Способ и система отображения данных сканирования для насосно-компрессорных труб на основе скорости сканирования
Иллюстрации
Показать всеПредложенная группа изобретений относится к анализу технического состояния нефтепромысловой колонны труб или штанг. Техническим результатом является повышение точности оценки технического состояния нефтепромысловых труб или штанг. Способ анализа трубной секции в месте расположения промысла включает в себя следующие этапы: в процессе подъема сканируют трубную секцию, по меньшей мере, одним датчиком, анализируют полученные данные для определения технического состояния трубной секции и осуществляют сортировку трубных секций на основе анализа данных сканирования. При этом на этапе сканирования осуществляют контроль скорости подъема трубной секции и исключают зарегистрированные данные, которые были получены при непостоянной скорости подъема. Данные анализа, полученные при требуемой постоянной скорости, отображаются графически на экране монитора. Данные анализа также могут отображаться различными цветами, в зависимости от степени технического состояния исследуемой колонны. Скорость анализа можно задать заранее или вводить на основе анализируемой колонны и примененных датчиков. Способ анализа технического состояния трубной секции осуществляют с помощью системы, которая включает трубный сканер с множеством датчиков, вычислительное устройство, средство для отображения данных и устройство для маркировки трубных секций. 6 н. и 35 з.п. ф-лы, 14 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к способам анализа нефтепромысловой колонны, когда она вводится в нефтяную скважину или извлекается из нефтяной скважины. Конкретнее, изобретение относится к способу анализа секций колонны при практически постоянной заранее установленной скорости и отображения результатов анализа, полученных при требуемых скоростных условиях.
Уровень техники
После бурения скважины через подземную формацию и выявления того, что эта формация может дать экономически достаточное количество нефти или газа, бригада завершает скважину. Во время бурения, завершения и текущего ремонта персонал регулярно вводит и (или) извлекает такие устройства, как колонна, трубы, магистрали, штанги, полые цилиндры, обсадные трубы, патрубки, муфты и каналы в скважину. Например, обслуживающая бригада может использовать ремонтный или обслуживающий агрегат для извлечения насосно-компрессорной колонны и насосных штанг из скважины, которая добывает нефть. Бригада может проверять извлеченную колонну и оценивать, следует ли заменить одну или несколько секций этой колонны вследствие физического износа, утоньшения стенок колонны, химического воздействия, выкрашивания или иного дефекта. Бригада обычно заменяет секции, которые проявляют неприемлемый уровень износа, и отмечает другие секции, которые начинают проявлять износ и могут потребовать замены при последующей заявке на техническое обслуживание.
В качестве альтернативы ручной проверке колонны обслуживающая бригада может развернуть инструмент для оценивания колонны, когда колонну извлекают из скважины и (или) вводят в скважину. Инструмент, как правило, остается постоянно на устье скважины, и ремонтный агрегат перемещает колонну через измерительную зону инструмента.
Этот инструмент обычно измеряет выкрашивание и толщину стенок и может определить трещины в стенке колонны. Для оценки этих параметров износа колонну можно обследовать радиацией, напряженностью поля (электрического, электромагнитного или магнитного) и(или) перепадом давлений. Инструмент обычно производит отсчеты исходного аналогового сигнала и выдает дискретизированную или цифровую версию этого аналогового сигнала.
Иными словами, инструмент, как правило, возбуждает секцию колонны с помощью поля, радиации или давления и детектирует взаимодействие колонны с этим возбудителем или отклик на этот возбудитель. Такой элемент, как измерительный преобразователь, преобразует этот отклик в аналоговый электрический сигнал. Например, инструмент может создавать магнитное поле, в которое помещается колонна, и измерительный преобразователь может обнаруживать изменения или возмущения в поле, появляющиеся из-за наличия колонны и любых аномалий этой колонны.
В то время как инструмент может предоставлять важную и подробную информацию о повреждении или износе в колонне, этими данными можно манипулировать несколькими путями, которые ограничивают его применимость. Например, скорость введения или извлечения колонны может сильно влиять на данные, получаемые инструментом. К примеру, если одна и та же секция колонны вытягивается через инструмент на двух сильно различающихся скоростях, данные износа не будут совпадать, что оставляет открытой возможность неверного определения остающегося срока службы для этой секции колонны.
Помимо того, сортировку секций колонны обычно совершает оператор, просматривающий данные, полученные инструментом. Общая сумма этих данных может включать в себя данные, полученные на нескольких различных скоростях, не давая тем самым оператору возможности обеспечить точную сортировку для колонны. Далее, поскольку традиционный способ сортировки колонны требует оператора, чтобы анализировать данные, разные операторы обычно сортируют одни и те же данные различным образом, тем самым получая несовместимые сортировки по множеству испытательных стендов для колонн.
Чтобы можно было направить усилия на эти недостатки уровня техники, нужно иметь улучшенную способность оценивать колонну. Например, существует необходимость в способе поддержания постоянной скорости удаления секции колонны во время анализа, чтобы гарантировать непротиворечивые данные анализа. Существует другая необходимость в способе установки скорости удаления или введения секции колонны на основе типа колонны и датчиков, используемых для обеспечения наиболее точного анализа секций колонны. Существует еще необходимость в способе проведения разбора данных анализа и отображения только тех данных, которые были получены в пределах диапазона оптимальных скоростей. Способность, направленная на одну или несколько из этих нужд, обеспечивала бы более правильные, точные, воспроизводимые, эффективные или прибыльные оценки колонн.
Сущность изобретения
Настоящее изобретение относится к оцениванию такого изделия, как кусок трубы или стержня, в связи с помещением этого изделия в нефтяную скважину или удаления этого изделия из нефтяной скважины. Оценивание изделия может содержать восприятие, сканирование, слежение, наблюдение, определение ущерба или выявление параметра, характеристики или свойства этого изделия.
В одном объекте настоящего изобретения инструмент, сканер или датчик могут контролировать колонну, трубы, магистрали, штанги, полые цилиндры, обсадные трубы, патрубки, муфты или каналы рядом с устьем нефтяной скважины. Инструмент может содержать датчик, например, толщины стенки, износа штанги, расположения муфты, трещин, изображений или выкрашивания. Когда полевая обслуживающая бригада извлекает колонну из нефтяной скважины или вводит колонну в скважину, инструмент может оценивать колонну на наличие дефектов, целостности, износа, на пригодность к продолжению службы или аномальные условия. Инструмент может предоставлять информацию о колонне в цифровом формате, например как цифровые данные, одно или несколько чисел, отсчетов или моментальных снимков. Колонна может перемещаться при постоянной скорости, заранее установленной на основе этого инструмента и типа колонны. За счет удаления колонны с постоянной известной скоростью инструмент может обеспечивать более непротиворечивый вид износа этой колонны.
В другом примерном варианте осуществления заранее установленная скорость может быть введена в компьютер, и может вычисляться расстояние, необходимое нефтяной ремонтной установке для разгона до постоянной скорости. Секцию колонны можно опустить ниже инструмента на расстояние, равное расстоянию разгона, чтобы колонна двигалась с заранее установленной скоростью в то время, когда она проходит инструмент. Это позволит проанализировать весь сегмент колонны на заранее установленной скорости. Когда сегмент полностью пройдет инструмент, установку можно замедлить до остановки и удалить сегмент и процесс можно повторить со следующим сегментом колонны.
В другом примерном варианте осуществления компьютер может извлекать данные анализа из инструмента и данных скорости удаления колонны из кодера на нефтяной ремонтной установке. Компьютер может определять, какие данные были получены при заранее установленной скорости и требованиях согласованности и отличать эти данные от данных, полученных вне допустимых параметров. Компьютер может затем отображать данные, полученные в пределах параметров, так что секцию колонны можно сортировать. Компьютер может завершать сортировку секций колонны, либо этот этап может завершать оператор-специалист. Если данные анализа близки к порогу двух разных градаций, можно определить, следует ли анализировать эту секцию колонны еще раз.
В другом примерном варианте осуществления данные анализа для множества секций колонны можно извлекать и сравнивать для химической обработки, применяемой к скважине, из которой выходят секции колонны. Если секции колонны показывают чрезмерный износ по сравнению с их сроком службы, режим химической обработки можно видоизменить на основе данных анализа секций колонны из этой скважины. Помимо того, скважины, которые размещены аналогично анализируемой скважине, могут иметь собственные режимы химической обработки, видоизмененные на основе данных анализа единственной скважины.
В другом примерном варианте осуществления кодер может размещаться на подъемном барабане нефтяной ремонтной установки. Данные от этого кодера можно использовать для нахождения линейной глубины или длины для каждой секции колонны. Данные глубины можно связать с данными анализа и данными скорости. Компьютер может обеспечить отображение диаграммы, показывающей данные анализа в зависимости от глубины секции колонны, из которой получены эти данные анализа, чтобы определить, отличается ли износ по глубине скважины.
Обсуждение данных обработки колонны в данном разделе предназначено только для иллюстративных целей. Различные объекты настоящего изобретения можно яснее понять и оценить из рассмотрения нижеследующего подробного описания раскрытых вариантов осуществления и со ссылкой на сопровождающие чертежи и формулу изобретения, которая может последовать. Кроме того, иные объекты, системы, способы, признаки, преимущества и цели настоящего изобретения станут яснее для специалиста при рассмотрении нижеследующих чертежей и подробного описания. Оно направлено на то, что все такие объекты, системы, способы, признаки, преимущества и цели должны быть включены в данное описание, должны быть включены в объем настоящего изобретения и должны охраняться сопровождающей формулой изобретения.
Краткое описание чертежей
Фиг.1 представляет собой иллюстрацию типовой системы для обслуживания нефтяной скважины, которая сканирует колонну, когда эта колонна извлекается из скважины или вводится в скважину в соответствии с вариантом осуществления настоящего изобретения.
Фиг.2 представляет собой функциональную блок-схему типовой системы для сканирования колонны, которую вводят в нефтяную скважину или извлекают из нефтяной скважины в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.3 представляет собой блок-схему алгоритма типового процесса получения информации о колонне, которую вводят в нефтяную скважину или извлекают из нефтяной скважины в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.4 представляет собой блок-схему алгоритма типового процесса анализа сегмента колонны для определения градации колонны в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.5 представляет собой блок-схему алгоритма другого типового процесса анализа сегмента колонны для определения градации колонны в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.6 представляет собой блок-схему алгоритма другого типового процесса получения информации о колонне, которую вводят в нефтяную скважину или извлекают из нефтяной скважины в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.7 представляет собой блок-схему алгоритма другого типового процесса получения информации о колонне, которую вводят в нефтяную скважину или извлекают из нефтяной скважины в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.8 представляет собой блок-схему алгоритма типового процесса определения химической обработки для скважины на основе данных анализа секций колонны из этой скважины в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.9 представляет собой примерную диаграмму сравнения скорости секции колонны и данных анализа от этой секции колонны в соответствии с примерным вариантом осуществления настоящего изобретения.
Фиг.10А представляет собой примерную диаграмму, отображающую данные анализа от секции колонны после удаления данных, полученных, когда скорость секции колонны находилась вне диапазона, в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.10В представляет собой примерную диаграмму, отображающую данные анализа, объединенные в единую цепочку данных, в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.11 представляет собой блок-схему алгоритма другого типового процесса получения информации о колонне, которую вводят в нефтяную скважину или извлекают из нефтяной скважины, в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.12 представляет собой блок-схему алгоритма другого типового процесса получения информации о колонне, которую вводят в нефтяную скважину или извлекают из нефтяной скважины, в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Фиг.13 представляет собой блок-схему алгоритма типового процесса определения того, получен ли минимальный уровень точки полезных данных в анализе секции колонны, в соответствии с одним примерным вариантом осуществления настоящего изобретения.
Многие аспекты изобретения могут быть лучше поняты со ссылкой на вышеуказанные чертежи. Компоненты на чертежах не обязательно изображены в масштабе. Вместо этого упор сделан на ясное иллюстрирование принципов типовых вариантов осуществления настоящего изобретения. Кроме того, на чертежах ссылочные позиции обозначают сходные или соответствующие, но не обязательно идентичные элементы по нескольким видам.
Подробное описание примерных вариантов осуществления
Настоящее изобретение раскрывает способы анализа секций колонны из нефтяной скважины и отображения данных анализа для усовершенствования процесса сортировки труб. Обеспечение согласованных надежных данных анализа и отображение их единообразным и легким для понимания образом будут помогать тому, что нефтепромысловая обслуживающая бригада сможет выполнять более эффективные, точные и основательные оценки того, какой срок службы, если он имеется, остается для каждого звена колонны в секции колонны.
Способ и система для обработки данных колонны будут теперь описаны полнее со ссылкой на фиг.1-13, которые показывают характерные варианты осуществления настоящего изобретения. Фиг.1 показывает установку для ремонта скважин, перемещающую колонну через сканер колонны в характерной рабочей среде для варианта осуществления настоящего изобретения. Фиг.2 предоставляет блок-схему сканера колонны, который отслеживает, воспринимает или характеризует колонну и гибко обрабатывает получаемые данные колонны. Фиг.3-13 показывают, вместе с иллюстративными данными и графиками, блок-схемы алгоритмов для способов, связанных с получением данных колонны и обработкой полученных данных.
Изобретение может быть воплощено во многих различных формах и его не следует толковать как ограниченное изложенными здесь вариантами осуществления; наоборот, эти варианты осуществления представлены, чтобы данное раскрытие было полным и завершенным, и будут полностью представлять объем изобретения специалистам. Далее все данные здесь «примеры» или «примерные варианты осуществления» предназначены быть не ограничивающими, а поддерживаемыми, среди прочего, представлениями настоящего изобретения.
Кроме того, хотя примерный вариант осуществления изобретения описан в отношении восприятия или контроля трубы, колонны или трубки, перемещающейся через измерительную зону рядом с устьем скважины, специалисты поймут, что изобретение можно применять или использовать в связи со множеством приложений в нефтепромысловых или иных рабочих средах.
Обратимся к фиг.1, где иллюстрируется система 100 для обслуживания нефтяной скважины 175, которая сканирует колонну 125, когда эта колонна 125 извлекается из скважины 175 или вводится в нее согласно примерному варианту осуществления настоящего изобретения. Нефтяная скважина 175 содержит буровую скважину, пробуренную или просверленную вглубь земли, чтобы достичь нефтеносной формации. Ствол скважины 175 заключен в трубу или магистраль (не показана явно на фиг.1), известную как «обсадная труба», которая зацементирована в нисходящей к формациям скважине и которая защищает скважину 175 от нежелательных пластов жидкостей и грязи.
В обсадной трубе находится труба 125, которая переносит нефть, газ, углеводороды, нефтяные продукты и (или) иные пластовые жидкости, такие как вода, к поверхности. В работе колонна насосных штанг (не показанная явно на фиг.1), размещенная внутри трубы 125, гонит нефть по стволу скважины вверх. Приводимая в движение толчками находящейся вверху скважины машиной, такой как станок-качалка, насосная штанга движется вверх и вниз, чтобы сообщать поступательное движение насосу, расположенному в нижней части скважины (не показан явно на фиг.1). С каждым толчком находящийся внизу насос перемещает нефть вверх по трубе 125 к устью скважины.
Как показано на фиг.1, обслуживающая бригада использует ремонтный или обслуживающий агрегат 140 для обслуживания скважины 175. Во время иллюстрируемой процедуры бригада вытягивает колонну 125 из скважины 175, например, чтобы починить или заменить находящийся внизу насос. Колонна 125 содержит колонну из тридцатифутовых секций (приблизительно 9,12 метров на секцию), каждая из которых именуется «звеном». Звенья свинчены вместе замками, соединительными муфтами или резьбовыми соединениями.
Бригада использует ремонтный агрегат 140 для извлечения колонны 125 шагами или этапами, обычно два звена на этап, известные как «секция». Агрегат 140 содержит стрелу или вылет 145 и трос 105, который бригада временно закрепляет на трубной секции 125. Катушка 110, барабан, ворот или полиспаст с приводом от двигателя тянет трос 105, посредством чего вытягивается или поднимается прикрепленная к нему трубная секция 125. Бригада поднимает трубную секцию 125 на расстояние по вертикали, приблизительно равное высоте стрелы 145, приблизительно на шестьдесят футов или два звена.
Конкретнее, бригада прикрепляет трос 105 к трубной секции 125, которая во время процедуры прикрепления расположена вертикально. Затем бригада поднимает колонну 125, как правило, при непрерывном извлечении, так что два звена извлекаются из скважины 175, тогда как часть трубной секции 125 ниже этих двух звеньев остается в скважине 175. Когда эти два звена выходят из скважины 175, оператор катушки 110 останавливает трос 105, что останавливает движение колонны 125 вверх. Затем бригада отделяет или отвинчивает два открытых звена от остальной части трубной секции 125, которая проходит в скважину 175.
Бригада повторяет процесс подъема и отделения двухзвенных секций колонны 125 из скважины 175 и размещает извлеченные секции в комплект размещенных вертикально звеньев, известный как «стенд» колонны 125. После извлечения полной трубной секции 125 из скважины 175 и обслуживания насоса бригада осуществляет пошаговый процесс извлечения труб в обратном направлении путем помещения секций 125 колонны назад в скважину 175. Иными словами, бригада использует агрегат 140 для восстановления секций 125 колонны путем нанизывания или «свинчивания» каждого звена и пошагового опускания секций 125 колонны в скважину 175.
Система 100 содержит систему измерительных приборов для слежения, сканирования, определения или оценивания колонны 125, пока колонна 125 перемещается в скважину 175 или из нее. Система измерительных приборов содержит трубный сканер 150, который получает информацию или данные о части колонны 145, которая находится в зоне 155 восприятия или измерений сканера. По линии 120 связи кодер 115 снабжает трубный сканер 150 информацией скорости, быстроты и(или) местоположения относительно колонны 125. Т.е. кодер 115 механически связан с барабаном 110, чтобы определять перемещение и (или) положение колонны 125 по мере того, как колонна 125 перемещается через измерительную зону 155.
В качестве альтернативы проиллюстрированному кодеру 115 некоторые другие виды датчика местоположения и (или) скорости могут определять, например, скорость стрелового блока или скорость вращения стрелового блока в оборотах в минуту («об/мин»). Типовые способы получения данных о местоположении или скорости могут включать в себя использование желографа (не показано), линейки желографов (не показано), измерительного колеса, насаженного на ходовую струну троса 105 (не показано) и счетчика спиц на шкиве кронблока (не показано), а также другие способы и устройства, известные специалистам.
Другая линия 135 данных соединяет трубный сканер 150 с вычислительным устройством, которое может быть, например, переносным компьютером 130, ручным компьютером, персональным устройством связи (PDA), сотовой системой, портативным радиоустройством, персональной системой отправки сообщений, беспроводным оборудованием или стационарным персональным компьютером (PC). Переносной компьютер 130 отображает данные, которые сканер 140 колонны получил от колонны 125. Персональный компьютер 130 может представлять данные колонны, например, графически. Обслуживающая бригада отслеживает или наблюдает отображенные данные на переносном компьютере 130 для оценивания состояния колонны 125. Обслуживающая бригада может сортировать колонну 125 согласно ее пригодности для продолжения службы, например.
Линия 135 связи может содержать прямую линию или часть более широкой сети связи, которая переносит информацию между прочими устройствами или аналогичными системами к системе 100. Кроме того, линия 135 связи может содержать тракт, например, через Интернет, интранет, частную сеть, телефонную сеть, сеть с Интернет-протоколом (IP), сеть с коммутацией пакетов, сеть с коммутацией каналов, локальную сеть (LAN), территориальную сеть (WAN), общегородскую сеть (MAN), телефонную сеть общего пользования (PSTN), беспроводную сеть или сотовую систему. Линия 135 связи может далее содержать сигнальный тракт, который является оптическим, оптоволоконным, проводным, беспроводным, проводной линией, волноводным или спутниковым, если упомянуть некоторые возможности. Сигналы, передаваемые по линии 135, могут нести или переносить данные или информацию в цифровом виде или посредством аналоговой передачи. Такие сигналы могут содержать модулированную электрическую, оптическую, сверхвысокочастотную, радиочастотную, ультразвуковую или электромагнитную энергию среди прочих видов энергии.
Переносной компьютер 130 обычно содержит аппаратное обеспечение и программное обеспечение. Аппаратное обеспечение может содержать различные компьютерные компоненты, такие как дисковая память, дисководы, микрофоны, оперативное запоминающее устройство (ОЗУ) (RAM), постоянно запоминающее устройство (ПЗУ) (ROM), один или несколько микропроцессоров, источники питания, видеоконтроллер, системную шину, дисплейный монитор, интерфейс связи и устройства ввода. Далее переносной компьютер 130 может содержать, например, цифровой контроллер, микропроцессор или какое-либо иное воплощение цифровой логики.
Переносной компьютер 130 исполняет программное обеспечение, которое может содержать операционную систему и один или несколько программных модулей для управления данными. Операционная система может быть, например, программным продуктом, который компания Microsoft Corporation из Рэдмонта, Вашингтон, продает под зарегистрированным товарным знаком WINDOWS. Модуль управления данными может хранить, сортировать и организовывать данные и может также обеспечить возможность черчения, построения графиков, построения таблиц или определения тенденций данных. Модуль управления данными может, например, быть программным продуктом или содержать программный продукт, который компания Microsoft Corporation продает под зарегистрированным товарным знаком EXCEL.
В одном примерном варианте осуществления настоящего изобретения многоцелевой компьютер функционирует как переносной компьютер 130. Множество программ может исполняться в перекрывающихся временных рамках или в виде, который представляется человеку-оператору параллельным или одновременным. Многоцелевая работа может содержать, например, квантование времени или разделение времени.
Модуль управления данными может содержать одну или несколько компьютерных программ или частей компьютерного исполняемого кода. В качестве нескольких примеров, модуль управления данными может содержать одну или несколько утилит, модуль или объект кода, системную программу, интерактивную программу, встраиваемое расширение, апплет (встраиваемое приложение), сценарий, скриптлет (апплет-сценарий), операционную систему, браузер, маркер объекта, автономную программу, язык, программу, не являющуюся автономной, программу, исполняемую компьютером 130, программу, которая выполняет рутинные операции эксплуатации или общего назначения, программу, которая запускается, чтобы позволить машине или человеку-пользователю взаимодействовать с данными, программу, которая создает или используется для создания другой программы, и программу, которая помогает пользователю в выполнении задачи, такой как взаимодействие с базой данных, обработка текстов, составление отчетности или управление файлами.
На фиг.2 иллюстрируется функциональная блок-схема системы 200 для сканирования колонны 125 труб, которая вставляется в нефтяную скважину 175 или извлекается из нее согласно примерному варианту осуществления настоящего изобретения. Так, система 200 обеспечивает примерный вариант осуществления измерительной системы, показанной на фиг.1 и обсужденной выше, и будет обсуждаться сама по себе.
Специалисты в информационных технологиях, вычислительной технике, обработке сигналов, датчиках и электронике поймут, что компоненты и функции, которые иллюстрируются как отдельные блоки на фиг.2 и ссылки на которые здесь повсюду даны на как таковые, не обязательно однозначно являются модулями. Далее содержимое каждого блока не обязательно расположено в одном физическом местоположении. В одном варианте осуществления настоящего изобретения некоторые блоки представляют виртуальные модули, и компоненты, данные и функции могут быть физически распределены. Кроме того, в некоторых примерных вариантах осуществления единственное физическое устройство может выполнять две или более функций, которые на фиг.2 иллюстрируются в двух или более отдельных блоках. Например, функция персонального компьютера 130 может быть объединена в трубном сканере 150, чтобы обеспечить единый аппаратный и программный элемент, который получает и обрабатывает данные и отображает обработанные данные в графическом виде для просмотра оператором, техником или инженером.
Трубный сканер 150 содержит датчик 205 износа штанги и датчик 255 выкрашивания для определения параметров, относящихся к непрерывному использованию колонны 125. Датчик 205 износа штанги определяет относительно большие дефекты или проблемы колонны, такие как утоньшение. Утоньшение стенок может быть, например, вследствие физического износа или истирания между колонной 125 и насосной штангой, которая осуществляет в ней возвратно-поступательное движение. При этом датчик 255 выкрашивания обнаруживает или находит изъяны меньшего размера, такие как выкрашивание, происходящее из-за коррозии или некоторых иных видов химического воздействия в скважине 175. Эти малые изъяны могут быть видны, например, невооруженным глазом или в микроскоп.
Включение датчика 205 износа штанги и датчика 255 выкрашивания в трубный сканер 150 предназначено для иллюстрации, а не ограничения. Трубный сканер 150 может содержать другой датчик или измерительное устройство, которое может быть приспособлено для конкретного применения, в том числе ультразвуковые датчики.
Например, измерительная система 200 может содержать муфтовый локатор, прибор, который обнаруживает трещины и щели в колонне, температурный измеритель и т.п. В одном примерном варианте осуществления настоящего изобретения сканер 150 содержит или соединен со счетчиком запаса, таким как счетчик запаса, описанный в публикации заявки на патент США №2004/0196032.
Трубный сканер 150 содержит также контроллер 250, который обрабатывает сигналы от датчика 205 износа штанги и датчика 255 выкрашивания. Примерный контроллер 250 имеет два фильтровых модуля 225, 275, каждый из которых, как подробнее обсуждено ниже, адаптивно или гибко обрабатывает сигналы датчиков. В одном примерном варианте осуществления контроллер 250 обрабатывает сигналы согласно измерению скорости от кодера 115.
Контроллер 250 может содержать компьютер, микропроцессор 290, вычислительное устройство или какое-либо иное воплощение программируемой или реализованной аппаратно цифровой логики. В одном примерном варианте осуществления контроллер 250 содержит одну или несколько специализированных интегральных микросхем (ASICs) или интегральных схем цифровой обработки сигналов (DSP), которые выполняют функции фильтров 255, 275, как описано ниже. Фильтровые модули 255, 275 могут содержать исполняемые коды, хранящиеся в ПЗУ, программируемом ПЗУ (ППЗУ) (PROM), ОЗУ, в оптическом формате, на жестком диске, на магнитном носителе, ленте, бумаге или каком-либо ином машиночитаемом носителе.
Датчик 205 износа штанги содержит измерительный преобразователь 210, который, как описано выше, выдает электрический сигнал, содержащий информацию о секции колонны 125, которая находится в измерительной зоне 155. Электроника 220 датчика усиливает или согласует этот выходной сигнал и подает согласованный сигнал на АЦП (аналого-цифровой преобразователь) 215. АЦП 215 преобразует этот сигнал в цифровой формат, как правило, обеспечивая отсчеты или мгновенные снимки толщины участка колонны 125, который располагается в измерительной зоне 155.
Фильтровый модуль 225 износа штанги принимает отсчеты или мгновенные снимки из АЦП 215 и осуществляет цифровую обработку этих сигналов для облегчения интерпретации сигналов для машины или человека. Линия 135 связи переносит обработанные цифровые сигналы 230 из фильтрового модуля 255 износа штанги к переносному компьютеру 130 для записи и (или) просмотра одним или несколькими членами обслуживающей бригады. Обслуживающая бригада может наблюдать обработанные данные для оценки колонны 125 для ведущегося обслуживания.
Аналогично датчику 205 износа штанги датчик 255 выкрашивания содержит измерительный преобразователь 260 выкрашивания, электронику 270 датчика, которая усиливает выход этого преобразователя, и АЦП 265 для оцифровки и (или) дискретизации усиленного сигнала от электроники 270 датчика. Подобно фильтровому модулю 225 износа штанги фильтровый модуль 275 выкрашивания осуществляет цифровую обработку отсчетов из АЦП 265 и выдает сигнал 280, который проявляет улучшенную верность воспроизведения сигнала для отображения на переносном компьютере 130.
Каждый из измерительных преобразователей 210, 260 генерирует сигнал возбуждения и выдает сигнал согласно отклику колонны 125 на этот сигнал возбуждения. Например, один из измерительных преобразователей 210, 260 может генерировать магнитное поле и детектировать воздействие или искажение этого поля колонной 125. В одном примерном варианте осуществления измерительный преобразователь 260 выкрашивания содержит катушки возбуждения, которые генерируют магнитное поле, и датчики на эффекте Холла или магнитные воспринимающие катушки, которые детектируют напряженность поля.
В одном примерном варианте осуществления один из измерительных преобразователей 210, 260 может выдавать ионизирующее излучение, такое как гамма-излучение, падающее на колонну 125. Колонна 125 блокирует или отражает часть этого излучения и пропускает другую часть этого излучения. В данном примере один или оба из измерительных преобразователей 210, 260 содержит детектор, который выдает электрический сигнал с напряженностью или амплитудой, которая меняется согласно числу продетектированных гамма-квантов. Этот детектор может, например, подсчитывать отдельные гамма-кванты путем выдачи дискретного сигнала, когда гамма-квант взаимодействует с детектором.
Теперь будут описаны процессы примерных вариантов осуществления настоящего изобретения со ссылкой на фиг.3-11. Примерный вариант осуществления настоящего изобретения может содержать одну или несколько компьютерных программ или воплощаемых в компьютере способов, которые реализуют функции или этапы, описанные здесь и проиллюстрированные в примерных блок-схемах алгоритмов, графиках и наборах данных по фиг.3-11 и на схемах по фиг.1 и 2. Однако следует понимать, что может быть много различных путей воплощения изобретения в компьютерном программном обеспечении, и изобретение не следует толковать как ограниченное каким-либо набором компьютерных программных кодов. Далее опытный программист, например, будет способен написать такую компьютерную программу для воплощения раскрытого изобретения на основе примерных системных архитектур, таблиц данных, графиков данных и блок-схем алгоритмов и связанного с ними описания в тексте заявки.
Поэтому раскрытие конкретного набора программных кодовых команд не считается нужным для адекватного понимания того, как сделать и использовать изобретение. Изобретенные функциональные возможности любых заявленных процесса, способа или компьютерной программы будут поясняться более подробно в нижеследующем описании совместно с остальными чертежами, иллюстрирующими характерные функции и программные алгоритмы.
Некоторые этапы в описанных ниже процессах должны естественным образом продолжать другие, чтобы настоящее изобретение работало, как описано. Однако настоящее изобретение не ограничено порядком описанных этапов, если такой порядок или последовательность не изменяет нежелательным образом функциональные возможности настоящего изобретения. То есть констатируется, что некоторые этапы могут выполняться до или после других этапов или параллельно с другими этапами без отхода от объема и сущности настоящего изобретения.
На фиг.3 примерный процесс 300 получения информации о колонне 125, которую вводят в нефтяную скважину 175 или извлекают из нее, показан и описан в рабочей среде типового ремонтного агрегата 140 и трубного сканера 150 по фиг.1 и 2. На фиг.1, 2 и 3 примерный способ 300 начинается на этапе СТАРТ и переходит к этапу 305, на котором принимают скорость анализа колонны. Эта скорость анализа колонны может быть введена в систему на компьютере 130 или ремонтном агрегате 140. Скорость анализа колонны может быть одной и той же для всех работ по анализу или отличаться в зависимости от типа магистрали, характеристик используемых датчиков и условий анализа. В одном примерном варианте осуществления скорость анализа колонны является постоянной для всех приложений и особенность изменения скорости анализа колонны не нужна. В одном примерном варианте осуществления скорость анализа колонны находится между двумя и четырьмя линейными футами в минуту, однако специалисты поймут, что для анализа колонны 125 можно использовать скорости выше и ниже этого диапазона и при этом достигать целей настоящего изобретения.
На этапе 310 определяют расстояние удаления колонны, которое необходимо ремонтному агрегату 140 для разгона до скорости анализа. В одном примерном варианте осуществления для определения этого расстояния используют компьютер 130. Начальный участок трубной секции 125, подлежащий анализу, опускают ниже трубного сканера 150 на расстояние больше и равное расстоянию, которое требуется ремонтному агрегату 1400 для разгона до скорости анализа на этапе 315. В одном примерном варианте осуществления трубную секцию 125 опускают так, чтобы иметь соответствующую скорость в диапазоне скоростей анализа для всех секций колонны 125, которую следует анализировать. Однако в альтернативном примерном варианте осуществления этапы определения расстояния разгона и опускания трубной секции 125 на это расстояние могут быть пропущены, и участок трубной секции 125 можно анализировать на скорости анализа.
На этапе 320 ремонтный агрегат 140 начинает поднимать трубную секцию 125 для анализа трубным сканером 150. Трубный сканер 150 анализирует трубную секцию 125 на этапе 325. На этапе 330 выдается запрос для определения того, достигнут ли конец трубной секции 125. Конец трубной секции 125 можно определить визуально оператором ремонтного агрегата 140 или други