Пригодные для переработки наполненные вулканизуемые галоидированные изоолефиновые эластомеры

Иллюстрации

Показать все

Изобретение относится к эластомерам, обладающим улучшенной перерабатываемостью сырой смеси, в частности к вулканизуемым наполненным эластомерным смесям. Эластомер включает галоидированный сополимер изоолефина с С4 по C7 и от 3 до 20 мас.% алкилстирола, обладающий от 0,2 до 2 мольных % галоалкилстирола, где алкил выбирают с C1 по C5 или алкила с разветвленной цепью, вязкость по Муни составляет 28-32, среднечисленная молекулярная масса находится в пределах 200000-240000, средневесовая молекулярная масса - 320000-440000, z - средняя молекулярная масса 450000-650000 и показателем разветвленности (g') от 0,4 до 1,1. Вулканизуемые наполненные резиновые смеси на основе эластомера обладают улучшенной перерабатываемостью и изделие из нее характеризуется улучшенными показателями воздухопроницаемости, 3 н. и 19 з.п. ф-лы, 36 ил., 11 табл.

Реферат

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННУЮ ЗАЯВКУ

По настоящей заявке испрашивается приоритет для заявки на патент US серийный №60/639939, поданной 29 декабря 2004 г.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к эластомерам, обладающим улучшенной перерабатываемостью в сырой смеси, а более конкретно - к наполненным эластомерным смесям, которые могут быть использованы в качестве внутренней оболочки шины, в которой невулканизованная смесь, когда она деформирована до предусмотренной степени деформации, обладает быстрой релаксацией напряжения.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Галобутилкаучуки, которые представляют собой галоидированные изобутилен-изопреновые сополимеры, являются полимерами, выбираемыми благодаря наилучшему удерживанию воздуха в шинах, применяемых в легковых, грузовых автомобилях, в автобусах и самолетах. Бромбутилкаучук, хлорбутилкаучук и галоидированные звездообразные бутилкаучуки могут служить основой резиновых смесей для таких конкретных целей применения в шинах, как камеры и внутренние оболочки шин. Выбор компонентов и добавок для конечной технической рецептуры зависит от необходимого баланса свойств, а именно от перерабатываемости и липкости сырой (невулканизованной) смеси на шинном заводе в сравнении с эксплуатационными характеристиками вулканизованного композита шины. Примерами таких эластомеров являются бутил - (изобутилен-изопреновый каучук или ИИК), бромированный бутил(бромированный изобутилен-изопреновый каучук или БИИК), хлорированный бутил-(хлорированный изобутилен-изопреновый каучук или ХИИК), звездообразный бутилкаучук (ЗОБ), эластомеры EXXPRO™ (бромированный изобутилен/п-метилстирольный сополимер или БИМСМ) и т.д. Настоящая заявка посвящена перерабатываемости галоидированных изоолефиновых полимеров, включая БИМСМ.

Известно изготовление обычных и нанокомпозитных внутренних оболочек шин с использованием бромированных сополимеров изобутилена и пара-метилстирола и смесей этих сополимеров с другими полимерами (см., например, Elspass и др., US 5807629 и US 6034164). Обычные внутренние оболочки шин, как правило, наполняют углеродной сажей или другим наполнителем, тогда как нанокомпозиты, как правило, могут также включать глину.

Углеродная сажа представляет собой обычный усиливающий материал, используемый в галоидированных изоолефиновых каучуках. Основной углеродной сажей, используемой во внутренних оболочках шин, является продукт N660, который обладает удельной площадью поверхности по азоту 35 м2/г (см. W.Barbin и др., глава 9 в Science and Technology of Rubber, J.E.Mark и др. Eds., 2nd Ed., Academic Press: New York, (1994)). Продукт N234 представляет собой другую обычную углеродную сажу, которая обладает удельной площадью поверхности по азоту 126 м2/г и более выраженными усиливающими характеристиками. Свойство липкости бутильного полимера, содержащего небольшое количество вещества для повышения клейкости, известно, например, из работы M.F.Tse, "Green Tack Of Butyl Polymers", Polym. Prepr., vol. 45, №1, c.980 (2004).

Нанокомпозиты представляют собой полимерные системы, содержащие неорганические частицы с по меньшей мере одним размером в нанометровом диапазоне. Некоторые их примеры описаны в US 6060549, 6103817, 6034164, 5973053, 5936023, 5883173, 5807629, 5665183, 5576373 и 5576372. Неорганическими частицами обычного типа, используемыми в нанокомпозитах, являются филлосиликаты, неорганические вещества из общего класса так называемых "наноглин" или "глин". Благодаря общему улучшению качеств пневматической диафрагмы из различных полимерных смесей, когда в них присутствуют глины, существует потребность располагать нанокомпозитом с низкой воздухопроницаемостью, в особенности динамически вулканизованным термопластичным нанокомпозитом, таким как используемый в изготовлении шин.

Органоглины, как правило, готовят посредством ионообменных реакций на растворной основе, в ходе протекания которых натриевые ионы, которые имеются на поверхности натриевого монтмориллонита, заменяются органическими веществами, такими как алкил- и ариламмониевые соединения, и, как правило, известными в промышленности как вызывающие набухание или расслаивающие средства (см., например, US № 5807629, WO 02/100935 и WO 02/100936). Ссылки на описания других известных технических решений включают US №№ 5576373, 5665183, 5807629, 5936023, 6121361, WO 94/22680, WO 01/85831 и WO 04/058874. Эластомерные нанокомпозитные внутренние оболочки шин и автомобильные камеры изготавливают с применением комплексообразующего агента и каучука, где этот агент способен взаимодействовать с каучуком, обладающим положительно заряженными группами, и равномерно диспергированным в нем слоистым силикатом (см., например, Kresge и др. US 5665183 и 5576373).

Независимо от применяемого наполнителя, бромированные сополимеры изобутилена и пара-метилстирола и их смеси, используемые во внутренних оболочках шин, в целесообразном варианте обладают перерабатываемостью, аналогичной перерабатываемости обычного бромированного бутилкаучука, преимущественно когда они наполнены различными количествами углеродной сажи, частиц глины или т.п. Когда полимер деформируют, благодаря уменьшению энтропии в полимере создается напряжение. Однако даже если полимер удерживают в деформированном состоянии, напряжение падает или уменьшается, поскольку полимерные цепи проявляют тенденцию к обратному диффундированию к изотропному состоянию наивысшей термодинамической вероятности. Хорошая перерабатываемость требует быстрого уменьшения напряжения сырой или невулканизованной смеси, когда она деформирована до предусмотренной степени деформации. Следовательно, используемые в настоящем описании понятия "перерабатываемость" и "релаксация напряжения" являются синонимичными. Плохая перерабатываемость или медленное ослабление, или релаксация напряжения создает проблемы при изготовлении шины, поскольку никакой оператор не желает манипулировать с куском резиновой смеси, который по ходу времени продолжает сморщиваться. Хотя данная проблема существует в течение многих десятилетий, большого количества систематических исследований, посвященных перерабатываемости сырых эластомеров, наполненных углеродной сажей или другими наполнителями, не проводили. Обычно концентрация углеродной сажи находится в интервале от 40 до 100 част./100, где част./100 означает частей на сто частей каучука (если количество эластомера = 100 г, тогда количество углеродной сажи = от 40 до 100 г). Помимо перерабатываемости требуется, разумеется, сохранить насколько это возможно другие преимущества эксплуатационных свойств эластомерной смеси внутренней оболочки шины, таких как непроницаемость, усталостная выносливость при многократных деформациях, сцепление в вулканизованном состоянии и т.д.

При низком содержании углеродной сажи в бутилкаучуке композит может быть описан как демонстрирующий поведение наподобие жидкости. С повышением содержания углеродной сажи, когда наполнитель присутствует в достаточно высокой концентрации и/или полимер участвует в достаточном сильных взаимодействиях с наполнителем, во многих бутилкаучуках может наблюдаться гелеподобное поведение, вследствие чего частицы наполнителя начинают просачиваться через полимер с образованием сплошной сетки. Концентрация углеродной сажи или другого имеющегося наполнителя, при которой отмечают гелеподобное поведение или поведение наподобие псевдотвердого вещества, называют порогом просачивания.

Обычно более низкие критические концентрации наполнителя или пороги просачивания являются следствием более сильных взаимодействий полимера/наполнителя, как изложено Y.Yurekli и др. в работе "Structure and Dynamics of Carbon Black-Filled Elastomers," J. Polym. Sci., Polym. Phys. Ed., vol.39, с.256 (2001), и M.F.Tse и др. в работе "Structure and Dynamics of Carbon Black Filled Elastomers II, IMS and IR", Rubber World, vol. 228, №1, с.30 (2003). С повышением содержания наполнителя порог просачивания может сам проявляться различными путями, например: резкое увеличение времени релаксации; резкое увеличение площади под кривой уменьшения напряжения, называемое вязкостью в стационарном состоянии (см. Strobi, The Physics of Polymers, 2nd Ed., Springer, Germany (1997) (более быстрая релаксация обычно приводит к уменьшенной площади, следовательно, к более низкой вязкости в стационарном состоянии или к улучшению перерабатываемости); увеличение модуля накопления (G') на участке низкой частоты до такой же величины, как у модуля потерь (G''); и т.д. В любом случае отмечают, что когда содержание превышает порог просачивания, перерабатываемость значительно снижается. Объяснение уменьшения напряжения полимера приведено W.Tobolsky в работе Properties and Structwre of Polymers, John Wiley & Sons, Inc., New York, NY, c.219(1960).

Улучшение перерабатываемости резиновых смесей на основе звездообразных бутильных и галобутильных полимеров известно, например, из патента US 5071913, выданного на имя Powers и др. В нем описаны уникальные условия полимеризации, дающие возможность расширить молекулярно-массовое распределение посредством высокой степени разветвления, вследствие чего полимер состоит из низкомолекулярных линейных цепей, которые смешивают с небольшой частью молекул звездообразной конфигурации. Достоинства перерабатываемости включают более быстрое уменьшение напряжения, повышенную прочность до обработки и улучшенные смешение, каландрирование и шприцевание.

В данной заявке описаны галоидированные изоолефиновые эластомеры, наполненные углеродной сажей или другим наполнителем, характеризующиеся молекулярной массой и составом для быстрой релаксации напряжения, вызыващего большую деформацию сырых резиновых смесей, и улучшенными вязкоупругими свойствами при небольшой деформации, которые определяют, при какой концентрации наполнитель начинает просачиваться и образует сплошную сетку. Было установлено, что в случае наполнения углеродной сажей, глиной или другим наполнителем галоидированные изоолефиновые эластомеры, такие как, например, бромированные изобутилен/пара-метилстирольные эластомеры, обладающие особыми характеристиками содержания алкилстирола, содержания атома брома, вязкости по Муни, молекулярной массы и показателя разветвленности, проявляют такую же степень релаксации напряжения, как и обычные бромированные бутилкаучуки.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Было установлено, что для хорошей перерабатываемости в виде наполненной сырой смеси галоидированные изоолефиновые эластомеры должны обладать особыми характеристиками вязкости по Муни, молекулярной массы и показателя разветвленности. Применение такого эластомера обеспечивает улучшенные свойства расплава и характеристики перерабатываемости наполненной смеси, такие как вязкость, характеристики релаксации, прочность до обработки и другие физические свойства. Могут быть также достигнуты улучшения проницаемости. Многие физические свойства готовых товарных продуктов, изготовленных из этих эластомеров, могут быть сопоставимыми со свойствами нанокомпозитов или других наполненных смесей, образуемых обычными эластомерами, такими как бромированные бутилкаучуки (бромированный изобутилен-изопреновый каучук или БИИК). Так, например, композицию по изобретению можно использовать в качестве пневматической диафрагмы, в частности во внутренних оболочках шин и камерах.

Объектом настоящего изобретения в одном варианте являются бромированные изобутилен-метилстирольные (EXXPRO (БИМСМ)) эластомеры новых сортов, специально разработанные для нанокомпозитных внутренних оболочек шин с улучшенными барьерными свойствами для удовлетворения потребностей производства шин. Одно ключевое требование при применении с этой целью состоит в том, чтобы перерабатываемость сырой смеси эластомера EXXPRO была аналогичной перерабатываемости бромированного бутилкаучука, такого как BIIR 2222. Для хорошей перерабатываемости требуется быстрая релаксация напряжения сырой смеси, когда она деформирована до предусмотренной степени деформации. На основании исследований больших нелинейных вязкоупругих деформаций (деформация = 100%) было установлено, что эластомер EXXPRO (БИМСМ) с такой же вязкостью по Муни или молекулярной массой, как у бромированного бутилкаучука BIIR 2222, когда в обоих полимерах содержится одинаковое количество продукта N660, может обладать такой же степенью релаксации напряжения, как этот последний полимер. На основании исследований небольших линейных вязкоупругих деформаций (деформация = от 1 до 2%) было установлено, что эластомеры EXXPRO с разными молекулярными массами и составами проявляют аналогичную степень взаимодействия с продуктом N660, основанного на понятии порога просачивания.

В общем взаимодействия БИМСМ/N660 не кажутся сильными. Не основываясь на какой-либо теории, полагают, что при более низком содержании усиливающей углеродной сажи, такой как N660, с эластомером EXXPRO (БИМСМ) большая деформация, 100%-ная, в масштабах перерабатываемости обычно "отмачивает" или "отрывает" полимерные цепи от поверхности наполнителя. Это явление известно как эффект Пэйна (Payne). Другое описание эффекта Пэйна заключается в том, что большая деформация способна, по-видимому, разрушить агломератную сетку наполнителя и высвободить захваченные полимерные цепи. Таким образом, релаксация напряжения зависит главным образом от молекулярной массы или вязкости по Муни полимера. Небольшое улучшение перерабатываемости может быть также достигнуто дополнительным уменьшением взаимодействий полимера/наполнителя, которое может быть осуществлено уменьшением числа функциональных групп на углеродной саже и/или в полимере. Однако, в общем, очевидно, что для регулирования перерабатываемости вязкость по Муни или молекулярная масса БИМСМ важна больше, чем взаимодействия БИМСМ/наполнителя. Таким образом, объектом настоящего изобретение является галоидированный изоолефиновый эластомер, такой как EXXPRO (БИМСМ), с приемлемыми свойствами для применения в качестве базового полимера в смесях для внутренних оболочек шин.

В одном варианте объектом настоящего изобретения является эластомерная композиция, пригодная для переработки в вулканизуемую наполненную резиновую смесь. Эта композиция включает галоидированный сополимер изоолефина с С4 по C7 и от 3 до 20 мас.% алкилстирола. Сополимер включает от 0,2 до 2 мольных % галоалкилстирола. Сополимер обладает вязкостью по Муни меньше 37, среднечисленной молекулярной массой меньше 270000, средневесовой молекулярной массой меньше 470000, z-средней молекулярной массой меньше 700000 и показателем разветвленности (g') от 0,4 до 1,1. В одном варианте изоолефин представляет собой изобутилен, алкилстирол представляет собой п-метилстирол, а атомом галогена является атом брома.

В одном варианте вязкость по Муни сополимера находится в пределах от 27 до 37, среднечисленная молекулярная масса находится в пределах от 170000 до 270000, средневесовая молекулярная масса находится в пределах от 300000 до 470000 и/или z - средняя молекулярная масса находится в пределах от 400000 до 700000; а в другом варианте вязкость по Муни находится в пределах от 28 до 34, среднечисленная молекулярная масса находится в пределах от 200000 до 240000, средневесовая молекулярная масса находится в пределах от 320000 до 440000 и/или z - средняя молекулярная масса находится в пределах от 450000 до 650000.

В одном варианте сополимер включает по меньшей мере 70 мольных % изобутилена, от 5 до 10 мас.% п-метилстирола и от 0,5 до 1,5 мольных % бромметилстирола.

В других вариантах эластомерная композиция обладает характеристическим временем релаксации напряжения до 1 кПа меньше 300 с и/или эластомерная композиция обладает характеристической вязкостью в стационарном состоянии меньше 2000 кПа·с.

Эластомерная композиция далее может включать вспомогательный каучук, вещество для улучшения технологических свойств, вулканизующее вещество, противостаритель, наполнитель, пластификатор или т.п., или их сочетание. В одном варианте эластомерная композиция включает от 20 до 70 част./100 углеродной сажи, от 1 до 30 част./100 глины в другом варианте и сочетание от 20 до 70 част./100 углеродной сажи и от 1 до 30 част./100 глины в еще одном варианте.

В другом варианте объектом настоящего изобретения является способ изготовления вулканизованного наполненного резинового изделия. Этот способ включает: (а) приготовление эластомерной смеси с наполнителем и вулканизующим веществом, где эластомерная смесь представлена выше; (б) обработку этой приготовленной смеси с приданием конфигурации изделия и (в) вулканизацию смеси для изготовления изделия в готовой конфигурации. Этим изделием может быть, например, внутренняя оболочка шины или камера.

В другом варианте объектом изобретения является шина, включающая внутреннюю оболочку, изготовленную по способу, включающему: (а) приготовление описанной выше эластомерной смеси с наполнителем и вулканизующим веществом, в котором, например, эластомерная смесь включает бромированный сополимер изобутилена и от 3 до 20 мас.% п-метилстирола, обладающий от 0,2 до 2 мольных % бромметилстирола, вязкостью по Муни меньше 37, среднечисленной молекулярной массой меньше 270000, средневесовой молекулярной массой меньше 470000, z-средней молекулярной массой меньше 700000 и показателем разветвленности (g') от 0,4 до 1,1; (б) обработку этой приготовленной смеси с приданием конфигурации внутренней оболочки в шине и (в) вулканизацию смеси с получением внутренней оболочки в шине.

В одном варианте внутренняя оболочка шины может обладать воздухопроницаемостью меньше 3,5×10-8 см3·см/см2·с·ат, а в других вариантах от 1,2×10-8 до 4×10-8 см3·см/см2·с·ат или от 1,5×10-8 до 3,5×10-8 см3·см/см2·с·ат. В других вариантах шина обладает характеристическим удерживанием давления воздуха с потерей в месяц меньше 2,25%, предпочтительно с потерей в месяц меньше 2%, и/или характеристической долговечностью по меньшей мере 700 ч, предпочтительно по меньшей мере 750 ч, а более предпочтительно по меньшей мере 800 ч.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлен график релаксации напряжения по методу растяжения для продуктов ВПК 2222, EXXPRO 89-1 и EXXPRO 01-5, наполненных 50 част./100 углеродной сажи N660.

На фиг.2А и 2Б продемонстрированы кривые RPA для EXXPRO 01-5 (фиг.2А) в сравнении с BIIR 2222 (фиг.2 В).

На фиг.3А показано время релаксации напряжения для BIIR 2222 и EXXPRO 01-5 в зависимости от концентрации углеродной сажи (N660).

На фиг.3Б показана вязкость в стационарном состоянии у BIIR 2222 и EXXPRO 01-5 в зависимости от концентрации углеродной сажи (N660).

На фиг.4А, 4Б и 4В продемонстрирована перерабатываемость при разных содержаниях углеродной сажи для EXXPRO 01-5 (фиг.4А), EXXPRO 89-1 (фиг.4Б) и BIIR 2222 (фиг.4Б) и показано, что EXXPRO 89-1 обладает слегка повышенной скоростью релаксации напряжения в сравнении с EXXPRO 01-5.

На фиг.5А и 5Б сопоставлена перерабатываемость эластомеров EXXPRO 01-5 (фиг.5А) и 90-10 (фиг.5Б) с их главными цепями.

На фиг.6А и 6Б сопоставлена перерабатываемость эластомеров EXXPRO 01-5 (фиг.6А) и 89-1 (фиг.6Б), наполненных 50 част./100 разных углеродных саж.

На фиг.7А и 7Б графически сопоставлена перерабатываемость низковязких по Муни или низкомолекулярных EXXPRO (фиг.7А) с BIIR 2222 (фиг.7Б).

На фиг.8А и 8Б продемонстрированы время для релаксации до низкого напряжения (фиг.8А) и вязкость в стационарном состоянии (фиг.8Б) у полимеров BIIR 2222 и EXXPRO с варьируемой вязкостью по Муни при разных концентрациях углеродной сажи N660.

На фиг. с 9А по 9Д продемонстрированы совмещенные эталонные кривые времени-температуры параметров G' и G'' для композитов EXXPRO 01-5/N660 при разных концентрациях углеродной сажи N660.

На фиг. с 10А по 10Г продемонстрированы совмещенные эталонные кривые времени-температуры параметров G' и G'' для композитов EXXPRO 89-1/N660 при разных концентрациях углеродной сажи N660.

На фиг. с 11А по 11Д продемонстрированы совмещенные эталонные кривые времени-температуры параметров G' и G'' для низковязких по Муни композитов EXXPRO (ХР 3433)/N660 при разных концентрациях углеродной сажи N660.

На фиг.2 показаны значения G'VG' при 10' рад/с для EXXPRO 01-5, EXXPRO 89-1 и ХР-3433* при разных концентрациях углеродной сажи N660.

На фиг. с 13А по 13Г продемонстрированы совмещенные эталонные кривые времени-температуры параметров G' и G'' для композитов BIIR 2222/N660 при разных концентрациях углеродной сажи N660.

На фиг.14 показаны кривые G''/G' смесей полимера/50 част./100 УС/7 част./100 органоглины.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В настоящей заявке описаны обладающая перерабатываемостью невулканизованная наполненная эластомерная смесь, способ изготовления полезного изделия из этой смеси и изготовленные таким образом полезные изделия. В одном варианте эта смесь или изделие представляет собой нанокомпозит галоидированного эластомера и глины, также включающий в качестве усиливающего наполнителя углеродную сажу, приемлемый для применения в качестве пневматической диафрагмы, например в виде внутренней оболочки шины или камеры.

Определения

В качестве новой схемы нумерации для групп Периодической таблицы элементов в настоящем описании использована схема, которая представлена в Chemical and Engineering News, 63(5), 27 (1985).

Встречающееся в настоящем описании понятие "полимер" может быть использовано как охватывающее гомополимеры, сополимеры, тройные сополимеры и т.д. Подобным же образом понятие "сополимер" может относится к полимеру, включающему звенья по меньшей мере двух мономеров необязательно со звеньями других мономеров.

Когда в настоящем описании речь о полимере идет как о включающем мономер, этот мономер содержится в полимере в полимеризованной форме мономера или в форме производного этого мономера. Подобным же образом, когда каталитические компоненты описаны как включающие компоненты в нейтральных стабильных формах, для специалиста в данной области техники вполне понятно, что ионогенная форма компонента является формой, в которой он взаимодействует с мономерами с образованием полимеров.

Встречающееся в настоящем описании понятие "эластомер" или "эластомерная смесь" относится к любому полимеру или композиции полимеров (такой как смеси полимеров), соответствующей определению по стандарту ASTM D1566. Понятие "эластомер" охватывает смешанные смеси полимеров, такие как приготовленные смешением в расплаве и/или реакторные смеси полимеров. Эти понятия и понятие "каучук" могут быть использованы как взаимозаменяемые.

Используемое в настоящем описании понятие "показатель разветвленности цепи" или g определяют как соответствующее правилам Комиссии по номенклатуре макромолекулярных соединений ИЮПАК, т.е. как отношение среднеквадратичного радиуса вращения разветвленной молекулы к радиусу в других отношениях идентичной линейной молекулы с той же относительной молекулярной массой в таком же растворителе и при такой же температуре.

Другие полимерные научные термины, которые конкретно в настоящем описании не определены, следует воспринимать как определяемые в соответствии с правилами определения, опубликованными Комиссией по номенклатуре макромолекулярных соединений ИЮПАК.

Встречающееся в настоящем описании понятие "част./100" означает "частей на сто частей каучука" и является мерой, общепринятой в данной области техники, в которой доли компонентов смеси определяют относительно основного эластомерного компонента в пересчете на 100 мас. част. эластомера (эластомеров) или каучука (каучуков).

Используемые в настоящем описании понятия "эластомер на изобутиленовой основе" или "полимер на изобутиленовой основе" относятся к эластомерам или полимерам, включающим по меньшей мере 70 мольных % повторяющихся звеньев из изобутилена.

Используемое в настоящем описании понятие "мультиолефин" относится к любому мономеру, обладающему двумя или большим числом двойных связей. Так, например, мультиолефином может быть любой мономер, включающий две сопряженные двойные связи, такой как сопряженный диен, в частности изопрен.

Используемое в настоящем описании понятие "нанокомпозит" или "нанокомпозитная смесь" относится к полимерным системам, содержащим в полимерной матрице неорганические частицы с по меньшей мере одним размером в нанометровом диапазоне.

Используемое в настоящем описании понятие "интеркаляция" относится к состоянию композиции, в котором полимер содержится между всеми слоями пластинчатого наполнителя. Как известно в промышленности и науке, некоторыми указаниями на интеркаляцию могут служить смещение и/или ослабление линий рентгеновского спектра, если сравнивать с линиями у исходных пластинчатых наполнителей, что является признаком более значительного интервала между слоями вермикулита, чем у исходного минерала.

Используемое в настоящем описании понятие "расслаивание" относится к разделению индивидуальных слоев исходной неорганической частицы таким образом, что полимер способен окружать или окружает каждую частицу. В одном из вариантов между всеми пластиночками содержится достаточное количество полимера для того, чтобы эти пластиночки были размещены неупорядоченно. Так, например, определенным указанием на расслаивание или интеркаляцию может служить график, демонстрирующий отсутствие линий рентгеновского спектра или более крупного интервала d вследствие неупорядоченного размещения или увеличенного разделения расслоенных пластиночек. Однако, как известно в промышленности и науке, для того чтобы определить признаки расслаивания, могут быть использованы другие указания, в частности при испытаниях на проницаемость, при электронной микроскопии, атомно-силовой микроскопии и т.д.

Используемое в настоящем описании понятие "растворитель" относится к любому веществу, способному растворять другое вещество. Когда используют понятие "растворитель", оно, если не указано иное, может относится к по меньшей мере одному растворителю или к двум или большему числу растворителей. В некоторых вариантах растворитель является полярным, в других вариантах растворитель неполярен.

Используемое в настоящем описании понятие "раствор" относится к равномерно диспергированному на молекулярном уровне или ионном уровне одному или смеси нескольких веществ (растворенное вещество) в одном или нескольких веществах (растворитель). Так, например, процессом растворения является процесс смешения, в котором как эластомер, так и модифицированный слоистый наполнитель содержатся в одном органическом растворителе или смесях растворителей.

Используемое в настоящем описании понятие "суспензия" относится к системе, состоящей из твердого вещества, диспергированного в твердом, жидком или газообразном веществе, обычно в виде частиц большего чем коллоидальные размера.

Используемое в настоящем описании понятие "эмульсия" относится к системе, состоящей из жидкости или жидкой суспензии, диспергированной с помощью эмульгатора или без него в несмешивающийся жидкости, обычно в виде капелек большего чем коллоидальные размера.

Используемое в настоящем описании понятие "углеводород" относится к молекулам или сегментам молекул, содержащим главным образом водородные и углеродные атомы. В некоторых вариантах понятие "углеводород" охватывает также галоидированные аналоги углеводородов и аналоги, содержащие гетероатомы, как это более подробно обсуждается ниже.

Эластомер

Смесь по настоящему изобретению включает эластомер, содержащий дериватизированные из изоолефина с С4 по C7 звенья. Этот эластомер может быть галоидирован. Такой изоолефин может представлять собой соединение с С4 по С7, в одном варианте выбранное из изобутилена, изобутена, 2-метил-1-бутена, 3-метил-1-бутена, 2-метил-2-бутена и 4-метил-1-пентена. Эластомер может также включать звенья, дериватизированные из другого мономера. В одном варианте эластомер включает звено из по меньшей мере одного стирольного мономера, которым может быть любое замещенное стирольное мономерное звено, которое целесообразно выбирать из стирола, α-метилстирола и алкилстирола (орто-, мета- или пара-), где алкил выбирают из любого алкила с C1 по C5 и алкила с разветвленной цепью. В целесообразном варианте стирольный мономер представляет собой п-метилстирол.

В одном варианте выполнения изобретения эластомеры представляют собой статистические эластомерные сополимеры изоолефина с С4 по C7, такого как изобутилен, и пара-алкилстирольного сомономера, предпочтительно пара-метилстирола, содержащего по меньшей мере 80 мас.%, более предпочтительно по меньшей мере 90 мас.% пара-изомера, а также могут включать функционализованные сополимеры, в которых по меньшей мере некоторые алкильные замещающие группы, имеющиеся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу. В другом варианте выполнения изобретения сополимер представляет собой статистический эластомерный сополимер этилена или α-олефина с С3 по С6 и пара-алкилстирольного сомономера, предпочтительно пара-метилстирола, содержащего по меньшей мере 80 мас.%, более предпочтительно по меньшей мере 90 мас.% пара-изомера, а также включают функционализованные сополимеры, в которых по меньшей мере некоторые алкильные замещающие группы, имеющиеся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу.

Предпочтительные материалы могут быть охарактеризованы как сополимеры, включающие следующие мономерные звенья, статистически размещенные вдоль полимерной цепи:

в которых каждый из R10 и R11 независимо обозначает водородный атом, низший алкил, предпочтительно алкил с С1 по C7, или первичный или вторичный алкилгалогенид, а Х обозначает функциональную группу, такую как атом галогена. В предпочтительном варианте каждый из R10 и R11 обозначает водородный атом. Вплоть до 60 мольных % пара-замещенных стирольных звеньев, входящих в сополимерную структуру, могут обладать функционализованной структурой в одном варианте и от 0,1 до 5 мольных % - в другом варианте. Тем не менее в еще одном варианте содержание функционализованной структуры составляет от 0,4 до 1 мольного %.

Функциональная группа Х может представлять собой атом галогена или сочетание атома галогена и какой-либо другой функциональной группы, такой, которую можно внедрять нуклеофильным замещением бензильного атома галогена другими группами, такими как остатки карбоновых кислот, солей карбоновых кислот, эфиров, амидов и имидов карбоновых кислот, гидроксильная, алкоксидная, феноксидная, тиолатная, тиоэфирная, ксантогенатная, цианидная, нитрильная, аминогруппа и их смеси. Эти функционализованные изоолефиновые сополимеры, способ их получения, способы функционализации и вулканизации более конкретно представлены в US 5162445, а в частности функционализованные амины, как они представлены выше.

Наиболее эффективными из таких функционализованных материалов являются эластомерные статистические сополимеры изобутилена и пара-метилстирола, включающие от 0,5 до 20 или 30 мольных % звеньев пара-метилстирола, в которых до 60 мольных % метальных замещающих групп, находящихся в бензильном кольце, содержат атом брома или хлора, предпочтительно атом брома (пара-бромметилстирол), а также сочетание пара-бромметилстирольной и других функциональных групп, таких как остатки сложного эфира и простого эфира. Эти галоидированные эластомеры технически доступны как эластомеры EXXPRO™ (фирма ExxonMobil Chemical Company, Хьюстон, шт.Техас) и сокращенно обозначены как "БИМС". Такие эластомеры при необходимости могут характеризоваться по существу гомогенным композиционным распределением, вследствие чего содержание пара-алкилстирольных звеньев в по меньшей мере 95 мас.% полимера находится в 10%-ном диапазоне относительно среднего содержания пара-алкилстирольных звеньев в полимере.

В одном варианте эластомер EXXPRO (БИМСМ) обладает вязкостью по Муни меньше 37 и в пределах от 27 до 37, в пределах от 28 до 34, в пределах от 29 до 33 и в пределах от 30 до 32 в других вариантах. Целевые сополимеры могут также быть охарактеризованы узким молекулярно-массовым распределением (Mw/Mn), составляющим меньше 5, более предпочтительно меньше 2,5.

Эти сополимеры могут также быть охарактеризованы предпочтительной средневязкостной молекулярной массой в интервале от 2000 до 2000000 и предпочтительной среднечисленной молекулярной массой в интервале от 2500 до 750000, как это определяют гельпроникающей хроматографией. В конкретных вариантах может оказаться предпочтительным применение двух или большего числа сополимеров, обладающих аналогичной главной цепью; в частности низкомолекулярный сополимер, обладающий средневесовой молекулярной массой меньше 150000, может быть смешан с высокомолекулярным сополимером, обладающим, например, средневесовой молекулярной массой больше 250000.

БИМСМ полимеры могут быть получены суспензионной полимеризацией мономерной смеси с использованием кислоты Льюиса в качестве катализатора, последующим галоидированием, предпочтительно бромированием, в растворе в присутствии галогена и инициатора свободно-радикальной полимеризации, такого как тепло и/или свет, и/или химический инициатор, и необязательным последующим электрофильным замещением атома брома другим функциональным остатком.

Предпочтительными БИМСМ полимерами являются бромированные полимеры, которые обычно содержат от 0,1 до 5 мольных % бромметилстирольных групп в пересчете на общее количество дериватизированных из мономеров звеньев в полимере. В другом варианте содержание бромметильных групп составляет от 0,2 до 3,0 мольного %, от 0,3 до 2,8 мольного % в ином варианте, от 0,4 до 2,5 мольного % в еще одном варианте и тем не менее от 0,3 до 2,0 в другом варианте, где целевым интервалом может быть любое сочетание любого верхнего предела с любым нижним пределом. Если выразиться по-другому, то предпочтительные сополимеры содержат от 0,2 до 10 мас.% атомов брома в пересчете на массу полимера, от 0,4 до 6 мас.% атомов брома в другом варианте и от 0,6 до 5,6 мас.% в еще одном варианте и являются по существу свободными от кольцевых атомов галогена или атомов галогена в главной полимерной цепи. В одном варианте выполнения изобретения сополимер представляет собой сополимер из звеньев, дериватизированных из изоолефина с С4 по C7 (или изомоноолефина), звеньев, дериватизированных из пара-метилстирола, и звеньев, дериватизированных из пара-галометилстирола, причем дериватизированные из пара-галометилстирола звенья содержатся в сополимере в количестве от 0,4 до 3,0 мольного % в пересчете на общее число звеньев пара-метилстирола, а дериватизированные из пара-метилстирола звенья содержатся в количестве от 3 до 15 мас.% в пересчете на общую массу полимера в одном варианте и от 4 до 10 мас.% в другом варианте. В еще одном варианте пара-галометилстирол представляет собой пара-бромметилстирол.

Вспомогательный каучуковый компонент

В композициях и изделиях конечного назначения по настоящему изобретению в качестве компонента может содержаться вспомогательный каучук или "каучук общего назначения". Такие каучуки включают, хотя ими их список не ограничен, натуральные каучуки, изопреновый каучук, бутадиен-стирольный каучук (БСК), бутадиеновый каучук (БК), изопрен-бутадиеновый каучук (ИБК), стирол-изопрен-бутадиеновый каучук (СИБК), этилен-пропиленовый каучук (ЭПД), этилен-пропилен-диеновый каучук (ТЭПД), полисульфид, бутадиен-нитрильный каучук, пропиленоксидные полимеры, звездообразный бутилкаучук и галоидированный звездообразный бутилкаучук, бромированный бутилкаучук, хлорированный бутилкаучук, звездообразный изобутиленовый каучук, звездообразный бромированный бутилкаучук (изобутилен-изопреновый сополимер), другие изобутилен/n-метилстирольные и галоидированные изобутилен/n-метилстирольные эластомеры, такие как, например, тройные сополимеры дериватизированных из изобутилена звеньев, дериватизированных из п-метилстирола звеньев и дериватизированных из п-бромметилстирола звеньев, которые обладают содержаниями мономеров, молекулярными массами, значениями вязкости по Муни, показателями разветвленности цепей или другими свойствами, не удовлетворяющими приведенным выше техническим требованиям к БИМСМ, и их смеси.

Целесообразным вариантом содержащегося вспомогательного каучукового компонента является натуральный каучук. Подробно