Ультразвуковой датчик

Иллюстрации

Показать все

Изобретение относится к медицинской технике, а именно к устройствам для получения диагностической информации посредством ультразвука. Ультразвуковой датчик содержит множество пьезоэлектрических элементов, размещенных в виде решетки в предварительно заданном направлении, с электродами, передающими и принимающими ультразвуковую волну на обеих поверхностях; по меньшей мере, два акустически согласующих слоя на одной поверхности пьезоэлектрического элемента; множество первых канавок в пьезоэлектрическом элементе и, по меньшей мере, первом акустически согласующем слое, которые делят пьезоэлектрический элемент в продольном направлении, ортогональном направлению решетки; сигнальный проводник на поверхности с противоположной стороны от указанной одной поверхности пьезоэлектрического элемента; и множество вторых канавок, которые разделяют первый акустически согласующий слой, пьезоэлектрический элемент и сигнальный проводник в направлении решетки пьезоэлектрического элемента. Акустически согласующий слой, пьезоэлектрический элемент и сигнальный проводник сформированы в криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента с использованием множества первых канавок. Второй вариант выполнения датчика дополнительно содержит материал-подложку задней поверхности, которая служит опорой для акустически согласующего слоя, пьезоэлектрического элемента и сигнального проводника. В третьем варианте дополнительно ко второму, на первом акустическом слое расположен заземляющий проводник, на котором, в свою очередь, выполнен второй акустический согласующий слой. В четвертом варианте дополнительно на втором акустическом слое имеется третий акустический согласующий слой, а три акустически согласующих слоя, пьезоэлектрический элемент и сигнальный проводник сформированы в криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента с использованием множества первых канавок. Использование изобретения позволяет повысить чувствительность и широту диапазона для обеспечения высокоразрешающего ультразвукового изображения. 4 н. и 14 з.п. ф-лы, 6 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к ультразвуковому датчику, который применяют для получения диагностической информации об объекте обследования посредством направления ультразвуковой волны к объекту обследования, например живому организму.

Обзор уровня техники

Ультразвуковое диагностическое устройство обеспечивает информацию, необходимую для диагностики объекта обследования, посредством излучения ультразвуковой волны в органический объект обследования, например человека или животное, приема эхо-сигнала, отраженного внутри объекта обследования, и отображения томограммы и т.п. ткани внутри живого организма. При этом ультразвуковое диагностическое устройство использует ультразвуковой датчик для передачи ультразвуковой волны в объект обследования и приема отраженного эхо-сигнала изнутри объекта обследования.

На фиг. 1 представлен пример ультразвукового датчика упомянутого типа. Как показано на фиг. 1, ультразвуковой датчик 10 состоит из множества пьезоэлектрических элементов 11, размещенных в виде однонаправленной решетки (в направлении X) для передачи и приема ультразвуковых волн в/из объекта обследования (не показанного), акустически согласующих слоев 12, содержащих, по меньшей мере, один слой (на фиг. 1, два слоя 12a и 12b), обеспеченный на передних поверхностях пьезоэлектрических элементов 11, со стороны объекта обследования (сверху на фиг. 1), передающей среды 13, обеспеченной на поверхности упомянутых акустически согласующих слоев 12, со стороны объекта обследования, и материала-подложки 14 задней поверхности, обеспеченного на задней поверхности, образующей противоположную сторону от акустически согласующих слоев 12 относительно пьезоэлектрических элементов 11. Электроды (не показанные) размещены в виде решетки на передних поверхностях и задних поверхностях пьезоэлектрических элементов 11. Электрические сигналы подаются в пьезоэлектрические элементы 11 по данным электродам и электрическим выводам 15. В пьезоэлектрических элементах 11 сформировано множество канавок со стороны акустически согласующего слоя 12, имеющего вогнутую форму в направлении (направлении Y), ортогональном направлению решетки (направлению X) (смотри, например, патентный документ 1).

Пьезоэлектрические элементы 11 сформированы из пьезоэлектрической керамики PZT (цирконата-титаната свинца) или керамики аналогичного типа, пьезоэлектрического монокристалла или чего-то подобного, преобразуют прилагаемое напряжение в ультразвуковую волну и передают ее в объект обследования, и принимают эхо-сигнал, отраженный изнутри объекта обследования, и преобразуют его в электрический сигнал. В примере, показанном на фиг. 1, множество пьезоэлектрических элементов 11 размещено в виде решетки в направлении X. Размещение в виде решетки множества пьезоэлектрических элементов 11 упомянутым способом позволяет электронными средствами сканировать и отклонять или сводить в одну точку ультразвуковые волны, что обеспечивает возможность, так называемого, электронного сканирования.

Акустически согласующие слои 12 обеспечены для эффективной передачи ультразвуковых волн внутрь объекта обследования и их приема. В частности, акустически согласующие слои 12 выполняют функцию создания многоступенчатого перехода от акустического импеданса пьезоэлектрических элементов 11 к акустическому импедансу объекта обследования.

В примере, показанном на фиг. 1, пьезоэлектрические элементы 11 и акустически согласующие слои 12 имеют вогнутую форму со стороны объекта обследования и поэтому выполняют функцию фокусировки ультразвукового волнового пучка, но поскольку адгезия к объекту обследования не соответствует требованиям из-за вогнутой формы, то конфигурация снабжена передающей средой 13, которая выполняет устранения упомянутого несоответствия. Передающая среда 13 является необязательным элементом, обеспечиваемым при необходимости.

Материал-подложка 14 задней поверхности скреплен с пьезоэлектрическими элементами 11 и служит опорой для них, а также выполняет функцию ослабления нежелательных ультразвуковых волн. В настоящем описании направление X, направление Y и направление Z на чертеже могут также именоваться соответственно «направлением решетки (пьезоэлектрического элемента)», «направлением по ширине (пьезоэлектрического элемента)» и «направлением по толщине (пьезоэлектрического элемента)».

Патентный документ 1: Национальная публикация международной заявки на патент № HEl 8-506227.

Сущность изобретения

Задачи изобретения

Ультразвуковое диагностическое устройство с электронным сканированием содержит множество составляющих решетку пьезоэлектрических элементов в произвольной группе и выполняет возбуждение с фиксированным временем запаздывания, обеспечиваемым для отдельных пьезоэлектрических элементов, и выполняет передачу и прием ультразвуковых волн внутрь/изнутри объекта обследования из/в пьезоэлектрических/кие элементов/ты. При обеспечении упомянутого времени запаздывания ультразвуковые волновые пучки сводятся в одну точку или диффундируют, и можно получить ультразвуковое изображение с широким полем обзора или высокой четкостью. Описанная конфигурация уже известна в качестве обычной системы. В последние годы применяли способ, по которому разрешающую способность в диагностическом изображении ультразвукового диагностического устройства повышали с использованием частотной компоненты второй или третьей гармоники от основной частоты, и поэтому очень важно обеспечить ультразвуковой датчик с высокой чувствительностью и широким частотным диапазоном. Один способ обеспечения широкого частотного диапазона заключается в применении композиционного пьезоэлектрического керамического блока, сочетающего пьезоэлектрическую керамику и высокомолекулярный полимер, в качестве пьезоэлектрического элемента, например, описанного в патентном документе 1. И один способ обеспечения высокой чувствительности состоит в уменьшении ослабления силиконового каучука или подобной акустической линзы, при этом данный способ заключается в придании пьезоэлектрическому элементу вогнутой формы и обеспечении полиуретанового полимера, обладающего низким ослаблением в вогнутой части, как показано в патентном документе 1.

Однако в традиционной конфигурации описанного типа электрические выводы 15, продолжающиеся от электродов, составляющих решетку пьезоэлектрических элементов 11, подсоединены только к части электродов пьезоэлектрических элементов 11, и поэтому, если пьезоэлектрические элементы 11 ломаются в результате механического удара, соединение с электрическими выводами 15 может разрываться, что создает проблему с надежностью (качеством). Кроме того, в вышеописанной традиционной конфигурации применяется конфигурация, в которой обеспечены композиционный пьезоэлектрический керамический блок из пьезоэлектрической керамики и высокомолекулярного полимера и два акустически согласующих слоя, и каждый из них имеет вогнутую форму, и поэтому применимые материалы ограничены гибкими материалами, что ограничивает реализуемость широкого частотного диапазона. Один возможный способ обеспечения более широкого диапазона при описанной конфигурации заключается в снижении акустического импеданса путем уменьшения содержания пьезоэлектрической керамики в композиционном пьезоэлектрическом керамическом блоке, но в данном случае проблема заключается в том, что снижается диэлектрическая проницаемость композиционного пьезоэлектрического керамического блока, в результате чего повышается электрический импеданс и, следовательно, снижается чувствительность.

Целью настоящего изобретения является создание высококачественного ультразвукового датчика, который дает возможность получить такие характеристики, как высокая чувствительность и широкий диапазон, и позволяет получить высокоразрешающее ультразвуковое изображение.

Средства решения проблем

Ультразвуковой датчик в соответствии с настоящим изобретением использует конфигурацию, содержащую: пьезоэлектрический элемент, множество которых размещено в виде решетки в предварительно заданном направлении, с электродами, обеспеченными на обеих поверхностях, которые передают и принимают ультразвуковую волну; по меньшей мере, два акустически согласующих слоя, обеспеченных на одной поверхности пьезоэлектрического элемента; множество первых канавок, которые обеспечены в пьезоэлектрическом элементе и, по меньшей мере, первом акустически согласующем слое на пьезоэлектрическом элементе из, по меньшей мере, двух акустически согласующих слоев и делят, по меньшей мере, пьезоэлектрический элемент в продольном направлении, ортогональном направлению решетки пьезоэлектрического элемента; сигнальный проводник, обеспеченный на поверхности с противоположной стороны от указанной одной поверхности пьезоэлектрического элемента; и множество вторых канавок, которые разделяют, по меньшей мере, первый акустически согласующий слой из, по меньшей мере, двух акустически согласующих слоев, пьезоэлектрического элемента и сигнального проводника в направлении решетки пьезоэлектрического элемента; при этом акустически согласующий слой, пьезоэлектрический элемент и сигнальный проводник имеют криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента.

Ультразвуковой датчик в соответствии с настоящим изобретением использует конфигурацию, содержащую: пьезоэлектрический элемент, множество которых размещено в виде решетки в предварительно заданном направлении, с электродами, обеспеченными на обеих поверхностях, которые передают и принимают ультразвуковую волну; по меньшей мере, два акустически согласующих слоя, обеспеченных на одной поверхности пьезоэлектрического элемента; множество первых канавок, которые обеспечены в пьезоэлектрическом элементе и, по меньшей мере, первом акустически согласующем слое на пьезоэлектрическом элементе из, по меньшей мере, двух акустически согласующих слоев со стороны, противоположной стороне акустически согласующего слоя, и делят, по меньшей мере, пьезоэлектрический элемент в продольном направлении, ортогональном направлению решетки пьезоэлектрического элемента; сигнальный проводник, обеспеченный на поверхности с противоположной стороны от указанной одной поверхности пьезоэлектрического элемента; материал-подложку задней поверхности, который служит опорой для акустически согласующего слоя, пьезоэлектрического элемента и сигнального проводника; и множество вторых канавок, которые разделяют, по меньшей мере, первый акустически согласующий слой из, по меньшей мере, двух акустически согласующих слоев, пьезоэлектрический элемент и сигнальный проводник в направлении решетки пьезоэлектрического элемента; при этом акустически согласующий слой, пьезоэлектрический элемент и сигнальный проводник имеют криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента.

Ультразвуковой датчик в соответствии с настоящим изобретением использует конфигурацию, содержащую: пьезоэлектрический элемент, множество которых размещено в виде решетки в предварительно заданном направлении, с электродами, обеспеченными на обеих поверхностях, которые передают и принимают ультразвуковую волну; первый акустически согласующий слой, обеспеченный на одной поверхности пьезоэлектрического элемента; заземляющий проводник, обеспеченный на первом акустически согласующем слое; второй акустически согласующий слой, обеспеченный на заземляющем проводнике; множество первых канавок, которые обеспечены в пьезоэлектрическом элементе и, по меньшей мере, первом акустически согласующем слое и делят, по меньшей мере, пьезоэлектрический элемент в продольном направлении, ортогональном направлению решетки пьезоэлектрического элемента; сигнальный проводник, обеспеченный на поверхности с противоположной стороны от указанной одной поверхности пьезоэлектрического элемента; материал-подложку задней поверхности, который служит опорой для двух акустически согласующих слоев, заземляющего проводника, пьезоэлектрического элемента и сигнального проводника; и множество вторых канавок, которые разделяют, по меньшей мере, первый акустически согласующий слой из двух акустически согласующих слоев, заземляющий проводник, пьезоэлектрический элемент и сигнальный проводник в направлении решетки пьезоэлектрического элемента; при этом два акустически согласующих слоя, заземляющий проводник, пьезоэлектрический элемент и сигнальный проводник имеют криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента.

Ультразвуковой датчик в соответствии с настоящим изобретением использует конфигурацию, содержащую: пьезоэлектрический элемент, множество которых размещено в виде решетки в предварительно заданном направлении, с электродами, обеспеченными на обеих поверхностях, которые передают и принимают ультразвуковую волну; первый акустически согласующий слой, обеспеченный на одной поверхности пьезоэлектрического элемента; заземляющий проводник, обеспеченный на первом акустически согласующем слое; второй акустически согласующий слой, обеспеченный на заземляющем проводнике; третий акустически согласующий слой, обеспеченный на втором акустически согласующем слое; множество первых канавок, которые обеспечены в пьезоэлектрическом элементе и, по меньшей мере, первом акустически согласующем слое и делят, по меньшей мере, пьезоэлектрический элемент в продольном направлении, ортогональном направлению решетки пьезоэлектрического элемента; сигнальный проводник, обеспеченный на поверхности с противоположной стороны от указанной одной поверхности пьезоэлектрического элемента; материал-подложку задней поверхности, который служит опорой для трех акустически согласующих слоев, заземляющего проводника, пьезоэлектрического элемента и сигнального проводника; и множество вторых канавок, которые разделяют, по меньшей мере, первый акустически согласующий слой из трех акустически согласующих слоев, заземляющий проводник, пьезоэлектрический элемент и сигнальный проводник в направлении решетки пьезоэлектрического элемента; при этом три акустически согласующих слоя, заземляющий проводник, пьезоэлектрический элемент и сигнальный проводник имеют криволинейную форму поверхности в продольном направлении пьезоэлектрического элемента.

Полезный эффект изобретения

Настоящее изобретение позволяет повысить качество, позволяет получить такие характеристики, как высокая чувствительность и широкий диапазон, и позволяет получить высокоразрешающее ультразвуковое изображение.

То есть в пьезоэлектрических элементах и первом акустически согласующем слое обеспечено множество канавок в продольном направлении (направлении Y), ортогональном направлению решетки пьезоэлектрических элементов (направлению X), и на задней поверхности по направлению толщины пьезоэлектрического элемента (направлению Z) обеспечен сигнальный проводник, и акустически согласующий слой, пьезоэлектрический элемент и сигнальный проводник имеют криволинейную форму поверхности в направлении Y, что позволяет получить высокую надежность, высокую чувствительность, широкий диапазон и высокое разрешение.

Краткое описание чертежей

Фиг. 1 - схематичный вид в перспективе, представляющий пример конфигурации традиционного ультразвукового датчика;

Фиг. 2A - схематичный местный вид в перспективе ультразвукового датчика в соответствии с вариантом 1 осуществления настоящего изобретения;

Фиг. 2B - схематичное сечение ультразвукового датчика, показанного на фиг. 2A, при наблюдении с направления X;

Фиг. 3A - схематичный местный вид в перспективе ультразвукового датчика в соответствии с вариантом 2 осуществления настоящего изобретения;

Фиг. 3B - схематичное сечение ультразвукового датчика, показанного на фиг. 3A, при наблюдении с направления X;

Фиг. 4A - схематичный местный вид в перспективе ультразвукового датчика в соответствии с вариантом 3 осуществления настоящего изобретения;

Фиг. 4B - схематичное сечение ультразвукового датчика, показанного на фиг. 4A, при наблюдении с направления X;

Фиг. 5 - график, представляющий взаимосвязь между скоростью звука и углом направленности в материале третьего акустически согласующего слоя в соответствии с вариантом 3 осуществления;

Фиг. 6A - схематичный местный вид в перспективе ультразвукового датчика в соответствии с вариантом 4 осуществления настоящего изобретения;

Фиг. 6B - схематичное сечение ультразвукового датчика, показанного на фиг. 6A, при наблюдении с направления X.

Предпочтительные варианты осуществления изобретения

Ниже приведено подробное описание вариантов осуществления настоящего изобретения со ссылками на прилагаемые чертежи.

(Вариант 1 осуществления)

На фиг. 2A представлен схематичный местный вид в перспективе ультразвукового датчика в соответствии с вариантом 1 осуществления настоящего изобретения, и на фиг. 2B дано схематичное сечение ультразвукового датчика, показанного на фиг. 2A, при наблюдении с направления X.

Ультразвуковой датчик 100, показанный на фиг. 2A и фиг. 2B, состоит из множества пьезоэлектрических элементов 110, размещенных в виде решетки в одном направлении (направлении X), двух акустически согласующих слоев 120 (121, 122), обеспеченных на передней поверхности по направлению толщины (направлению Z) со стороны объекта обследования (сверху на фиг. 2A и фиг. 2B) каждого пьезоэлектрического элемента 110, материала-подложки 140 задней поверхности, обеспечиваемого, при необходимости, на задней поверхности по направлению толщины (направлению Z) (внизу на фиг. 2A и фиг. 2B), на стороне пьезоэлектрических элементов 110, противоположной от акустически согласующих слоев 120 (121, 122), и передающей среды 130, обеспечиваемой на акустически согласующих слоях 120 (121, 122), при необходимости. Функции упомянутых элементов конфигурации идентичны функциям элементов, описанных в связи с традиционной технологией, представленной на фиг. 1.

Заземляющий электрод (не показанный) обеспечен на передней поверхности по направлению толщины (направлению Z) пьезоэлектрического элемента, и сигнальный электрод (не показанный) обеспечен на задней поверхности. Два электрода сформированы на передней поверхности и задней поверхности соответственно пьезоэлектрических элементов 110 посредством осаждения из паровой фазы или распыления золота или серебра, электроосаждения серебра или чего-то подобного.

Ниже приведено подробное описание конфигурации ультразвукового датчика 100.

Пьезоэлектрические элементы 110 сформированы с использованием пьезоэлектрической PZT керамики (цирконата-титаната свинца) или керамики аналогичного типа, пьезоэлектрического монокристалла типа PZN-PT, PMN-PT или аналогичного типа, или чего-то подобного. Первый акустически согласующий слой 121 и второй акустически согласующий слой 122 обеспечены на стороне заземляющего электрода (не показанного), обеспечиваемого на каждом пьезоэлектрическом элементе 110 из упомянутого материала. Пьезоэлектрический элемент 110 и первый акустически согласующий слой 121 снабжены множеством канавок 160 в качестве первых канавок в соответствии с настоящим изобретением, проходящих в направлении X от поверхности пьезоэлектрического элемента 110 на стороне, противоположной стороне, на которой обеспечен первый акустически согласующий слой 121. Упомянутые канавки 160 обеспечивают, например, с использованием установки для резки полупроводниковых пластин или подобного устройства. Упомянутые канавки 160 пересекают обе стороны (переднюю и заднюю стороны) пьезоэлектрического элемента 110 в направлении Z и полностью делят пьезоэлектрический элемент 110, но пересекают только одну сторону из двух сторон по направлению Z первого акустического согласующего слоя 121. То есть, что касается первого акустического согласующего слоя 121, то канавки 160 обеспечивают так, чтобы оставлять часть участка, расположенного на стороне, противоположной стороне пьезоэлектрического элемента 110, от поверхности на стороне пьезоэлектрического элемента 110.

В данном случае часть первого акустического согласующего слоя 121 оставляют, чтобы продолжение электрического вывода (не показанного) от заземляющего электрода разделенного пьезоэлектрического элемента 110 выполнить только на конце по направлению Y. По данной причине необходимо, чтобы первый акустический согласующий слой 121 был электрическим проводником. Поэтому для первого акустического согласующего слоя 121 можно использовать, например, графит или материал, превращенный в проводник наполнением высокомолекулярного полимера металлическим порошком (например, электропроводящим связывающим веществом). Разумеется, необходимо, чтобы первый акустический согласующий слой 121 обладал величиной акустического импеданса между величинами акустических импедансов пьезоэлектрического элемента 110 и объекта обследования (живого организма).

Канавки 160, обеспеченные в пьезоэлектрическом элементе 110 и первом акустически согласующем слое 121, могут быть разнесены на равные или случайно изменяющиеся интервалы. Однако, что касается материала пьезоэлектрического элемента 110, например пьезоэлектрической керамики PZT, то, кроме используемого режима продольных колебаний по толщине, имеет место нежелательный режим поперечных колебаний, и данный режим поперечных колебаний оказывает вредное воздействие на частотную характеристику и т.д. Поэтому необходимо обеспечить, чтобы ширина пьезоэлектрической керамики была узкой, то есть, чтобы интервалы следования канавок 160 были сделаны узкими, и поэтому частота в режиме поперечных колебаний была бы за пределами используемого частотного диапазона.

Кроме того, посредством формирования пьезоэлектрического элемента 110 с использованием пьезоэлектрической керамики PZT, обеспечения канавок 160 в данном пьезоэлектрическом элементе 110 и заполнения упомянутых канавок 160 полимерным материалом, например эпоксидной смолой или полиуретановой смолой, пьезоэлектрическому элементу 110 сообщается функция композиционного пьезоэлектрического керамического блока, сочетающего пьезоэлектрическую керамику и высокомолекулярный полимер. То есть посредством заполнения части канавок 160 в пьезоэлектрическом элементе 110 полимерным материалом, обладающим небольшим акустическим импедансом, акустический импеданс пьезоэлектрического элемента 110 можно сделать меньше, чем акустический импеданс пьезоэлектрической керамики, и можно сделать приближающимся к акустическому импедансу объекта обследования. Тем самым создается возможность реализации широкого частотного диапазона. Величину акустического импеданса упомянутого композиционного пьезоэлектрического керамического блока можно изменять изменением отношений объемных долей пьезоэлектрической керамики и полимерного материала.

Кроме того, что касается диэлектрической проницаемости композиционного пьезоэлектрического керамического блока, поскольку диэлектрическая проницаемость полимерного материала намного меньше, чем диэлектрическая проницаемость пьезоэлектрической керамики, то, если уменьшить объемную долю пьезоэлектрической керамики, диэлектрическая проницаемость композиционного пьезоэлектрического керамического блока снизится, и его электрический импеданс повысится. В результате создается рассогласование с подсоединенным ультразвуковым диагностическим устройством или кабелем, что ведет к снижению чувствительности. Поэтому объемная доля пьезоэлектрической керамики, используемой в композиционном пьезоэлектрическом керамическом блоке, обычно находится в пределах 50 - 75%.

Как в случае с пьезоэлектрическим элементом 110 первый акустически согласующий слой 121 также снабжен канавками 160, и упомянутые канавки 160 заполнены полимерным материалом, так что первый акустически согласующий слой 121 становится композиционным керамическим блоком, и его акустический импеданс изменяется (снижается). Поэтому такое снижение следует учитывать при подборе материала первого акустически согласующего слоя 121.

Когда канавки 160 в разделенном пьезоэлектрическом элементе 110 и первом акустически согласующем слое 121 заполнены полимерным материалом (например, эпоксидной смолой), сигнальный электрический вывод (далее в описании именуемый «сигнальным проводником») 150 прижимается к материалу-подложке 140 задней поверхности, имеющему криволинейную форму поверхности, и имеет криволинейную форму поверхности вместе с пьезоэлектрическим элементом 110, первым акустическим согласующим слоем 121 и вторым акустическим согласующим слоем 122.

В настоящем варианте осуществления, как показано на фиг. 2A и фиг. 2B, применяется конфигурация, в которой материал-подложка 140 задней поверхности, пьезоэлектрический элемент 110, первый акустический согласующий слой 121 и второй акустический согласующий слой 122 имеют вогнутую криволинейную форму поверхности на стороне объекта обследования, чтобы сводить в одну точку ультразвуковые волны, но криволинейная форма поверхности не ограничена упомянутой формой. Например, возможно использование выпуклой формы, которая рассеивает ультразвуковые волны.

Поскольку пьезоэлектрический элемент 110, выполненный из пьезоэлектрической керамики, и первый акустический согласующий слой 121, выполненный из графита или материала типа графита, наполненного металлическим порошком, по существу, не обладают гибкостью, допускающей искривление, то придание им криволинейной формы поверхности требует изготовления изделий, заранее обработанных до криволинейной формы поверхности, и точное формообразование затруднительно. Поэтому сутью настоящего варианта осуществления является тот факт, что конфигурацию, допускающую искривление, обеспечивают созданием канавок 160. Кроме того, для второго акустически согласующего слоя 122 можно также воспользоваться полимерной пленкой, обладающей гибкостью, допускающей искривление, например пленкой на основе эпоксидной смолы или полиимида.

Сигнальный проводник 150 можно также выполнить в форме покрывающего всю поверхность проводника, без структурирования зоны, на которой обеспечен пьезоэлектрический элемент 110, или можно выполнить так, чтобы структурированной была только часть, продолженная с обеих сторон ультразвукового датчика 100 в направлении Y. Для сигнального проводника 150 можно применить металлический материал, например медь, с толщиной около 10 микрометров (мкм). Если медный или подобный металлический токопроводящий элемент не обладает прочностью с точки зрения обращения, то можно применить конфигурацию, в которой обеспечена полиимидная пленка толщиной около 10 - 25 микрометров (мкм). Сигнальный проводник 150 данного типа является гибким и поэтому может обеспечить плотный контакт и электрическую проводимость с сигнальным электродом пьезоэлектрического элемента 110, разделенным путем обеспечения канавок 160, даже в искривленном состоянии. Применение сигнального проводника 150 данного типа означает также, что, даже если пьезоэлектрический элемент 110 дает трещину, сигнальный проводник 150 не разрывается благодаря его гибкости, и, следовательно, повышается надежность (качество). По сравнению с конфигурацией, в которой электрический вывод подсоединен только к части электрода пьезоэлектрического элемента, например, как в патентном документе 1, настоящая конфигурация дает возможность обеспечить решение таких проблем, как растрескивание и разрыв электрода при растрескивании пьезоэлектрического элемента из-за механического удара, нанесенного извне.

Кривизну формирования криволинейной поверхности можно изменять в зависимости от того, какое установлено фокусное расстояние для ультразвуковых волн. Сформированная криволинейная поверхность может также иметь единственный радиус кривизны или может иметь радиус кривизны, который постепенно изменяется в направлении Y на фиг. 2A и фиг. 2B.

Акустические согласующие слои 120 (первый акустически согласующий слой 121 и второй акустически согласующий слой 122), пьезоэлектрический элемент 110 и сигнальный проводник 150 разделены на последовательность из множества пьезоэлектрических элементов множеством разделительных канавок 180, являющихся вторыми канавками в соответствии с настоящим изобретением. То есть в настоящем варианте осуществления после того, как сигнальный проводник 150, пьезоэлектрический элемент 110, первый акустически согласующий слой 121 и второй акустически согласующий слой 122 прижаты к материалу-подложке 140 задней поверхности, имеющей криволинейную форму поверхности, и приведены к форме криволинейной поверхности, второй акустически согласующий слой 122, первый акустически согласующий слой 121, пьезоэлектрический элемент 110, сигнальный проводник 150 и часть материала-подложки 140 задней поверхности делят на последовательность из множества пьезоэлектрических элементов вышеупомянутым множеством разделительных канавок 180 согласованно со структурой сигнального проводника 150 в направлении X (направлении, ортогональном направлению Y). Данное направление является направлением электронного сканирования. Множество разделительных канавок 180 заполняют таким материалом, как силиконовый каучук с твердостью ниже, чем твердость эпоксидной смолы или подобного материала, заполняющего канавки 160.

Что касается материала, который заполняет канавки 160, поскольку множество пьезоэлектрических керамических блоков (отдельных частей пьезоэлектрического элемента 110, разделенного канавками 160), размещенных в виде решетки в направлении Y, выполнены для колебания как одно целое, то не существует проблемы, если колебания отдельных пьезоэлектрических керамических блоков по направлению Y просачиваются через наполнительный материал, например эпоксидную смолу, наполняющую канавки 160, и поэтому наполнительный материал канавок 160 может быть высокой степени твердости. Однако, что касается последовательности из множества пьезоэлектрических элементов 110, разделенных в направлении X, то, когда электрические сигналы подаются в пьезоэлектрические элементы 110 по сигнальным проводникам 150, применяются соответствующие задержки для осуществления фазовой подстройки электрических сигналов и отклонения или сведения ультразвуковых волн, и поэтому необходимо удерживать слабое просачивание ультразвуковых волновых колебаний между пьезоэлектрическими элементами 110. Поэтому необходимо, чтобы наполнительный материал разделительных канавок 180, разделяющих сигнальный проводник 150, пьезоэлектрический элемент 110, первый акустически согласующий слой 121 и второй акустически согласующий слой 122 в направлении X, был материалом меньшей твердости и менее склонным к передаче колебаний, чем наполнительный материал канавок 160, разделяющих пьезоэлектрический элемент 110 в направлении Y.

Пьезоэлектрические элементы 110 (или, для большей точности, отдельные пьезоэлектрические керамические блоки) имеют форму столбиков благодаря разделению в направлении X и направлении Y на фиг. 2A и фиг. 2B, и интервалы разделения в обоих указанных направлениях должны быть приблизительно одинаковыми. Как упоминалось выше, в пьезоэлектрической керамике пьезоэлектрических элементов 110 возникает нежелательный режим поперечных колебаний, и если ширину пьезоэлектрической керамики выполняют равной ширине, при которой возникает режим поперечных колебаний в используемом частотном диапазоне, то возникает вредный эффект (например, сужение частотного диапазона), сказывающийся на применяемой частотной характеристике, и поэтому необходимо обеспечить, чтобы режим поперечных колебаний находился за пределами применяемого частотного диапазона. То же самое относится также к направлению X. Поэтому последствия нежелательного режима поперечных колебаний можно ослабить путем обеспечения приблизительного равенства интервалов разделения пьезоэлектрического элемента 110 в направлении X аналогично тому, как в направлении Y.

Наконец, на втором акустически согласующем слое 122 при необходимости обеспечивают передающую среду 130. Для передающей среды 130 можно воспользоваться полиуретановой смолой, бутадиеновым каучуком, силиконовым каучуком или чем-то подобным с величиной акустического импеданса, близкой к величине акустического импеданса живого организма и с низким коэффициентом ослабления ультразвуковых волн. Кроме того, поскольку ультразвуковые волны отражаются на границе, если скорость звука в передающей среде 130 отличается от скорости звука в живом организме, то необходимо учитывать данное отражение, а также учитывать криволинейную форму поверхности второго акустически согласующего слоя 122 во время настройки фокусного расстояния ультразвуковых волн.

Таким образом, в соответствии с настоящим вариантом осуществления применяется конфигурация, в которой обеспечены канавки 160, и данные канавки служат для придания пьезоэлектрическому элементу 110 и первому акустически согласующему слою 121 криволинейной формы поверхности, что позволяет сводить ультразвуковые волны в одну точку без акустической линзы, и применяется конфигурация, в которой сигнальный проводник 150 обеспечен на поверхности сигнального электрода пьезоэлектрического элемента 110. Следовательно, можно реализовать конфигурацию, которая позволяет получить такие характеристики, как высокая чувствительность и широкий частотный диапазон, и обеспечить высокую надежность, что дает возможность создать высококачественный, стабильный ультразвуковой датчик. Кроме того, ультразвуковой волновой пучок можно узко фокусировать, и ультразвуковой волновой пучок можно отклонять, что позволяет реализовать ультразвуковой датчик, который обеспечивает высокоразрешающее ультразвуковое изображение с высокой чувствительностью.

В настоящем варианте осуществления описан случай, в котором пьезоэлектрические элементы 110 расположены в виде линейной решетки (в планарной конфигурации) в направлении X, но форма решетки по направлению X этим не ограничена. Например, эффект такого же типа можно также получить, если пьезоэлектрические элементы расположены в виде решетки, имеющей выпуклую или вогнутую криволинейную форму поверхности в направлении X.

В настоящем варианте осуществления описан случай, в котором для первого акустически согласующего слоя 121 применяется токопроводящий материал, но настоящее изобретение этим не ограничено. Например, эффект такого же типа можно также получить, если первый акустически согласующий слой является композиционным керамическим блоком, содержащим изолятор и проводник, первый акустически согласующий слой разделен первыми канавками (канавками 160) в направлении Y, и проводник обеспечен на части первого акустически согласующего слоя так, что разделенные части становятся электрически проводящими в направлении Z.

В настоящем варианте осуществления описан случай, в котором пьезоэлектрический элемент 110 и акустически согласующие слои 120 имеют вогнутую криволинейную форму поверхности в направлении Y на стороне объекта обследования, но криволинейная форма поверхности этим не ограничена. Например, эффект такого же типа можно также получить, если пьезоэлектрический элемент и акустически согласующие слои выполнены выпуклыми в направлении Y на стороне объекта обследования, а также если, независимо от вогнутости или выпуклости, применяется криволинейная поверхность, обладающая единым радиусом кривизны, или криволинейная поверхность, обладающая множеством таких радиусов кривизны, и при этом имеет место постепенное изменение радиуса кривизны.

В настоящем варианте осуществления описан случай, в котором пьезоэлектрический элемент 110 и акустически согласующие слои 120 имеют приблизительно равномерную толщину в направлении Y, но настоящее изобретение этим не ограничено. Например, эффект такого же типа можно также получить, если толщина пьезоэлектрического элемента и акустически согласующих слоев изменяется в направлении