3, представляющий собой выступ конической формы. Над катодным электродом 2 и изолирующим слоем 4 находится управляющий электрод 5, который расположен по периферии проводящего элемента 3. Между катодным электродом 2 и управляющим электродом прикладывают напряжение, в результате чего проводящий элемент 3 испускает электроны. К устройству для эмиссии электронов указанного типа с эмиссией под действием электрического поля относятся устройства типа MIM (Metal-Insulator-Metal - металл-изолятор-металл) и устройства типа BSD.

Заднюю пластину, в которой на подложке размещено множество таких устройств для эмиссии электронов указанного типа с эмиссий под действием электрического поля, и переднюю пластину, в которой находится люминесцентный материал, например фосфор, располагают друг против друга и герметизируют по периферии, в результате чего можно получить воздухонепроницаемую емкость (панель для создания изображения). После чего с панелью для создания изображения соединяют схему приведения в действие, в результате чего получают устройство для создания изображения, которое создает изображение.

В выложенной заявке на японский патент № S51-021471 и выложенной заявке на японский патент №01-235124 указано, что устройство для эмиссии электронов указанного типа с эмиссией под действием электрического поля содержит проводящий элемент, представляющий собой выступ конической формы, поверхность которого покрыта материалом, имеющим низкую величину работы выхода электронов и высокую температуру плавления.

В качестве материала с низкой величиной работы выхода электронов в статье "Pulsed laser deposition of crystalline LaB6 thin films" ("Нанесение тонких пленок из кристаллического LaB6 при помощи импульсного лазера"), V.Craciun et al., Applied Surface Science, 247, 2005, pp.384-389, и статье "Field emission studies of pulsed laser deposited LaB6 thin films on W and Re" ("Изучение эмиссии в поле для тонких пленок LaB6 на W и Re, нанесенных при помощи импульсного лазера"), Dattatray. J. Late et al., Ultramicroscopy, 107, 2007, pp.825-832, указан гексаборид лантана.

Сущность изобретения

Существует потребность в устройстве для эмиссии электронов указанного типа с эмиссией под действием электрического поля для использования в устройстве для создания изображения, чтобы обеспечить продолжительную эмиссию электронов в устойчивом режиме при более низком рабочем напряжении и более низкой степени вакуума (более высоком давлении).

Даже если поверхность проводящего элемента покрыта материалом с низкой величиной работы выхода электронов, как описано в выложенной заявке на японский патент № S51-021471, с течением времени часто становится невозможным приведение в действие при первоначальном низком напряжении и ток эмиссии часто становится неустойчивым.

Кроме того, в случае если изготавливают подобную воздухонепроницаемую емкость, иногда выполняют часто повторяющиеся процессы нагрева и охлаждения (включая охлаждение в естественных условиях) и необходимо препятствовать влиянию такого изменения температуры.

Настоящее изобретение создано с целью решить данную проблему, и с этой целью предлагается устройство для эмиссии электронов, которое включает поликристаллическую пленку из борида лантана, при этом размер кристаллита, образующего упомянутую пленку, находится в диапазоне от 2,5 нм до 100 нм.

Согласно настоящему изобретению можно уменьшить флуктуацию тока эмиссии. Кроме того, работа выхода электронов может составлять 3,0 эВ или менее, поэтому можно снизить напряжение приведения в действие. Далее, можно препятствовать отслаиванию или тому подобным явлениям на протяжении всего процесса изготовления устройства для эмиссии электронов.

Дополнительные особенности настоящего изобретения станут очевидными из приведенного далее описания примерных вариантов его реализации, рассмотренного со ссылкой на приложенные чертежи.

Краткое описание чертежей

Фиг.1 - вид в разрезе примерного варианта устройства для эмиссии электронов;

на Фиг.2 показано приведение в действие устройства для эмиссии электронов в этом примере;

на Фиг.3 показано строение поликристаллической пленки из борида лантана;

на Фиг.4А-4С показан другой примерный вариант устройства для эмиссии электронов;

Фиг.5 - вид сверху примерного источника электронов;

Фиг.6 - вид в разрезе примерной панели для создания изображения;

Фиг.7 - структурная схема примерного устройства для создания изображения и примерного устройства для отображения информации;

на Фиг.8А-8F показан примерный процесс изготовления устройства для эмиссии электронов;

На Фиг.9А-9С показан еще один примерный вариант устройства для эмиссии электронов;

Фиг.10 - вид в разрезе традиционного устройства для эмиссии электронов.

Описание вариантов реализации изобретения

Далее со ссылкой на чертежи будут подробно описаны устройство для эмиссии электронов и устройство для создания изображения, соответствующие представленному варианту реализации настоящего изобретения.

Фиг.1 представляет собой вид в разрезе примерного варианта устройства 10 для эмиссии электронов, соответствующего представленному варианту реализации настоящего изобретения.

На подложке 1 расположен катодный электрод 2, а на катодном электроде 2 расположен проводящий элемент 3, имеющий электрическое соединение с этим катодным электродом 2. Катодный электрод 2 выполняет функцию регулирования потенциала проводящего элемента 3 и снабжает проводящий элемент 3 электронами. Кроме того, между катодным электродом 2 и проводящим элементом 3 может быть расположен резистивный слой. В варианте, показанном на Фиг.1, проводящий элемент 3 представляет собой выступ конической формы, однако проводящий элемент 3 может быть выполнен в любом виде, пока он включает выступающую область (или область в форме острия).

На подложке 1 расположен управляющий электрод 5, отделенный изолирующим слоем 4. Отверстие 7, называемое управляющим отверстием, проходит насквозь через изолирующий слой 4 и управляющий электрод 5, созданный на изолирующем слое 4. В отверстии 7 расположен проводящий элемент 3. В предпочтительном случае отверстие 7 имеет круглую форму, однако оно может быть выполнено в форме многоугольника. Далее, поверхность проводящего элемента 3 покрыта поликристаллической пленкой 8 из борида лантана. В данном случае показан вариант реализации настоящего изобретения, в котором вся поверхность проводящего элемента 3 покрыта поликристаллической пленкой 8 из борида лантана, однако поликристаллическая пленка 8 из борида лантана может покрывать, по меньшей мере, часть поверхности выступающей области проводящего элемента 3. Если говорить более конкретно, предпочтительным является нанесение покрытия на конец выступающей области или нанесение покрытия на ту часть выступающей области, которая наиболее близко расположена к управляющему электроду 5. В случае если проводящий элемент 3 представляет собой круглый конус, поликристаллической пленкой 8 желательно покрывать, по меньшей мере, область вершины круглого конуса. Проводящий элемент 3 может состоять из любого из следующего: металла, металлического соединения и полупроводника. В данном случае показан пример, в котором катодный электрод 2 и проводящий элемент 3 созданы как обособленные элементы, однако проводящий элемент 3 может быть выполнен как составная часть катодного электрода 2. Например, выступающая область образована на электроде 2, и эта выступающая область может быть покрыта поликристаллической пленкой 8 из борида лантана.

В представленном варианте реализации настоящего изобретения проводящим элементом 3 и поликристаллической пленкой 8 из борида лантана образован катод 9. Катод 9 представляет собой тело, испускающее электроны. Форма катода 9 соответствует выступающей области проводящего элемента 3, таким образом, катод 9 можно считать имеющим выступающую область. Соответственно поликристаллическая пленка 8 из борида лантана образует, по меньшей мере, часть выступающей области катода 9. В частности, поликристаллическая пленка 8 из борида лантана образует, по меньшей мере, часть поверхности выступающей области катода 9. В данном случае показан пример, в котором проводящий элемент 3 и поликристаллическая пленка 8 из борида лантана образуют катод 9, однако выступающая область катода 9 может быть полностью образована поликристаллической пленкой 8 из борида лантана. Более того, катод 9 может быть полностью образован поликристаллической пленкой 8 из борида лантана, либо катод 9 и катодный электрод 2 могут быть полностью образованы поликристаллической пленкой 8 из борида лантана. Однако предпочтительно, чтобы поликристаллической пленкой 8 была покрыта, по меньшей мере, часть поверхности выступающей части проводящего элемента 3, при этом формой выступающей области катода 9 управляют, используя выступающую область упомянутого проводящего элемента. В любом случае поликристаллическая пленка 8 из борида лантана образует, по меньшей мере, часть поверхности выступающей области катода 9.

В случае приведения в действие устройства 10 для эмиссии электронов таким образом, как показано на Фиг.2, это устройство 10 располагают напротив анода 21. При этом выступающая область катода 9 своим концом ориентирована в направлении анода 21. Давление между анодом 21 и устройством 10 для эмиссии электронов поддерживают на таком уровне, чтобы оно было ниже атмосферного (вакуум). Затем потенциал управляющего электрода 5 задают выше потенциала катодного электрода 2. Эти потенциалы создают электрическое поле в пространстве 6 между управляющим электродом 5 и катодом 9, и катод 9 под действием электрического поля испускает электроны. Кроме того, задание значительно более высокого потенциала на аноде 21 по сравнению с управляющим электродом 5 приводит к ускорению движения электронов, испущенных устройством 10 для эмиссии электронов, в направлении анода 21.

Как описано выше, устройство для эмиссии электронов, соответствующее представленному варианту реализации настоящего изобретения, не является так называемым горячим катодом, в котором средство нагрева является обособленным и расположено в непосредственной близости от катода, чтобы электроны испускались при нагреве катода, а представляет собой устройство для эмиссии электронов, в котором используется так называемый холодный катод, испускающий электроны под действием электрического поля.

Кроме того, здесь описано устройство для эмиссии электронов, конструктивно состоящее из катодного электрода 2, катода 9, управляющего электрода 5 и анода 21. Однако устройство для эмиссии электронов, испускающее электроны, может быть выполнено с возможностью приложения напряжения между анодом 21 и катодом 9 без установки управляющего электрода 5.

Далее будет описана поликристаллическая пленка 8 из борида лантана. Поликристаллическая пленка 8 из борида лантана обладает электропроводностью. Поликристаллическая пленка 8 из борида лантана, соответствующая представленному варианту реализации настоящего изобретения, демонстрирует металлическую проводимость. Как показано на Фиг.3, поликристаллическая пленка 8 из борида лантана, соответствующая представленному варианту реализации настоящего изобретения, имеет характеристики так называемого поликристалла, который образован множеством кристаллитов 80. Каждый кристаллит 80 состоит из борида лантана. Кристаллит - общее название для монокристаллов. Кстати говоря, "зерном" часто называют объект, образованный множеством кристаллитов, объект, имеющий аморфную структуру, и объект, внешне выглядящий структурированным, то есть существует множество ситуаций, когда использование термина "зерно" не является стандартизированным. Поликристаллическая пленка 8, предлагаемая настоящим изобретением, состоит из прилегающих друг к другу (агглютинированных) кристаллитов 80 или прилегающих друг к другу (агглютинированных) образований из множества кристаллитов, поэтому поликристаллическая пленка демонстрирует электропроводность и имеет строение, как у металлической пленки. Поликристаллическая пленка отличается от так называемой пленки из микрочастиц, состоящей из скоплений частиц (например, аморфных частиц).

Хотя кристаллиты 80 или множество образований (скоплений) из кристаллитов 80 прилегают друг к другу, поликристаллическая пленка 8, соответствующая настоящему изобретению, иногда имеет поры между кристаллитами 80 или между образованиями (скоплениями) из упомянутого множества образований. Кроме того, поликристаллическая пленка в некоторых случаях может содержать аморфную область.

Размер кристаллитов 80, которые образуют поликристаллическую пленку 8 из борида лантана, соответствующую представленному варианту реализации настоящего изобретения, составляет 2,5 нм или более. Далее, толщина поликристаллической пленки 8 составляет 100 нм или менее. Как следствие, верхним пределом размера кристаллитов 80, образующих поликристаллическую пленку, неизбежно является 100 нм.

Размер кристаллитов, как правило, можно определить путем измерения дифракции рентгеновских лучей. Размер кристаллита может быть рассчитан на основе профиля дифракционной линии при помощи метода, известного как метод Шеррера.

При помощи измерения дифракции рентгеновских лучей можно не только рассчитать размер кристаллита, но также удостовериться, что поликристаллическая пленка 8 представляет собой поликристалл из гексаборида лантана, и исследовать ориентацию. Гексаборид лантана (LaB6) представляет собой структуру, в которой отношение La к B составляет 1:6 с соблюдением стехиометричности состава и которая имеет простую кубическую решетку. Однако что касается соотношения, могут иметь место нестехиометрический состав и состав, у которого постоянная кристаллической решетки изменяется.

Кроме того, для измерения работы выхода электронов используются метод фотоэлектронной спектроскопии, например, метод ультрафиолетовой фотоэлектронной спектроскопии в вакууме (UPS, Ultraviolet Photoelectron Spectroscopy) и метод зонда Кельвина, а также метод, основанный на взаимосвязи между электрическим полем и током, с измерением тока эмиссии под действием электрического поля в условиях вакуума; и упомянутое измерение может проводиться с объединением указанных методов.

Чтобы измерить характеристики эмиссии электронов, на поверхности выступающей области проводящей иглы (например, иглы из вольфрама), имеющей выступающую область в виде острия, создают пленку из материала, работа выхода электронов для которого известна, например пленку из такого металла, как Мо, толщиной приблизительно 20 нм, и в условиях вакуума создают электрическое поле. После этого на основе характеристик эмиссии электронов сначала определяют коэффициент, на который умножают величину электрического поля, зависящий от формы выступающей области, то есть конца иглы, а затем создают поликристаллическую пленку 8 из борида лантана, после чего можно вычислить величину работы выхода электронов.

Флуктуация характеризуется некоторой амплитудой при колебании тока эмиссии во времени. Временные колебания тока эмиссии можно получить, например, путем создания периодических импульсов напряжения прямоугольной формы и измерения тока эмиссии. Флуктуация может быть вычислена путем деления отклонения при упомянутом колебании тока эмиссии в единицу времени на среднее значение тока эмиссии в единицу времени.

Если говорить более конкретно, непрерывно создают импульсы напряжения прямоугольной формы с шириной 6 мс и циклом 24 мс. После чего, чтобы получить отклонение и среднее значение для периода 15 минут, с интервалом 2 секунды последовательно вычисляют среднее для значений тока эмиссии, соответствующих следующим друг за другом 32 импульсам напряжения прямоугольной формы. Кстати говоря, в случае сравнения амплитуды флуктуации для множества устройств для эмиссии электронов максимальное значение прикладываемого напряжения задают таким образом, чтобы обеспечивалось фактическое равенство средних значений тока.

В данном случае описан пример устройства для эмиссии под действием электрического поля, которое включает проводящий элемент 3 конической формы, обеспечивающий эмиссию электронов. Однако в качестве устройства для эмиссии электронов в представленном варианте реализации настоящего изобретения можно применить и устройство типа MIM, и устройства, в которых используется углеродное волокно, например нанотрубки из углерода. То есть, по меньшей мере, область испускания электронов, а в более общем случае все тело, испускающее электроны, в этих устройствах для эмиссии электронов может быть покрыто поликристаллической пленкой 8.

Далее, на Фиг.4А, 4В и 4С показана примерная схема использования поликристаллической пленки из борида лантана, предлагаемой настоящим изобретением, в другом устройстве для эмиссии электронов. Фиг.4А представляет собой вид сверху в направлении по оси Z, а Фиг.4В представляет собой вид (в плоскости координат Z-X) в сечении плоскостью А-А', показанной на Фиг.4А. Фиг.4С представляет собой вид в направлении по оси Х, указанной на Фиг.4В.

В устройстве 20 для эмиссии электронов между подложкой 11 и расположенным на ней управляющим электродом 15 имеется изолирующий слой 14. Изолирующий слой 14 включает первый изолирующий слой 14а и второй изолирующий слой 14b. Кроме того, на подложке 11 расположен катодный электрод 12, а вдоль поверхности первого изолирующего слоя 14а проходит проводящий элемент 13, соединенный с катодным электродом 12. Второй изолирующий слой 14b в направлении по оси Х имеет меньшую ширину, чем у первого изолирующего слоя 14а, и между изолирующим слоем 14 (первым изолирующим слоем 14а) и управляющим электродом 15 выполнена выемка 16. Проводящий элемент 13 выполнен в виде проводящей пленки. При этом, как видно на Фиг.4В, проводящий элемент 13 выступает от подложки 11 в направлении Z. То есть проводящий элемент 13 имеет выступающую область. Кроме того, часть проводящего элемента 13 входит в выемку 16. Как результат, можно сказать, что, по меньшей мере, часть проводящего элемента 13 включает выступающую область, находящуюся в выемке 16.

Далее, на поверхности проводящего элемента 13 расположена поликристаллическая пленка 18 из борида лантана. Этот случай иллюстрирует вариант, в котором большая часть проводящего элемента 13 покрыта поликристаллической пленкой 18 из борида лантана. Однако поликристаллической пленкой 18 из борида лантана может быть покрыта, по меньшей мере, часть поверхности выступающей области проводящего элемента 13. Если говорить более конкретно, предпочтительным является нанесение покрытия на конец выступающей области или нанесения покрытия на ту часть выступающей области, которая наиболее близко расположена к управляющему электроду 15. А именно, поликристаллическую пленку 18 из борида лантана можно расположить таким образом, чтобы она находилась между проводящим элементом 13 и управляющим электродом 15. Поликристаллическая пленка 18 из борида лантана обладает теми же особенностями, что и поликристаллическая пленка 8 из борида лантана, описанная с использованием Фиг.1, Фиг.3 и т.д.

В устройстве 20 для эмиссии электронов, соответствующем описанному здесь варианту реализации настоящего изобретения, катод 19 образован проводящим элементом 13 и поликристаллической пленкой 18, как и в рассмотренном выше варианте реализации настоящего изобретения. Катодный электрод 12 выполняет функцию регулирования потенциала проводящего элемента 13 и снабжает проводящий элемент 13 электронами. Катод 19 имеет форму, которая соответствует выступающей области проводящего элемента 13, и поэтому можно сказать, что катод 19 включает выступающую область.

Как следствие, поликристаллическая пленка 18 из борида лантана образует, по меньшей мере, часть выступающей области катода 19. В частности, поликристаллическая пленка 18 из борида лантана образует, по меньшей мере, часть поверхности выступающей области катода 19. Данный случай приведен как пример, в котором катод 19 состоит из проводящего элемента 13 и поликристаллической пленки 18 из борида лантана, однако выступающая область катода 19 может быть полностью образована поликристаллической пленкой 18 из борида лантана. Более того, катод 19 может полностью состоять из поликристаллической пленки 18 из борида лантана, либо катод 19 и катодный электрод 12 могут полностью состоять из поликристаллической пленки 18 из борида лантана. В этом примере может быть использован мембранный катод 19, как следствие, в предпочтительном случае формой выступающей области катода 19 можно управлять при помощи поликристаллической пленки 18 из борида лантана. В любом случае поликристаллическая пленка 18 из борида лантана образует, по меньшей мере, часть выступающей области катода 19.

Кроме того, как видно на Фиг.4А и 4С, проводящий элемент 13 и поликристаллическая пленка 18 проходят в направлении оси Y, не прерываясь, однако проводящий элемент 13 и поликристаллическая пленка 18 могут быть выполнены в виде множества участков, расположенных друг от друга на заранее определенном расстоянии в направлении по оси Y.

Помимо этого, на Фиг.4 показан пример, в котором часть управляющего электрода 15 покрыта проводящей пленкой 17, состоящей из того же материала, что и проводящий элемент 13. Проводящую пленку 17 можно исключить, однако в предпочтительном случае ее желательно обеспечить в целях создания стабильного электрического поля. На проводящей пленке 17 или управляющем электроде 15 может находиться поликристаллическая пленка из борида лантана.

Согласно данной конструкции управляющий электрод 15 и катод 19 размещены с образованием зазора между ними. К управляющему электроду 15 прикладывается более высокий потенциал, чем у катодного электрода 12, соответственно, в зазоре возникает электрическое поле, и катодом 19 могут испускаться электроны. В данном варианте реализации настоящего изобретения, как и на Фиг.2, анод 21 размещен в положении напротив устройства 20 для эмиссии электронов. Как результат, выступающая область катода 19 своим концом ориентирована в направлении анода.

Далее с использованием Фиг.9А-9С будет описана форма катода 19, соответствующего данному варианту реализации настоящего изобретения. Фиг.9А представляет собой вид в разрезе, иллюстрирующий в увеличенном масштабе выступающую область катода 19.

Как описано выше, катод 19 может иметь поликристаллическую пленку 18, соответствующую настоящему изобретению, по меньшей мере, на части выступающей области.

Кроме того, на Фиг.9А в целях упрощения описания показан вариант реализации настоящего изобретения, в котором часть управляющего электрода 15 не покрыта проводящей пленкой 17. Однако даже если проводящая пленка 17 покрывает управляющий электрод 17, эта проводящая пленка 17 обладает фактически тем же потенциалом, что и у управляющего электрода 15, поэтому можно рассматривать проводящую пленку 17 как часть управляющего электрода 15.

Далее поверхности изолирующего слоя 14, состоящего из первого изолирующего слоя 14а и второго изолирующего слоя 14b будут рассмотрены для каждой части, используя разные представления. Если говорить более конкретно, поверхность изолирующего слоя 14 может быть разделена на боковую поверхность 141 первого изолирующего слоя 14а, верхнюю поверхность 142 первого изолирующего слоя 14а и боковую поверхность 143 второго изолирующего слоя 14b. Из поверхностей первого изолирующего слоя 14а верхняя поверхность 142 данного слоя - это поверхность, формирующая выемку 16. Из поверхностей первого изолирующего слоя 14а боковая поверхность 141 данного слоя - это поверхность, проходящая до верхней поверхности 142 первого изолирующего слоя 14а. Как описано выше, первый изолирующий слой 14а - это структура, которая имеет ступеньку. При этом в непосредственной близости от места изменения направления (точка K), являющегося границей между верхней поверхностью 142 и боковой поверхностью 141 образована выступающая область катода 19. Боковая поверхность 143 второго изолирующего слоя 14b - это поверхность, формирующая выемку 16. Таким образом, выемку 16 формируют верхняя поверхность 142 и боковая поверхность 143. Верхняя поверхность 142 первого изолирующего слоя 14а и боковая поверхность 143 второго изолирующего слоя 14b - это поверхности, расположенные внутри выемки 16, поэтому упомянутые верхняя поверхность 142 и боковая поверхность 143 могут быть представлены как внутренние поверхности изолирующего слоя 14. С другой стороны, боковая поверхность 141 первого изолирующего слоя 14а - это поверхность, расположенная снаружи выемки 16, поэтому эта боковая поверхность может быть представлена как внешняя поверхность изолирующего слоя 14.

Как правило, верхняя поверхность 142 первого изолирующего слоя 14а фактически параллельна поверхности подложки 11. С другой стороны, на Фиг.4 показан вариант реализации настоящего изобретения, в котором боковая поверхность 141 первого изолирующего слоя 14а перпендикулярна поверхности подложки 11, и изменение направления в первом изолирующем слое 14а происходит под прямым углом. Однако боковая поверхность 141 первого изолирующего слоя 14b может быть наклонена к поверхности подложки 11. То есть боковая поверхность 141 может быть выполнена как наклонная поверхность. В частности, в предпочтительном случае боковая поверхность 141 может быть наклонена таким образом, чтобы образовывать острый угол с поверхностью подложки 11. В этом случае, когда боковая поверхность 141 является наклонной поверхностью, угол изменения направления (угол на стороне изолирующего слоя, обозначенный как I на Фиг.9А) в первом изолирующем слое 14а может быть тупым. В данном случае использованные слова "острый угол" или "тупой угол" не подразумевают математическую точность, и поверхности могут в некоторой степени обладать кривизной.

Управляющий электрод 15 расположен на расстоянии Т2 от верхней поверхности 142 первого изолирующего слоя 14а. Расстояние Т2 соответствует толщине второго изолирующего слоя 14b. То есть второй изолирующий слой 14b представляет собой слой, который также предназначен для регулирования интервала между верхней поверхностью 142 первого изолирующего слоя 14а и управляющим электродом 15.

В предпочтительном случае в представленном варианте реализации настоящего изобретения выступающая область катода 19 проходит по верхней поверхности 142 первого изолирующего слоя 14а и боковой поверхности 141 первого изолирующего слоя 14а. То есть часть выступающей области катода 19 находится в выемке 16 и в предпочтительном случае может контактировать с верхней поверхностью 142 первого изолирующего слоя 14а. При такой конфигурации между выступающей областью катода 19 и верхней поверхностью 142 первого изолирующего слоя 14а возникает поверхность раздела.

На Фиг.9А расстояние h (h>0) показывает, что выступающая область катода 19 выступает от верхней поверхности первого изолирующего слоя 14а на высоту h. Участок на высоте h является концом выступающей области. Расстояние х (х>0) представляет собой ширину, измеряемую в направлении вглубь выемки 16 на граничной поверхности между выступающей областью катода 19 и верхней поверхностью первого изолирующего слоя 14а. Другими словами, расстояние х представляет собой расстояние от края (точка J) выступающей области, контактирующей с поверхностью изолирующего слоя 14, который образует выемку 16, до края выемки 16, то есть до места изменения направления (точка K) в первом изолирующем слое 14а. Фактически, хотя расстояние х зависит от глубины выемки 16, оно находится в диапазоне от 10 до 100 нм.

При такой конфигурации увеличивается площадь контакта между выступающей областью катода 19 и первым изолирующим слоем 14а и повышается сила механического сцепления между выступающей областью катода 19 и первым изолирующим слоем 14а. Это может воспрепятствовать возникновению отслаиваний или тому подобного для катода 19 на протяжении всего процесса изготовления устройства для эмиссии электронов.

При такой конфигурации можно воспрепятствовать колебаниям тока эмиссии. Далее опишем это подробно.

На Фиг.9В показана величина временных колебаний Ie в случае изменения расстояния х в выемке 16. К тому же, Ie в данном случае обозначает степень эмиссии электронов и число электронов, достигающих анода 21. В качестве исходного значения принято среднее число испущенных электронов Ie, обнаруженное в первые 10 секунд после запуска устройства 20 для эмиссии электронов. Затем на основе исходного значения выполнена стандартизация, и изменение степени эмиссии электронов нанесено на график в виде десятичного логарифма. Как можно понять из Фиг.9В, со снижением расстояния х усиливается тенденция к уменьшению количества испущенных электронов по сравнению с исходным значением.

Фиг.9С представляет собой чертеж, на котором то же измерение, что и на Фиг.9В, выполнено для нескольких устройств. На Фиг.9С стандартизация выполнена на основе исходного значения для числа испущенных электронов в зависимости от расстояния х, и на график нанесена степень эмиссии электронов в заранее определенный момент времени после запуска устройства 20 для эмиссии электронов. Как видно из этого чертежа, чем меньше расстояние х, тем сильнее уменьшение по сравнению с исходным значением. Далее, если расстояние х превышает 20 нм, тенденция зависимости данного свойства от расстояния х ослабевает. Как описано выше, в предпочтительном случае расстояние х составляет 20 нм или более.

С учетом этих результатов предполагаемой причиной является то, что при увеличении расстояния х увеличивается площадь контакта между выступающей областью и первым изолирующим слоем 14а, за счет чего может уменьшиться тепловое сопротивление. В дополнение к этому предполагаемой причиной является то, что увеличивается теплоемкость из-за увеличения объема выступающей области катода 19. То есть, предположительно, уменьшается степень возрастания температуры катода 19, поэтому снижается вероятность ранних колебаний.

С другой стороны, если расстояние х увеличивается чрезмерным образом, увеличивается ток утечки между катодом 19 и управляющим электродом 15 через внутреннюю поверхность выемки, то есть через верхнюю поверхность первого изолирующего слоя 14а и боковую поверхность второго изолирующего слоя 14b. Во всяком случае, предпочтительно, чтобы расстояние х было меньше глубины выемки 16.

Кроме того, предпочтительно, чтобы угол θ, образованный поверхностью катода 19 (в частности, краем катода (точка J), находящимся на верхней поверхности 142) и верхней поверхностью 142 первого изолирующего слоя 14а, составлял больше 90°. Помимо этого, предпочтительно, чтобы угол θ был меньше 180°. В данном случае угол θ представляет собой угол на стороне существования вакуума (обозначенной как V на Фиг.9А), образованный поверхностью катода 19 и верхней поверхностью 142 первого изолирующего слоя 14а. Если предположить, что верхняя поверхность 142 является плоской, угол сопряжения между катодом 19 и верхней поверхностью 142 составляет 180° - θ. Фактически, исходя из предположения, что верхняя поверхность 142 первого изолирующего слоя 14а является плоской, угол сопряжения между верхней поверхностью 142 и катодом 19 в предпочтительном случае может быть задан больше 0° и меньше 90°.

Помимо этого, в выемке 16 поверхность катода 19 в предпочтительном случае может постепенно наклоняться относительно верхней поверхности 142 первого изолирующего слоя 14а. То есть в предпочтительном случае угол между касательной к поверхности катода 19 в произвольном месте выемки 16 и верхней поверхностью 142 первого изолирующего слоя 14а меньше 90°.

Это может воспрепятствовать возникновению аномального разряда. Этот момент рассмотрим далее более подробно.

В общем случае место, в котором друг с другом одновременно контактируют три типа материалов с различающимися диэлектрическими постоянными, например вакуум, изолятор и проводник, называют местом тройного контакта.

Несмотря на зависимость от определенных обстоятельств электрическое поле в месте тройного контакта чрезмерно увеличивается по сравнению с окружающей зоной, что иногда вызывает возникновение разряда. В данном варианте реализации настоящего изобретения точка J, показанная на Фиг.9А, также является местом тройного контакта вакуума (V), изолятора (I) и проводника (С). Если угол θ, под которым выступающая область катода 19 контактирует с первым изолирующим слоем 14а, составляет 90° или больше, электрическое поле в месте тройного контакта не слишком сильно отличается от электрического поля в окружающей зоне. Выступающая область катода 19 образует угол θ, поэтому напряженность электрического поля в месте тройного контакта, возникающем в зоне "изолятор - вакуум - проводник", ослабевает и становится возможным предотвратить появление разряда, обусловленного возникновением аномального электрического поля.

На Фиг.9А кратчайшее расстояние между управляющим электродом 15 и концом выступающей области катода 19 обозначено d. В этом примере расстояние d также является кратчайшим расстоянием между управляющим электродом 15 и катодом 19. Кроме того, форма поблизости от конца выступающей области, показанной на Фиг.9А, может быть охарактеризована радиусом r кривизны.

В случае если разность потенциалов между управляющим электродом 15 и катодом 19 является постоянной, напряженность электрического поля, возникшего в непосредственной близости от концевой зоны, различается в зависимости радиуса r кривизны и расстояния d. А именно, чем меньше радиус r, тем более сильное электрическое поле может быть создано в непосредственной близости от концевой зоны.

В случае когда электрическое поле поблизости от конца выступающей области является постоянным, если расстояние d является относительно небольшим, радиус r кривизны может быть относительно большим. И наоборот, если радиус r кривизны является относительно небольшим, расстояние d может быть относительно большим. Разница в расстоянии d влияет на разницу в числе испущенных электронов, которые рассеялись, поэтому чем меньше r и больше d, тем большую эффективность устройства 20 для эмиссии электронов можно обеспечить. В этом случае, используя электрический ток (If), измеряемый при приложении напряжения к устройству, и ток (Ie), получаемый в условиях вакуума, можно определить эффективность (η) следующим образом:

η=Ie/(If+Ie).

Далее будет описан примерный способ изготовления устройства 20 для эмиссии электронов.

В качестве подложки 11 можно использовать кварцевое стекло - стекло, в котором уменьшено содержание примесей, например Na, известково-натриевое стекло и кремний. К необходимым функциям подложки желательно отнести не только обеспечение необходимой механической прочности, но также и высокую стойкость к щелочи и кислоте, например, раствору для сухого травления, влажного травления и проявления, а также наличие небольших различий в тепловом расширении по сравнению с наносимым материалом и другими компонентами, используемыми в качестве слоев при создании многослойной структуры, в случае их использования как единого тела, такого как панель отображения информации. Помимо этого, желательно использовать материал, который мало подвержен диффузии щелочного элемента из стекла при проведении термической обработки.

Сначала, чтобы получить ступеньку на подложке, последовательно создают первый изолирующий слой 14а и второй изолирующий с