Платформа система в корпусе для электронно-микрофлюидных устройств

Иллюстрации

Показать все

Изобретение относится к интегрированному электронно-микрофлюидному устройству. Сущность изобретения: интегрированное электронно-микрофлюидное устройство содержит полупроводниковую подложку (106) на первой основе (122), электронную схему (102, 104) на первой стороне полупроводниковой подложки и структуру сопряжения сигналов с внешним устройством. Структура сопряжения сигналов расположена на первой стороне полупроводниковой подложки и выполнена с возможностью принимать электрические сигналы от электронной схемы. Микрофлюидная структура (126) сформирована в полупроводниковой подложке и выполнена с возможностью ограничивать текучую среду и позволять течение текучей среды в микрофлюидную структуру и из нее только на второй стороне полупроводниковой подложки, которая противоположна первой стороне полупроводниковой подложки и обращена от первой основы. Электронно-микрофлюидное устройство образует приспосабливаемую платформу для создания различных применений «системы в корпусе». Достигается четкое разделение между электрическими и жидкостно-химическими интерфейсами. Заявленный способ изготовления устройства по изобретению также предоставляет возможность простого формирования теплоизолированных микрофлюидных структур. 2 н. и 13 з.п. ф-лы, 7 ил.

Реферат

Настоящее изобретение относится к интегрированному электронно-микрофлюидному устройству. Оно также относится к сборочному узлу, содержащему интегрированное электронно-микрофлюидное устройство. Изобретение дополнительно относится к способу изготовления интегрированного электронно-микрофлюидного устройства и к способу изготовления сборочного узла.

Микрофлюидные устройства были разработаны для выполнения мелкомасштабного химического и биологического анализа. Это привело к микрофлюидным устройствам для проведения исследований на одном кристалле («лаборатория на кристалле», от англ. Lab-on-chip), которые содержат флюидные компоненты и электрические управляющие схемы или чувствительные компоненты, интегрированные на одну и ту же подложку. Таким образом, подобные миниатюрные устройства образуют химические реакторы. Они способны выполнять смешивание реактивов, термоциклирование или другие функции, включая обнаружение продуктов реакции. Такое устройство, например, известно из патента США №6057149.

Проблема таких интегрированных электронно-микрофлюидных устройств состоит в том, что жидкостно-химические интерфейсы и электрические интерфейсы находятся в тесной близости друг к другу. Это несет риск подвергания электрических контактов воздействию химикатов и, таким образом, работы со сбоями или разрушения устройства.

Следовательно, задача настоящего изобретения состоит в том, чтобы предложить интегрированное электронно-микрофлюидное устройство и сборочный узел, содержащий такое интегрированное электронно-микрофлюидное устройство, которые обеспечивают лучшую изоляцию между химическими интерфейсами и электрическими интерфейсами.

Дополнительная задача настоящего изобретения состоит в том, чтобы предложить способ изготовления интегрированного электронно-микрофлюидного устройства и изготовления сборочного узла, содержащего такое интегрированное электронно-микрофлюидное устройство, которые обеспечивают возможность лучшей изоляции химических и электрических интерфейсов.

Согласно первому аспекту изобретения предложено интегрированное электронно-микрофлюидное устройство, содержащее

- полупроводниковую подложку на первой основе;

- электронную схему на полупроводниковой подложке;

- структуру сопряжения сигналов, которая расположена на первой стороне полупроводниковой подложки, обращенной к первой основе, и которая соединена с электронной схемой и выполнена с возможностью обмена входящими и исходящими сигналами с электронной схемой и с внешним каналом связи;

- микрофлюидную структуру в полупроводниковой подложке, которая выполнена с возможностью ограничивать текучую среду и позволять течение текучей среды в микрофлюидную структуру и из нее только на второй стороне полупроводниковой подложки, которая противоположна первой стороне полупроводниковой подложки и обращена от первой основы.

В интегрированном электронно-микрофлюидном устройстве по изобретению функциональные электронные и микрофлюидные сегменты устройства сосредоточены в полупроводниковой подложке. С одной стороны, полупроводниковая подложка содержит одну или более электронных схем и структуру сопряжения сигналов с одним или более внешними устройствами. Электронная схема образует разветвленную сеть из схемных элементов, таких как транзисторы, диоды, резисторы, конденсаторы, катушки индуктивности и т.д., чтобы служить конкретной функции, подобной, например, приведению в действие структуры нагревателя в полупроводниковой подложке или преобразованию аналоговых сигналов датчиков в цифровые сигналы, и т.д. Структура сопряжения сигналов образует интерфейс между электронной схемой на полупроводниковой подложке и внешним устройством. Между электронной схемой и структурой сопряжения сигналов передаются электрические сигналы, такие как электрический ток или напряжение. Как таковая структура сопряжения сигналов принимает электрические сигналы от электронной схемы. Связь с внешним устройством может также использовать электрические сигналы или сигналы других типов, такие как электромагнитные сигналы, например, на радиочастоте или оптической частоте. Необязательно, конечно, эта структура сопряжения также может быть выполнена с возможностью передавать информацию, исходящую от внешнего устройства и направленную к электронной схеме. Однако при применениях к датчикам, например, зачастую будет достаточным осуществлять "одностороннюю" передачу сигналов на внешнее устройство.

С другой стороны, полупроводниковая подложка дополнительно содержит микрофлюидную структуру. Микрофлюидные структуры как таковые хорошо известны в данной области техники, как описано ранее, и могут служить самым различным целям, таким как обнаружение молекул в текучей среде, нагрев текучей среды, выполнение химических реакций одной или более текучих сред, или же просто хранение или транспортировка текучей среды. Микрофлюидная структура сформирована в полупроводниковой подложке и ограничивает текучую среду. То есть микрофлюидная структура обеспечивает объем для размещения, удерживания или транспортировки текучей среды (газа или жидкости). Ограничение текучей среды, таким образом, может служить для того, чтобы направлять текучую среду или ограничивать распространение текучей среды в некоторых направлениях и за пределы некоторых точек. Обычно микрофлюидная структура имеет стенки, являющиеся непроницаемыми для текучей среды, чтобы ограничивать текучую среду в пределах нужного объема в полупроводниковой подложке.

Ограничение текучей среды можно обеспечивать в нескольких направлениях, параллельных или перпендикулярных основной поверхности полупроводниковой подложки, конечно же, как это требуется в конкретном применении. Однако согласно изобретению по меньшей мере одна микрофлюидная структура выполнена с возможностью позволять течение текучей среды в микрофлюидную структуру и из нее только на второй стороне полупроводниковой подложки, которая противоположна первой стороне полупроводниковой подложки и обращена от первой основы.

Электронная схема и структура сопряжения сигналов, с одной стороны, и микрофлюидная структура, с другой стороны, предусмотрены на противоположных сторонах полупроводниковой подложки. Следовательно, флюидные, в частности, жидкостные интерфейсы и электрические интерфейсы с полупроводниковой подложкой предусмотрены на противоположных сторонах полупроводниковой подложки. Интегрированное электронно-микрофлюидное устройство по изобретению, таким образом, обеспечивает четкое разделение между электрической и микрофлюидной частями устройства. Таким образом, этот конструктивный признак отражает общую концепцию настоящего изобретения, а именно строгое локальное разделение химических и электрических интерфейсов с внешними устройствами.

Отмечается, однако, что устройство может, конечно же, дополнительно включать в себя требуемые комбинированные электрохимические интерфейсы. Например, могут быть предприняты меры для непосредственного гальванического контакта между текучей средой и электрическим контактным элементом в микрофлюидной структуре, которая образует реакционную камеру в полупроводниковой подложке.

Функция первой основы состоит в том, чтобы являться опорой полупроводниковой подложки. Таким образом, она должна быть достаточно жесткой, чтобы обеспечивать опору, и достаточно долговечной, чтобы выдерживать условия обработки во время процессов изготовления и функционирования (например, воздействие химикатов, высоких температур или радиации), которым она подвергается. Как таковая, она может выполняться из целого ряда различных материалов, таких как стекло, пластмасса, эпоксидная смола и т.д., и в различных формах, таких как пластина, куб или балка, в зависимости от соответствующего микрофлюидного применения. Кроме того, к этой первой основе обращена "электрическая сторона" полупроводниковой подложки, что также имеет преимущество защиты упомянутых схемы и структуры сопряжения сигналов от доступа текучей среды.

Электронно-микрофлюидное устройство по изобретению образует платформу «система в корпусе» (System-in-Package, SiP), которая может быть использована в качестве базы для многих специализированных применений устройства. SiP-устройства являются функциональными системами, которые выполнены состоящими из подсистем, которые объединяются в корпусном формате по промышленным стандартам корпусов интегральных схем.

В уровне техники известны многочисленные конструкции микрофлюидных устройств, причем некоторые из них будут описаны более подробно в контексте предпочтительных вариантов воплощения. Электронно-микрофлюидное устройство по изобретению также образует модуль, который легко интегрируется в сборочный узел на схемной плате, как будет также описано более подробно далее.

В нижеследующем описании будут представлены предпочтительные варианты воплощения электронно-микрофлюидного устройства по первому аспекту изобретения. Эти варианты воплощения могут быть скомбинированы, если только явно не указано или из соответствующего контекста не очевидно, что они могут составлять только альтернативные варианты.

Электронно-микрофлюидное устройство по изобретению предпочтительно основывается на технологии переноса подложки (STT, от англ. substrate transfer technology), которая делает возможным формирование микрофлюидных структур даже в утоненной полупроводниковой подложке без создания риска сделать устройство хрупким в течение обработки и последующего манипулирования. Обзор STT дается в работе Рональда Деккера (Ronald Dekker), Substrate transfer technology. Delft University of Technology, 2004, которая во всей своей полноте включена сюда путем ссылки.

Предпочтительным материалом полупроводниковой подложки является кремний. Преимущества выбора этого материала будут поясняться дополнительно ниже в контексте более предпочтительных вариантов воплощения.

Предпочтительный вариант воплощения электронно-микрофлюидного устройства дополнительно содержит вторую основу на второй стороне полупроводниковой подложки. Вторая основа имеет отверстие, которое позволяет течение текучей среды в микрофлюидную структуру и из нее. Вторая основа дополнительно стабилизирует устройство и герметизирует те части второй стороны полупроводниковой подложки, которые не должны подвергаться воздействию окружающей среды или текучей среды.

Согласно дополнительному предпочтительному варианту воплощения структура сопряжения сигналов содержит по меньшей мере один Т-образный внутренний контактный элемент. Этот внутренний контактный элемент имеет два сегмента, которые соответствуют горизонтальной и вертикальной чертам буквы "Т". Сегмент, соответствующий вертикальной черте Т, также называется подложечным сегментом. Он расположен на полупроводниковой подложке и соединяется с электронной схемой. Другой сегмент внутреннего контактного элемента, который соответствует горизонтальной черте Т, предусмотрен на наклонной боковой поверхности пакета подложек. Этот сегмент также называется боковым сегментом; поскольку он образует электроизолированный вывод, который соединяется с внешними контактными элементами. Следовательно, подложечный сегмент и боковой сегмент внутреннего контактного элемента соединяют электронную схему на полупроводниковой подложке с внешними контактными элементами. Оба сегмента внутреннего контактного элемента герметизированы от доступа текучей среды. Подложечный сегмент герметизирован благодаря многослойной структуре пакета подложек, который образован первой основой, полупроводниковой подложкой и второй основой. Электрическая изоляция бокового сегмента герметизирует внутренний контактный элемент на наклонной боковой поверхности.

Структура устройства по этому варианту воплощения является совместимой с хорошо известной концепцией корпусирования ShellCase, известной из публикации WO 95/19645, которая во всей своей полноте включена сюда путем ссылки. Настоящий вариант воплощения расширяет применимость этой концепции корпусирования к электронно-микрофлюидным устройствам.

Основа предпочтительно принимает форму пластины-основы. Если использованию подлежит электропроводящая основа, то должна соблюдаться осторожность для обеспечения электрической изоляции между пластиной-основой и полупроводниковой подложкой с тем, чтобы избежать нежелательных коротких замыканий между электронными схемами, предусмотренными на полупроводниковой подложке. Также пластина-основа должна быть изолирована от любых электрических контактных элементов, предусмотренных на электронно-микрофлюидном устройстве, чтобы избежать коротких замыканий между различными контактными структурами в тех местах, где это требуется для надлежащей работы устройства.

В дополнительном усовершенствовании того варианта воплощения, в котором используется Т-образный внутренний контактный элемент, второй сегмент Т-образного внутреннего контактного элемента расположен прилегающим к полупроводниковой подложке. Полупроводниковая подложка содержит первую электроизоляционную канавку, которая расположена и выполнена с возможностью изолировать второй сегмент Т-образного внутреннего контактного элемента на одной стороне от частей полупроводниковой подложки на противоположной стороне первой электроизоляционной канавки. Эта изоляционная канавка предпочтительно проходит через полупроводниковую подложку вниз до оксидного слоя, который был предварительно сформирован на подложке и который выступает вбок за изоляционную канавку.

Этот вариант воплощения исключает электрическое короткое замыкание между боковым сегментом на наклонной поверхности на многослойной подложке и полупроводниковой подложкой. В альтернативном варианте воплощения такая боковая выступающая часть подложки является уменьшенной, чтобы обеспечивать электроизолирующее наполнение между полупроводниковой подложкой и боковым сегментом внутреннего контактного элемента. Материалом-наполнителем предпочтительно является клей, который используется для монтажа полупроводниковой подложки на вторую пластину-основу.

В одном предпочтительном варианте воплощения либо только первая основа, либо первая и вторая основы являются теплоизолирующими. Микрофлюидная структура окружена первой теплоизоляционной канавкой в полупроводниковой подложке. Теплоизоляционная канавка выходит на вторую сторону полупроводниковой подложки и заполнена теплоизоляционным материалом или является по меньшей мере частично пустой.

Настоящий вариант воплощения использует выгодные свойства электронно-микрофлюидного устройства для интеграции теплоизолированной микрофлюидной структуры. Теплоизоляция микрофлюидной структуры является полезной, например, при нагреве этой структуры до некоторой температуры. Нагрев может требоваться, например, чтобы ускорять или поддерживать химическую реакцию. Примером такой химической реакции является полимеразная цепная реакция (ПЦР) для амплификации дезоксирибонуклеиновой кислоты (ДНК). Другим использованием теплоизолированной области является сенсорное обнаружение изменений температуры вследствие химической реакции, например, с помощью микрокалориметрического датчика.

Средство нагрева или средство обнаружения соответственно расположены на первой стороне полупроводниковой подложки, преимущественно в пределах теплоизолированной области. Электрическое подключение средства нагрева или средства обнаружения к другим частям электронной схемы вне теплоизолированной области не будет значительно нарушать тепловую изоляцию.

Настоящий вариант воплощения является особенно выгодным для интегрированных электронно-микрофлюидных устройств, которые содержат кремниевую полупроводниковую подложку. Кремний считается весьма подходящим материалом для изготовления интегрированных электронно-микрофлюидных устройств, таких как устройства «лаборатория на кристалле» или сенсорные устройства. Однако его высокая теплопроводность затрудняет изготовление теплоизолированных областей в таком устройстве. В предшествующем уровне техники один обычно используемый способ преодоления этой проблемы состоял в том, чтобы локально утончить кремниевую подложку, приводя в результате к мембране. Обработка мембран, однако, не подходит для массового производства. Мембраны являются хрупкими и легко ломаются в ходе последующей обработки, что приводит к потере выхода годного в процессе изготовления. Кроме того, обработка мембран почти всегда основывается на травлении кремниевой пластины-подложки с тыльной стороны с использованием гидроксида тетраметиламмония (ТМАН) или гидроксида калия (КОН). Это требует защиты передней стороны такой пластины-подложки вследствие агрессивного характера этих травителей, что является трудным. Кроме того, травление КОН не совсем хорошо понятно и может иногда приводить к неожиданному поведению при травлении. Дополнительным недостатком использования травителя КОН является то, что оно требует особых жидкостных стендов, которые не являются частью стандартного оборудования, находящегося на большинстве полупроводниковых фабрик.

В противоположность этому настоящий вариант воплощения использует расположение полупроводниковой подложки на первой теплоизолирующей основе. Подходящими теплоизоляционными материалами являются, например, электроизоляционные материалы. Электроизоляционные материалы обычно являются также хорошими теплоизоляционными материалами. Материалы, которые составляют исключение из этого правила, например алмаз и ВеО (оксид бериллия), не должны использоваться в качестве материала основ для настоящего варианта воплощения.

В этом варианте воплощения использование технологий переноса подложки оказывается особенно выгодным. Технология STT считалась в данной области техники невыгодной для многих применений. Это было обусловлено высокой термостойкостью, которая следует из выбора такого материала основы, которым, типично для STT, является электроизоляционный материал, такой как стекло, керамика или полимер. Однако, как результат, в настоящем варианте воплощения многослойная подложка по изобретению является особенно подходящей для цели теплоизоляции, и теплоизолированные области могут быть легко сформированы в полупроводниковой подложке путем формирования вокруг них одной или более теплоизоляционных канавок.

Предпочтительно первая теплоизоляционная канавка простирается от второй стороны полупроводниковой подложки через полупроводниковую подложку и закрыта на первой стороне подложки теплоизолирующим слоем, например слоем диоксида кремния, который расположен на полупроводниковой подложке. Таким образом, наличие теплопроводящего материала подложки (кремния) сведено к минимуму.

Теплоизоляционная канавка может быть заполнена теплоизоляционным материалом. Другим альтернативным вариантом получения хорошей тепловой изоляции является поддержание теплоизоляционной канавки по меньшей мере частично пустой. При частичном заполнении теплоизоляционной канавки предпочтительно используется материал с высокой термостойкостью. Многие клеевые материалы, которые используются для монтажа полупроводниковой подложки на первую пластину-основу, являются подходящими в этом контексте.

Использование электро- и/или теплоизолирующих основ является в целом предпочтительным также и для других применений электронно-микрофлюидного устройства по изобретению, независимо от дополнительных конкретных конструктивных признаков настоящего варианта воплощения.

В нижеследующем описании будут приведено несколько примеров выгодных вариантов реализации микрофлюидных структур в устройстве по изобретению.

Микрофлюидные структуры из нижеследующих примеров предпочтительно реализованы в виде утоненной полупроводниковой подложки, такой как утоненная кремниевая подложка.

Первым примером является реакционная камера, которая образована первой выемкой в полупроводниковой подложке. Реакционная камера ограничена стенкой выемки. Предпочтительно для теплоизоляции реакционной камеры выполнена вторая теплоизоляционная канавка, расположенная окружающей стенку выемки.

Таким образом, тепло, которое создается в реакционной камере за счет химических реакций, ограничивается боковой областью подложки, соответствующей реакционной камере. Теплоизоляционная канавка также может использоваться для циркуляции охлаждающей текучей среды.

Реакционная камера в дополнительном усовершенствованном варианте может быть расположена напротив матрицы нагревателей, которая образует часть электронной схемы и расположена на первой стороне полупроводниковой подложки. Таким образом, химические реакции могут проводиться управляемым образом.

Во втором примере микрофлюидная структура содержит электрофоретический насос. Для этого в полупроводниковой подложке выполнена вторая выемка, и две пластины возбуждения, которые образованы стенками этой выемки, электрически изолированы от полупроводниковой подложки смежной второй электроизоляционной канавкой.

Третий пример образует электронно-микрофлюидное устройство, в котором электронная схема содержит фотодиод, который расположен непосредственно рядом с микрофлюидной структурой в форме микрофлюидного канала в полупроводниковой подложке. Таким образом, генерация света в ходе химической реакции может быть обнаружена внутрикристально («на кристалле»).

В четвертом примере электронная схема содержит два контактных элемента на первой стороне полупроводниковой подложки, которые проходят до микрофлюидной структуры в форме третьей выемки в полупроводниковой подложке. Контактные элементы выполнены с возможностью устанавливать в ходе работы устройства непосредственный гальванический контакт с текучей средой в третьей выемке.

В дополнительном предпочтительном варианте воплощения между второй пластиной-основой и полупроводниковой подложкой расположен слой бензоциклобутена, БЦБ.

Использование БЦБ представляет преимущественный вариант воплощения относительно использования анодной сварки, которая характеризуется строгими требованиями в отношении плоскостности и чистоты поверхностей. Кроме того, анодная сварка требует высоких температур. Это ограничивает выбор клеевого материала, используемого для приклеивания полупроводниковой подложки к первой пластине-основе, материалами, которые могут выдерживать такие высокие температуры. БЦБ, напротив, является идеально подходящим для обеспечения плоскостности и соединения склеиванием поверх полостей в полупроводниковой подложке. Следовательно, может быть достигнуто неразъемное соединение между полупроводниковой подложкой и второй пластиной-основой, и исключается неумышленное заполнение содержащихся полупроводниковой подложкой микрофлюидных структур. Дополнительные подробности использования БЦБ будут поясняться в контексте предпочтительного варианта воплощения способа по изобретению.

В дополнительном предпочтительном варианте воплощения отверстие во второй пластине-основе выполнено с возможностью удерживать съемную крышку. Следовательно, дополнительный вариант воплощения интегрированного электронно-микрофлюидного устройства содержит съемную крышку, расположенную в отверстии второй пластины-основы. Съемная крышка может содержать по меньшей мере одно отверстие, которое выполнено с возможностью позволять вход или выход текучей среды в микрофлюидную структуру, предусмотренную на полупроводниковой подложке. Однако такие отверстия также могут помещаться во второй пластине-основе, что позволяет оставлять съемную крышку без какого-либо открывания. В этом случае съемная крышка служит только для того, чтобы обеспечить отверстие для очистки микрофлюидной структуры. Съемная крышка может изготовляться по дешевой технологии формования или литья. Она может легко заменяться, когда устройство должно использоваться для другой химической реакции. Также съемная крышка позволяет простой доступ по большой площади к микрофлюидной структуре в полупроводниках с целью очистки этой микрофлюидной структуры.

Первая и вторая основы являются предпочтительно стеклянными пластинами. Стекло является хорошо известным материалом для интегрированных электронно-микрофлюидных устройств. В настоящем контексте его преимущество состоит в высокой термостойкости.

Однако для основ также могут выгодно использоваться альтернативные материалы. Некоторые полимеры, в частности полиимиды, обеспечивают жесткость, чтобы являться опорой полупроводниковой подложки и предотвращать поломку. С другой стороны, известные полиимиды предлагают лучшую термостойкость и химическую стойкость, что делает их особенно подходящими для применений «лаборатория на кристалле». В альтернативных вариантах воплощения либо первая, либо вторая, либо обе основы выполняются из полиимида. Например, если ожидается контакт второй основы с химикатами, которые могут повреждать другие материалы основы, такие как стекло, то может использоваться полиимид. С другой стороны, если устройство создает высокие температуры или подвергается действию высоких температур, может быть также выгодным предусмотреть первую основу из полиимида. Кроме полиимидов полезные свойства могут обеспечивать эпоксидная смола или некоторые поликарбонаты, что делает их подходящими материалами для первой или второй основы.

Согласно второму аспекту изобретения предложен сборочный узел, который содержит интегрированное электронно-микрофлюидное устройство согласно первому аспекту изобретения или одному из вариантов его воплощения. Электронно-микрофлюидное устройство смонтировано на схемной плате. Внешние контактные элементы интегрированного электронно-микрофлюидного устройства соединены с контактными структурами, предусмотренными на схемной плате.

В дополнение к обеспечению четкого разделения между электрическими и химическими интерфейсами сборочный узел по настоящему аспекту изобретения имеет преимущество большой гибкости в комбинировании различных электронно-микрофлюидных устройств и схемных плат. В зависимости от требуемого применения конкретное электронно-микрофлюидное устройство может быть выбрано и смонтировано на схемной плате, которая предпочтительно имеет стандартный электрический интерфейс для соединения с электронно-микрофлюидным устройством.

В предпочтительном варианте воплощения сборочного узла в промежутке между схемной платой и электронно-микрофлюидным устройством расположен электроизолирующий слой нижнего заполнения. Нижнее заполнение выполнено с возможностью предотвращать проникновение текучей среды в этот промежуток.

Таким образом, герметизация внешнего электрического интерфейса электронно-микрофлюидного устройства сохраняется также и в сборочном узле на печатной схемной плате. Четкое разделение между "жидкостной стороной" и "электрической стороной" дополнительно улучшается.

В дополнительном усовершенствованном варианте этой концепции контактные структуры расположены на одной стороне схемной платы, обращенной к электронно-микрофлюидному устройству, и электрически соединены с электронными схемами, которые предусмотрены на противоположной стороне схемной платы. На этой противоположной стороне схемной платы также предпочтительно предусмотрены контактные площадки для внешних устройств. Электрическое соединение между двумя противоположными сторонами схемной платы предпочтительно осуществляется посредством сквозных внутриплатных межсоединений.

Согласно третьему аспекту изобретения предложен способ изготовления интегрированного электронно-микрофлюидного устройства с электронной схемой и микрофлюидной структурой. Способ содержит следующие этапы:

- изготовление полупроводниковой пластины-подложки, которая для последующего разделения на множество отдельных электронно-микрофлюидных устройств содержит множество электронных схем и структур сопряжения сигналов на первой стороне пластины-подложки;

- монтаж полупроводниковой пластины-подложки на первую основу обращенной к этой первой основе первой стороной пластины-подложки;

- утоньшение полупроводниковой пластины-подложки со второй стороны пластины-подложки, которая противоположна первой стороне пластины-подложки;

- формирование множества микрофлюидных структур в полупроводниковой пластине-подложке со второй стороны пластины-подложки; и

- разрезание пластины-подложки на кристаллы.

Способ по второму аспекту изобретения дает возможность экономически выгодного изготовления интегрированного электронно-микрофлюидного устройства по первому аспекту изобретения. Преимущества способа по изобретению соответствуют упомянутым ранее в контексте описания электронно-микрофлюидного устройства по первому аспекту изобретения. Кроме того, способ по изобретению обеспечивает эффективный путь производства большого количества электронно-микрофлюидных устройств из полупроводниковой пластины-подложки, которая была обработана согласно способу по изобретению.

С использованием способа по второму аспекту изобретения может изготовляться множество различных устройств для различных электронных и микрофлюидных применений. Это обеспечивает экономическую выгоду, поскольку для изготовления конкретных электронных устройств и микрофлюидных структур должны изменяться только процессы маскирования. Общая схема обработки остается идентичной для всех видов электронно-микрофлюидных устройств.

В нижеследующем описании будут приведены предпочтительные варианты воплощения способа по изобретению. Эти варианты воплощения могут быть скомбинированы, если только явно не указано или из соответствующего контекста не очевидно, что они составляют альтернативные варианты.

В предпочтительном варианте воплощения этап формирования множества микрофлюидных структур содержит формирование в полупроводниковой пластине-подложке первой теплоизоляционной канавки вокруг по меньшей мере одной из микрофлюидных структур. Как упомянуто ранее в контексте описания соответствующего варианта воплощения электронно-микрофлюидного устройства по первому аспекту изобретения, этот вариант воплощения обеспечивает простой процесс формирования теплоизолированных микрофлюидных структур.

В дополнительном предпочтительном варианте воплощения этап герметизации микрофлюидных структур путем монтажа второй пластины-основы содержит этапы, на которых:

- осаждают слой бензоциклобутена, БЦБ, на вторую пластину-основу;

- монтируют вторую пластину-основу на второй стороне пластины-подложки, таким образом формируя многослойную подложку;

- отверждают слой БЦБ путем первоначального нагрева многослойной подложки до температуры между 170°С и менее 200°С и последующего нагрева многослойной подложки до температуры 200°С.

Этот вариант воплощения использует выгодные свойства БЦБ. Этот материал имеет уникальную температурную характеристику. БЦБ при достижении температуры в 170°С становится жидким с вязкостью, сходной с вязкостью воды. После дальнейшего нагрева до 200°С БЦБ вновь твердеет и окончательно сшивается при 200°С. Следовательно, БЦБ является подходящим для обеспечения плоскостности, а также для соединения склеиванием поверх полостей. Предпочтительно перед этапом отверждения слоя БЦБ выполняется этап сушки слоя БЦБ при температуре ниже 170°С, пока он не станет полностью сухим.

Предпочтительный вариант воплощения способа дополнительно содержит этапы, на которых:

- формируют для каждого электронно-микрофлюидного устройства на пластине-подложке подложечный сегмент Т-образного внутреннего контактного элемента, соответствующий вертикальной черте Т и соединяемый с электронной схемой соответствующего электронно-микрофлюидного устройства;

- формируют надрезы в первой основе и полупроводниковой пластине-подложке, таким образом задавая наклонные боковые поверхности для каждого электронно-микрофлюидного устройства;

- формируют выводы на наклонных боковых поверхностях, таким образом завершая боковой сегмент (152, 154) Т-образного внутреннего контактного элемента, соответствующий горизонтальной черте Т;

- формируют внешние контактные элементы для электрического контакта с внешним устройством.

Настоящий вариант воплощения объединяет преимущества технологии переноса подложки и способа ShellCase no WO 95/19645 для производства устройств на интегральных схемах по новой технологии на платформе SiP в области электронно-микрофлюидных устройств.

В дополнительном предпочтительном варианте воплощения этап формирования выводов на наклонных боковых поверхностях содержит формирование второго сегмента Т-образного внутреннего контактного элемента прилегающим к полупроводниковой подложке, и при этом этап формирования первой электроизоляционной канавки для изолирования второго сегмента Т-образного внутреннего контактного элемента от частей полупроводниковой подложки проводят вместе с этапом формирования множества микрофлюидных структур. Эта обработка позволяет сформировать сегменты выводов непосредственно на боковой поверхности полупроводниковой подложки и в то же время исключает риск короткого замыкания между внутренним контактным элементом и подложкой.

В дополнительном варианте воплощения этап монтажа полупроводниковой пластины-подложки на первую основу содержит подэтапы, на которых:

- формируют полимерный слой на пластине-подложке;

- формируют отслаиваемый слой на полимерном слое; и

- монтируют временную основу на отслаиваемом слое.

В этом варианте воплощения временную основу отслаивают в ходе последующей обработки путем удаления отслаиваемого слоя. Таким образом, полимерный слой образует первую основу в ходе работы электронно-микрофлюидного устройства. Слой временной основы обеспечивает дополнительную устойчивость в ходе изготовления устройства. Отслаиваемым слоем, например, может быть оксидный слой, который легко удаляется.

В дополнительном варианте воплощения способа по изобретению этап обеспечения по меньшей мере одного отверстия во второй пластине-основе для каждого электронно-микрофлюидного устройства содержит выполнение отверстия во второй пластине-основе с возможностью удерживания съемной крышки. Этот вариант воплощения делает возможным простое повторное использование электронно-микрофлюидного устройства для различных химикатов путем обеспечения большой площади доступа к микрофлюидной структуре в отверстии для крышки, что может использоваться в процессе чистки.

Согласно четвертому аспекту изобретения способ изготовления сборочного узла согласно второму аспекту изобретения содержит этап изготовления интегрированного электронно-микрофлюидного устройства в соответствии со способом по третьему аспекту изобретения или одному из вариантов его воплощения и этап монтажа электронно-микрофлюидного устройства на схемной плате.

Преимущества способа по четвертому аспекту изобретения проистекают непосредственно из преимуществ способа по третьему аспекту изобретения.

В нижеследующем описании будут поясняться дополнительные варианты воплощения изобретения со ссылкой на приложенные фигуры.

Фиг.1A)-J) показывают различные стадии процесса изготовления интегрированного электронно-микрофлюидного устройства, которое содержит микрокалориметрический датчик.

Фиг.2 показывает пример сборочного узла, который содержит электронно-микрофлюидное устройство, изготовленное в соответствии с процессом по пункту 1 формулы изобретения.

Фиг.3А)-I) показывают различные стадии в ходе изготовления устройства «лаборатория на кристалле».

Фиг.4 показывает устройство «лаборатория на кристалле», интегрированное в сборочный узел на печатной схемной плате.

Фиг.5А)-D) показывают различные стадии в ходе изготовления подварианта устрой