Стабильный низковязкий полимер-полиол, имеющий гидроксильное число 35, и способ его получения

Изобретение относится к низковязким полимер-полиолам, используемым в качестве компонентов в производстве полиуретанов, и к способу получения указанных полимер-полиолов. Полимер-полиолы имеют гидроксильные числа ≥35, содержание твердого вещества от 45 до 65% масс. и вязкость, менее или равную be[2.7 c]. Полимер-полиолы представляют собой продукт реакции основного полиола, предварительно полученного стабилизатора и, по меньшей мере, двух этиленненасыщенных мономеров в присутствии инициатора свободно-радикальной полимеризации и, по меньшей мере, одного полимер-регулирующего агента. Основной полиол имеет гидроксильное число от 60 до 400, функциональность от 2 до 4. Технический результат - получение стабильных полимер-полиолов, имеющих низкую вязкость, повышенное содержание твердого вещества и обладающих хорошей фильтруемостью. 2 н. и 10 з.п. ф-лы, 3 табл.

Реферат

Настоящее изобретение относится к полимер-полиолам, особенно к стабильному низковязкому полимер-полиолу с гидроксильным числом ≥35, и к способу его получения.

Полимер-полиольные композиции являются коммерческими продуктами, которые находят применение в различных областях, главным образом, в качестве компонентов в производстве полиуретанов. Полиуретаны пригодны для получения покрытий, адгезивов, герметиков, эластомеров и гибких, полугибких и жестких пен. Главной функцией полимер-полиолов является повышение твердости или жесткости полиуретанов и, особенно, повышение способности полиуретанов выдерживать нагрузку или способность полиуретановых пен адсорбировать энергию. Области конечного использования пенополиуретанов включают, например, матрацы, мебель, ковры, упаковки и область энергетики, термоизоляцию и автомобильные сидения, подкладки к деталям, оборудование автоматической линии, звукоизоляцию, амортизационные подушки и т.д.

Основными патентами, относящимися к таким полимер-полиольным композициям, являются Stamberger, патентная публикация США US Re. 28715 (патент США US 3383351) и патентная публикация США US Re. 29118 (патент США US 3304273). Как описывается в них, стабильная дисперсия полимерных частиц в полиоле может быть получена полимеризацией одного или нескольких этиленненасыщенных мономеров, растворенных или диспергированных в полиоле, в присутствии катализатора свободнорадикальной полимеризации.

Первоначально в производстве основных полимер-полиольных композиций допускалось использование коммерческого акрилонитрила. Многие из этих композиций обладали нежелательно высокой вязкостью для некоторых областей применения. Позднее для промышленного получения полимерного компонента полимер-полиолов использовали мономерную смесь акрилонитрила и стирола. Все возрастающая потребность в полимер-полиолах определяет острую потребность в некоторых продуктах, и это вызывает необходимость разработки усовершенствований в технологии.

Полученные из таких мономерных смесей с высоким содержанием стирола полимер-полиолы оказались неспособными удовлетворить все возрастающие потребности рынка, включающие требования высокой стабильности и низкой вязкости и повышенной способности пенополиуретанов выдерживать нагрузку. Известно, что пенополиуретаны с повышенной выносливостью к нагрузкам могут быть получены при повышении содержания полимера или твердого вещества и/или при повышении функциональности или гидроксильного числа полиола. Поэтому желательными являются полиолы с высоким содержанием твердого вещества, т.е. от 30 до 60% масс. или выше. Однако повышение содержания твердого вещества в полимер-полиолах обычно достигается за счет других свойств полимер-полиола (а именно фильтруемости, стабильности и вязкости). Желательно, чтобы полимер-полиолы имели высокое содержание твердого вещества при относительно низкой вязкости и хорошей фильтруемости.

Использование мономерных смесей с высоким содержанием стирола и высоким содержанием твердого вещества полимер-полиола согласно предшествующему опыту обычно приводило к нежелательно высокой вязкости полимер-полиолов. Вязкость полимер-полиола должна быть достаточно низкой для легкого регулирования в процессе его получения. Кроме того, вязкость должна облегчать транспортировку, регулирование и, в конечном счете, достаточную способность к переработке (технологичность) на используемом для обработки пен технологическом оборудовании. Вследствие возрастающего использования более сложных смесительных систем, таких как ударные системы, избыточная вязкость полимер-полиола становится значительной проблемой. Потребность в низковязких полимер-полиолах является очевидной для удовлетворения возрастающих требований в данной области техники.

Как уже указывалось, стабильность полимер-полиола имеет важное значение для производителей полиуретанов. Одно время сопротивление фильтрации или фильтруемость, являющаяся мерой стабильности полимер-полиолов, не была главным предметом спроса в коммерческой практике. Однако прогресс в технологии получения полиуретанов, такой как использование высокого давления при инжекции диоксида углерода, привел к пересмотру критерия стабильности и фильтруемости полимер-полиолов.

По мере создания более сложного высоко скоростного оборудования и оборудования большого объема и систем для обработки, смешения и осуществления взаимодействия ингредиентов для получения полиуретанов возникла потребность в высоко стабильных и низковязких полимер-полиолах. К полимер-полиолам предъявляется некоторый минимум требований для удовлетворительной переработки на таком более сложном оборудовании для пен. Обычно основным требованием является требование достаточно небольшого размера частиц полимер-полиолов для того, чтобы не происходило забивания фильтров, насосов и т.д. и их засорения в относительно короткий период времени.

Хотя в снижении вязкости и повышении содержания твердого вещества в полимер-полиолах достигнут прогресс, но все же остается потребность в дальнейшем снижении вязкости и повышении содержания твердого вещества. Для удовлетворения требований рынка необходимо еще большее снижение вязкости и более эффективное повышение содержания твердого вещества также необходимо. Более важно, что требуется технология для полимер-полиолов, обеспечивающая максимальное снижение вязкости и в то же время обеспечивающая эффективный механизм повышения содержания твердого вещества.

В патенте США US 4522976 описываются дисперсии полимер-полиола в смеси низкомолекулярных полиолов и полиэфирполиолов и их пригодность для получения пен. Эти полимер-полиолы получают полимеризацией 25-75% масс. одного или нескольких этиленненасыщенных мономеров в полиольной смеси, содержащей (1) от 25 до 99% масс. полиола с 2-8 гидроксильными группами и эквивалентной массой от 30 до 200 и (2) от 1 до 75% масс. макромера с индуцированной ненасыщенностью.

Дисперсии полимер-полиолов и способ их получения описаны также в патенте США US 4690956. Эти полимер-полиольные дисперсии получают свободнорадикальной полимеризацией этиленненасыщенного мономера или мономеров в присутствии замедлителя реакции в полиольной смеси полиэфирполиола и макромера с индуцированной ненасыщенностью. Замедлитель реакции содержит фумарат, включающий полиэфирполиол на основе простого и сложного эфиров в качестве ненасыщенной составляющей и, по меньшей мере, 50% этиленненасыщенного мономера является акрилонитрилом.

Задача настоящего изобретения состоит в получении стабильного низковязкого полиола с гидроксильным числом ≥ 35 и хорошей фильтруемостью.

Эта задача решается предложенным стабильным низковязким полиолом с гидроксильным числом ≥35, вязкость которого является меньшей или равной

be [2.7 c],

где b означает вязкость основного полиола и

с означает [% твердого вещества / (100 - % твердого вещества)],

и имеющим содержание твердого вещества от около 30%масс. до около 65% масс. от общей массы полимер-полиола, включающим продукт реакции (А) основного полиола с гидроксильным числом от около 60 до около 1900, предпочтительно от около 70 до около 600 и наиболее предпочтительно от около 90 до около 400, функциональностью от около 1 до около 10, предпочтительно от около 2 до около 6 и наиболее предпочтительно от около 2 до около 3 и эквивалентной массой от около 30 до около 900, предпочтительно от около 100 до около 600 и наиболее предпочтительно от около 200 до около 500; (В) предварительно полученный стабилизатор; и (С), по меньшей мере, один этиленненасыщенный мономер; в присутствии (D) инициатора свободнорадикальной полимеризации; и (Е), по меньшей мере, одного полимер-регулирующего агента.

Другим объектом изобретения является способ получения стабильных низковязких полимер-полиолов по настоящему изобретению, включающий взаимодействие (А) основного полиола с гидроксильным числом от около 60 до около 1900, предпочтительно от около 70 до около 600 и наиболее предпочтительно от около 90 до около 400, функциональностью от около 1 до около 10, предпочтительно от около 2 до около 6 и наиболее предпочтительно от около 2 до около 3 и эквивалентной массой от около 30 до около 900, предпочтительно от около 100 до около 600 и наиболее предпочтительно от около 200 до около 500; (В) предварительно полученного стабилизатора; и (С), по меньшей мере, одного этиленненасыщенного мономера; в присутствии (D) инициатора свободнорадикальной полимеризации; и (Е), по меньшей мере, одного полимер-регулирующего агента.

Использованные при этом термины имеют следующие значения.

Термин «мономер» означает простую неполимеризованную форму химического соединения, имеющего относительно низкую молекулярную массу, например акрилонитрил, стирол, метилметакрилат и тому подобное.

Выражение «способный к свободнорадикальной полимеризации этиленненасыщенный мономер» означает мономер, содержащий этиленненасыщенную связь (>С=С<), то есть два углеродных атома, связанных двойной связью, способный подвергаться реакции аддитивной полимеризации, индуцированной свободными радикалами.

Термин «предварительно полученный стабилизатор» означает промежуточный продукт, полученный взаимодействием макромера, содержащего реакционноспособные ненасыщенные связи (например, акрилата, метилметакрилата, малеата и тому подобное), с одним или более мономерами (такими как акрилонитрил, стирол, метилметакрилат и тому подобное), в случае необходимости в полимер-регулирующем агенте, РСА (то есть метанол, изопропанол, толуол, этилбензол и т.д.) и/или в случае необходимости в полиоле с образованием сополимера (то есть дисперсии, имеющей, например, низкое содержание твердого вещества (например, менее 20%) или растворимого привитого сополимера и тому подобное).

Термин «стабильность» означает способность вещества сохранять стабильную форму, например способность оставаться в растворе или в суспензии. Полимер-полиолы, имеющие хорошую стабильность, обычно имеют также и хорошую фильтруемость.

Термин «полимер-полиол» относится к такой композиции, которая может быть получена полимеризацией одного или нескольких этиленненасыщенных мономеров, растворенных или диспергированных в полиоле, в присутствии катализатора свободнорадикальной полимеризации с образованием стабильной дисперсии полимерных частиц в полиоле. Эти полимер-полиолы имеют ценные свойства, например полученные из них пенополиуретаны и эластомеры проявляют более высокую способность выдерживать нагрузки, чем полученные из соответствующих немодифициированных полиолов.

Использованная здесь «вязкость» измерена при 25°С на вискозиметре Cannon Fenske в единицах сантистокс (сСт).

Пригодные полиолы для использования в качестве основных полиолов в настоящем изобретении включают, например, полиэфирполиолы на основе простых эфиров. Они включают полиэфирполиолы с функциональностью, по меньшей мере, около 1 (то есть полиэфирмоноол) и предпочтительно, по меньшей мере, около 2. Функциональность пригодных полиэфирполиолов является меньшей или равной около 10, предпочтительно меньшей или равной около 6 и наиболее предпочтительно меньшей или равной около 3. Пригодные полиэфирполиолы имеют также функциональность между любой комбинацией этих верхних и нижних значений, включая, например, значения от около 1 до около 10, предпочтительно от около 2 до около 6 и наиболее предпочтительно от около 2 до около 3. Гидроксильное число пригодных полиэфирполиолов равно, по меньшей мере, около 60, предпочтительно, по меньшей мере, около 70 и наиболее предпочтительно, по меньшей мере, около 90. Обычно полиэфирполиолы имеют также гидроксильные числа менее или равные около 1900, предпочтительно менее или равные около 600 и более предпочтительно менее или равные около 400. Пригодные полиэфирполиолы могут также иметь гидроксильные числа, изменяющиеся в пределах между любой комбинацией этих верхних и нижних значений, включая, например, от около 60 до около 1900, предпочтительно от около 70 до около 600 и наиболее предпочтительно от около 90 до около 400. Эквивалентная масса (среднечисловая) пригодных полиэфирполиолов обычно имеет значение выше, чем около 30, предпочтительно, по меньшей мере, около 100 и, наиболее предпочтительно, по меньшей мере, около 200. Обычно полиэфирполиолы имеют эквивалентную массу (среднечисловую) менее или равную 900, более предпочтительно, менее или равную 600 и наиболее предпочтительно, менее или равную 500. Пригодные полиэфирполиолы могут иметь эквивалентную массу (среднечисловую), варьирующуюся между любой комбинацией этих верхних и нижних значений, включая, например, от около 30 до около 900, предпочтительно от около 100 до около 600 и более предпочтительно от около 200 до около 500.

Эти полиэфирполиолы могут также иметь функциональности в интервале от около 1 до около 10, предпочтительно от около 2 до около 6, боле предпочтительно от около 2 до около 3; гидроксильное число в интервале от около 60 до около 1900, предпочтительно от около 70 до около 600, наиболее предпочтительно от около 90 до около 400; и (среднечисловые)эквивалентные массы в интервале от более чем 30 до около 900, предпочтительно около 100 до 600 и более предпочтительно около 200 до 500.

Использованный здесь термин «гидроксильное число» определяется как число миллиграммов гидроксида калия, необходимое для полного гидролиза полностью фталилированного производного, полученного из одного грамма полиола. Гидроксильное число может также определяться по уравнению

ОН=(56,1×1000×f)/мол. мас.,

где ОН представляет собой гидроксильное число полиола;

f представляет собой функциональность полиола, т.е. среднее число гидроксильных групп в молекуле полиола, и

мол. мас. представляет собой молекулярную массу полиола.

Примеры таких компонентов включают полиоксиэтиленгликоли, триолы, тетролы и более высоко функциональные полиолы, полиоксипропиленгликоли, триолы, тетролы и более высоко функциональные полиолы и их смеси и т.д. При использовании смесей оксид этилена и оксид пропилена могут быть добавлены одновременно или последовательно для получения внутренних блоков, концевых блоков или статистического распределения групп оксида этилена и/или оксида пропилена в полиэфирполиоле. Пригодные исходные соединения или инициаторы для этих соединений включают, например, этиленгликоль, пропиленгликоль, диэтиленгликоль, дипропиленгликоль, трипропиленгликоль, триметилолпропан, глицерин, пентаэритрит, сорбит, сахарозу, этилендиамин, толуилендиамин и т.д. Пригодные полиэфирполиолы для основного полиольного компонента могут быть получены алкоксилированием исходного соединения. Реакция алкоксилирования может быть катализирована использованием любого обычного катализатора, включая, например, гидроксид калия (KОН) или двойной металлоцианидный катализатор (DMC).

Другие пригодные полиолы для основного полиола по настоящему изобретению включают аддукты оксида алкиленов и невосстановленных сахаров и производных сахаров, аддукты оксидов алкиленов и фосфорных и полифосфорных кислот, аддукты оксидов алкиленов и полифенолов, полиолы, полученные из природных масел, таких, например, как касторовое масло и т.д., и аддукты оксидов алкиленов и полигидроксиалканов, иных, чем вышеописанные.

Примеры аддуктов оксидов алкиленов и полигидроксиалканов включают, например, аддукты оксидов алкиленов и 1,3-дигидроксипропана, 1,3-дигидроксибутана, 1,4-дигидроксибутана, 1,4-, 1,5- и 1,6-дигидроксигексана, 1,2-,

1,3-, 1,4-, 1,6- и 1,8-дигидроксиоктаната, 1,10-дигидроксидекана, глицерина, 1,2,4-тригидроксибутана, 1,2,6-тригидроксигексана, 1,1,1-триметилолэтана, 1,1,1-триметилолпропана, пентаэритрита, капролактона, поликапролактона, ксилита, арабита, сорбита, маннита и тому подобное.

Другие полиолы, которые могут быть использованы, включают аддукты оксида алкиленов и невосстановленных сахаров, в которых оксиды алкиленов содержат от 2 до 4 атомов углерода. Невосстановленные сахара и производные сахаров включают сукрозу, алкилгликозиды, такие как метилгликозид, этилгликозид и т.д., гликольгликозиды, такие как этиленгликольгликозид, пропиленгликольгликозид, глицерингликозид, 1,2,6-гексантриолгликозид и т.д., а также аддукты оксидов алкиленов и алкилгликозидов, такие как описаны в патенте США US 3073788.

Другие пригодные полиолы включают полифенолы и предпочтительно их аддукты с оксидами алкиленов, в которых оксиды алкиленов содержат от 2 до 4 атомов углерода. Пригодные полифенолы, включают, например, бисфенол А, бисфенол F, продукты конденсации фенола и формальдегида, новолачные смолы, продукты конденсации различных фенольных соединений и акролеина, включая 1,1,3-трис-(гидроксифенил)пропаны, продукты конденсации различных фенольных соединений и глиоксаля, глутарового альдегида, других диальдегидов, включая 1,1,2,2-тетракис-(гидроксифенол)этаны и т.д.

Аддукты оксидов алкиленов и фосфорных или полифосфорных кислот также являются пригодными полиолами. В качестве предпочтительных оксидов алкиленов они включают оксид этилена, 1,2-эпоксипропан, эпоксибутаны, 3-хлор-1,2-эпоксипропан и т.д. При этом желательными являются фосфорная кислота, фосфористая кислота и такие полифосфорные кислоты, как триполифосфорная кислота, полиметафосфорная кислота и т.д.

Следует учитывать, что при желании могут быть использованы композиции или смеси различных пригодных полиолов. В случае, полиолов отличных от полиолов предпочтительного типа, полезное содержание мономера и мономера или мономеры могут несколько варьироваться. Аналогичным образом может быть желательным или даже необходимым модифицировать стабилизатор по изобретению, если используют такие другие полиолы. Это может осуществляться согласно критериям, обсуждаемым ниже в связи со стабилизаторами, используемыми для предпочтительных полиолов.

Пригодными предварительно полученными стабилизаторами по настоящему изобретению являются предварительно полученные стабилизаторы, известные в технике и включающие, но не ограничиваясь этим, описанные в обсуждаемых здесь ссылках. Предпочтительные предварительно полученные стабилизаторы включают упомянутые, например, в патентах США US 4148840 (Shah), 5196476 (Simroth), 5364906 (Critchfield), 5990185 (Fogg), 6013731 (Holeschovsky et al.) и 6455603 (Fogg).

Пригодные предварительно полученные стабилизаторы включают так называемые промежуточные продукты взаимодействия макромолекулярного соединения с одним или несколькими мономерами (а именно, с акрилонитрилом, стиролом, метилметакрилатом и т.д.) с образованием сополимера (дисперсии с низким содержанием твердого вещества, например менее 25%, или растворимого привитого сополимера и т.д.). Макромолекулярное соединение может быть получено связыванием полиэфирполиолов на основе простых эфиров посредством сочетания их с соединениями, такими как полиизоцианаты, эпоксидные смолы и т.д., или с другими средствами с получением полиола с высокой молекулярной массой. Макромолекулярное соединение предпочтительно содержит реакционноспособную ненасыщенную связь и, в основном, получается взаимодействием выбранного реакционноспособного соединения с ненасыщенной связью с полиолом. Термин «реакционноспособное соединение с ненасыщенной связью» относится к любому соединению, способному образовывать аддукт с полиолом прямо или косвенно и содержащему двойные углерод-углеродные связи, адекватно реакционноспособные по отношению к конкретной используемой мономерной системе. Особенно предпочтительными являются соединения, содержащие альфа-, бета-ненасыщенные связи. Пригодные соединения, удовлетворяющие этому критерию, включают малеаты, фумараты, акрилаты и метакрилаты. В случае использования соединений с другими ненасыщенными связями, чем альфа- и бета-ненасыщенные связи, могут также быть использованы аддукты полиолов, полученные из замещенных стиролов, таких как хлорметилстирол. Примеры пригодных соединений с альфа- и бета-ненасыщенными связями, которые могут быть использованы для получения предшественника стабилизатора, включают, малеиновый ангидрид, фумаровую кислоту, диалкилфумараты, диалкилмалеаты, гликольмалеаты, гликольфумараты, изоцианатоэтил-метакрилат, 1,1-диметил-м-изопропенилбензилизоцианат, метилметакрилат, гидроксиэтилметакрилат, акриловую и метакриловую кислоту и их ангидриды, метакроилхлорид и глицидилметакрилат. Степень ненасыщенности в предшественнике стабилизатора может варьироваться в широком диапазоне. Как минимальная, так и максимальная степень ненасыщенности ограничены стабильностью дисперсии, которую предшественник стабилизатора способен придать полимер-полиольной композиции. Специфическая степень ненасыщенности, кроме того, зависит от молекулярной массы и функциональности полиола, использованного для получения предшественника стабилизатора. В случае необходимости могут присутствовать также разбавитель, полимер-регулирующий агент или регулятор роста цепи полимера и его молекулярной массы.

Пригодные предварительно полученные стабилизаторы по настоящему изобретению включают также такие, которые содержат продукт свободнорадикальной полимеризации (1) этиленненасыщенного мономера, способного к такой полимеризации, и (2) аддукт спирта, имеющего общую формулу

A(OROX)≥1,

где А является поливалентной органической частью со свободной валентностью ≥1, R является двухвалентным остатком, включающим часть оксида алкилена, а Х представляет собой одну или более органических частей, содержащих реакционноспособные ненасыщенные связи, способных сополимеризоваться с (А), и водород, приблизительно один такой Х является органической частью, содержащей реакционноспособные ненасыщенные связи, а остальные Х являются водородом, причем аддукт может являться продуктом дальнейшей реакции присоединения с органическим полиизоцианатом.

Другие пригодные предварительно полученные стабилизаторы включают такие, которые получены с использованием соединений - предшественников стабилизатора, получаемых взаимодействием соединения, содержащего атом кремния и соответствующего одной из формул

RnSiX4-n или RnSi((-OSi(R1)2)pX)4-n,

где каждый R независимо друг от друга представляет собой насыщенную или ненасыщенную углеводородную группу, при условии, что, по меньшей мере, одна группа R является олефинненасыщенной углеводородной группой;

R1 представляет собой углеводородную группу;

Х представляет собой алкоксильную группу с 1-10 атомами углерода;

n представляет собой целое число от 1 до 3 и

р является целым числом больше 0,

с полиэфирполиолом на основе простого эфира со средней молекулярной массой свыше 400 и гидроксильным числом в пределах от 35 до 280. Из них предпочтительными предшественниками стабилизаторов являются продукты реакции винилтриметоксисилана, винилтриэтоксисилана или винилтрипропоксисилана с полиэфирполиолом, имеющим среднюю молекулярную массу свыше 400 и гидроксильное число в пределах от 35 до 280. Такие предшественники стабилизаторов описаны в патенте США US 4883832 (Cloetens и др.).

Среди предварительно полученных стабилизаторов (PFS) предпочтительными являются описанные, например, в патенте США US 5990185, где PFS получают взаимодействием полиола, предшественника стабилизатора, мономера и инициатора свободнорадикальной полимеризации в реакционной зоне, поддерживаемой при температуре, достаточной для инициирования свободнорадикальной полимеризации, и при давлении, достаточном для сохранения в реакционной зоне только жидких фаз в течение периода времени, достаточного для взаимодействия, по существу, всего предшественника стабилизатора и рекуперацией гетерогенной смеси, содержащей композицию предварительно полученного стабилизатора.

Предварительно полученный стабилизатор по изобретению получают из следующей композиции, содержащей:

(1) макромолекулярное соединение, макромер или другой пригодный предшественник стабилизатора;
(2) способный к свободнорадикальной полимеризации этиленненасыщенный мономер, предпочтительно акрилонитрил и, по меньшей мере, один сополимеризующийся с ним другой этиленненасыщенный сомономер;
(3) инициатор свободнорадикальной полимеризации;
(4) полимер-регулирующий агент, в котором растворимы (1), (2) и (3), но в котором, по существу, нерастворим предварительно полученный стабилизатор; и/или
(5) в случае необходимости, один или более полиолов.

Как описано, например, в патенте США US 5196476, пригодные предварительно полученные стабилизаторы могут быть получены взаимодействием комбинации компонентов (1), (2), (3) и (4) и, возможно, (5), как описано выше, в реакционной зоне, поддерживаемой при температуре, достаточной для инициирования свободнорадикальной реакции, и под давлением, достаточным для сохранения в реакционной зоне только жидких фаз в течение периода времени, достаточного для взаимодействия (1), (2) и (3), и рекуперацией смеси, содержащей предварительно полученный стабилизатор, диспергированный в полимер-регулирующем агенте.

Пригодные соединения для использования в качестве макромолекулярных соединений, макромеров или предварительно полученных стабилизаторов (т.е. указанный выше компонент (1)) включают, например, соединения, содержащие реакционноспособные ненасыщенные связи (например, акрилат, метакрилат, малеат, фумарат, изопропенилфенил, винилсилил и т.д.), полученные взаимодействием соединений, содержащих реакционноспособные ненасыщенные связи, со спиртами, имеющими общую формулу A(OROX)≥1.

Примеры соединений, содержащих ненасыщенные связи, включают, но не ограничиваясь ими, малеиновый ангидрид, фумаровую кислоту, диалкилфумараты, диалкилмалеаты, гликольмалеаты, гликольфумараты, изоцианатоэтилметакрилат, метилметакрилат, гидроксиэтилметакрилат, акриловую и метакриловую кислоту и их ангидриды, метакроилхлорид и глицидилметакрилат, винилметоксисилан и т.д.

Соединением с реакционноспособной ненасыщенной связью может быть также продукт реакции одной или более молекул, приводящий к получению структуры с желаемым качеством реакционноспособной ненасыщенной связи. Например, гидроксиметил- или гидроксиэтилметакрилат может быть подвергнут реакции с полиолом посредством сочетания с органическим полиизоцианатом, как это описано, например, в патенте США US 4521546, или реакции с ненасыщенным моноизоцианатом, таким, например, как 1,1-диметил-м-изопропенилбензилизоцианат и т.д.

Пригодные соединения для использования в качестве названного выше компонента (2) включают соединения с реакционноспособными ненасыщенными связями, особенно способные к свободнорадикальной полимеризации. Некоторые примеры пригодных соединений включают алифатические конъюгированные диены, такие как бутадиен или изопрен; моновинилиденовые ароматические мономеры, такие как стирол, α-метилстирол, трет-бутилстирол, хлорстирол, цианостирол и бромстирол; α,β-этиленненасыщенные карбоновые кислоты и их эфиры, такие как акриловая кислота, метакриловая кислота, метилметакрилат, этилакрилат, 2-гидроксиэтилакрилат, бутилакрилат, итаконовая кислота, малеиновый ангидрид и тому подобное; α,β-этиленненасыщенные нитрилы и амиды, такие как акрилонитрил, метакрилонитрил, акриламид, метакриламид, N,N-диметилакриламид, N-(диметиламинометил)акриламид и тому подобное; сложные виниловые эфиры, такие как винилацетат; простые виниловые эфиры, винилкетоны, винил- и винилиденгалогениды, а также самые различные этиленненасыщенные соединения, способные сополимеризоваться с вышеназванными мономерными аддуктами или реакционноспособными мономерами. Понятно, что также пригодны для использования смеси двух или более из вышеназванных мономеров для получения предварительно получаемого стабилизатора. Из названных выше мономеров предпочтительными являются моновинилиден-ароматические мономеры, особенно стирол и этиленненасыщенные нитрилы, особенно акрилонитрил.

Предпочтительно, если (2) является акрилонитрилом и, по меньшей мере, одним другим этиленненасыщенным сомономером, способным сополимеризоваться с акрилонитрилом. Примеры таких этиленненасыщенных сомономеров, сополимеризующихся с акрилонитрилом, включают стирол и его производные, акрилаты, метакрилаты, такие как метилметакрилат, винилиденхлорид и тому подобное.

Особенно предпочтительно использовать акрилонитрил с сомономером и поддерживать минимальное содержание акрилонитрила в системе от около 5 до 15% масс. Предпочтительным сомономером является обычно стирол, но вместо части или всего стирола можно использовать метилметакрилат или другие сомономеры. Предпочтительная мономерная смесь (2), используемая для получения композиции предварительно полученного стабилизатора (В), включает смесь акрилонитрила и стирола. Содержание акрилонитрила может варьироваться от около 20 до 80% масс. от массы сомономерной смеси, более типично, от около 30 до около 50% масс., а содержание стирола соответственно изменяется от около 80 до около 20% масс., более предпочтительно от 70 до 50% масс. от массы смеси. Отношение акрилонитрила к стиролу в мономерной смеси особенно предпочтительно составляет от около 20:80 до 80:20 и даже более предпочтительно от около 30:70 до около 50:50.

Подходящие для использования в качестве компонента (3) в пригодных предварительно полученных стабилизаторах по настоящему изобретению инициаторы свободнорадикальной полимеризации включают любые катализаторы свободнорадикальной полимеризации, пригодные для прививки этиленненасыщенного полимера на полиол. Примеры таких пригодных инициаторов свободнорадикальной полимеризации по настоящему изобретению включают такие инициаторы, как, например, пероксиды, включая алкил- и арилгидропероксиды, персульфаты, пербораты, перкарбонаты, азосоединения и т.д. Некоторые специфические примеры включают такие катализаторы, как пероксид водорода, пероксид ди(трет-бутила), трет-бутилпероксидиэтилацетат, трет-бутилпероктоат, трет-бутилпероксиизобутират, трет-бутилперокси-3,5,5-триметилгексаноат, трет-бутилпербензоат, трет-бутилпероксипивалат, трет-амилпероксипивалат, трет-бутилперокси-2-этилгексаноат, перекись лаурила, гидропероксид кумена, гидропероксид трет-бутила, азобис-(изобутиронитрил), 2,2'-азобис-(2-метилбутиронитрил) и т.д.

Пригодные катализаторы также включают, например, катализаторы, имеющие удовлетворительный полупериод разложения в пределах температуры, используемой для получения предварительно получаемого стабилизатора, а именно полупериод распада должен составлять около 25% или менее от времени пребывания в реакторе при заданной температуре. Характерные примеры используемых катализаторов включают трет-бутилперокси-2-этилгексаноат, трет-бутилперпивалат, трет-амилпероктоат, 2,5-диметилгексан-2,5-дипер-2-этилгексоат, трет-бутилпернеодеканоат и трет-бутилпербензоат. Могут также использоваться азокатализаторы, такие как азобисизобутиронитрил, 2,2'-азобис-(2-метилбутиронитрил) и их смеси. Предпочтительными катализаторами свободнорадикальной полимеризации являются пероксиды, такие как трет-бутилпероктоат.

Пригодные концентрации катализаторов варьируются в пределах от около 0,01 до около 2% масс., предпочтительно от около 0,05 до 1% масс. и наиболее предпочтительно от около 0,05 до 0,3% масс. от общей массы компонентов (т.е. от 100% масс. общей массы макромера, этиленненасыщенного мономера, инициатора свободнорадикальной полимеризации и в случае необходимости разбавителя и/или полимер-регулирующего агента. До некоторого момента повышение концентрации катализатора приводит к повышению степени конверсии мономера и степени прививки, но дальнейшее ее повышение не существенно увеличивает степень конверсии. Слишком высокие концентрации катализатора могут вызвать поперечную сшивку в предварительно полученном стабилизаторе (В). Конкретную концентрацию катализатора выбирают как оптимальную с учетом всех факторов, включая стоимость.

Согласно настоящему изобретению компоненты (1), (2) и (3) предварительно полученного стабилизатора являются растворимыми в (4) полимер-регулирующем агенте. Однако полученный в результате предварительно полученный стабилизатор (В) является, по существу, нерастворимым в (4) полимер-регулирующем агенте. Этот компонент может являться одним полимер-регулирующим агентом или смесью полимер-регулирующих агентов. Пригодными компонентами, которые могут быть использованы в качестве полимер-регулирующего агента согласно настоящему изобретению, являются различные моноолы (т.е. моногидроксильные спирты), ароматические углеводороды, простые эфиры и другие жидкости. Если используемое в качестве регулятора роста цепи полимера соединение не оказывает негативного влияния на действие предварительно полученного стабилизатора (В), оно может быть использовано при осуществлении настоящего изобретения. Вследствие их легкого удаления из конечной полимер-полиольной композиции предпочтительными являются моноолы. В качестве регулятора роста цепи полимера могут быть использованы один или несколько моноолов. Выбор моноолов не является строго определенным. Однако они не должны образовывать двухфазной системы в условиях реакции и должны легко удаляться из конечного полимер-полиола.

Моноолы обычно выбирают из спиртов, содержащих, по меньшей мере, один атом углерода, таких как метанол, этанол, н-пропанол, изопропанол, н-бутанол, втор-бутанол, трет-бутанол, н-пентанол, 2-пентанол, 3-пентанол и тому подобное и их смесей. Предпочтительным моноолом является изопропанол. Концентрация полиола в случае его использования в полимер-регулирующем агенте (4) ограничена количественным значением, ниже которого наступает гелеобразование в предварительно полученном стабилизаторе (В).

Используемые согласно настоящему изобретению в качестве компонента (5) полиольные компоненты включают, обычно, описанные выше аддукты оксида алкилена А(ОН)>3. Хотя используемые в качестве компонента (5) полиолы могут включать различные описанные выше полиолы, охватывая более обширный класс полиолов, описанных в патенте США US 4242249, в колонке 7, строка 39, по колонку 9, строка 10, содержание которого включено здесь в качестве ссылки. Предпочтительно, если полиольный компонент (5) является тем же самым или эквивалентным полиолу, использованному для получения предшественника для предварительно полученного стабилизатора (PFS). Обычно полиол удалять не требуется.

Вследствие набора компонентов, варьирования их концентрации при питании, варьирования технологических условий, таких как температура, давление и время выдержки или реакции, возможен широкий выбор их с достижением при этом по-прежнему преимуществ изобретения. Поэтому целесообразно провести предварительное испытание конкретных комбинаций для определения наиболее подходящего образа действия с целью получения конкретного конечного полимер-полиольного продукта.

Обычно процентное содержание компонентов в композиции от массы общей композиции для получения предварительно получаемого стабилизатора (В) является следующим:

Компонент композиции Содержание, % масс.
1 от около 10 до 40
2 от около 10 до 30
3 от около 0,01 до 2
4 от около 30 до 80
5 от около 0 до 40

Предпочтительная композиция для получения предварительно получаемого стабилизатора (В) является следующей:

1 от 10 до 40, более предпочтительно от 15 до 35;

2 от 10 до 30, более предпочтительно от 15 до 25;

3 от 0,1 до 2, более предпочтительно от 0,1 до 1;

4 от 30 до 80, более предпочтительно от 40 до 70;

5 от 0 до 20, более предпочтительно от 0 до 10.

В приведенных выше комбинациях для получения предварительно получаемого стабилизатора (В) суммарное процентное содержание компонентов 1, 2, 3 и 4 и, в случае необходимости, 5 составляет 100% масс. от массы компонента (В), то есть предварительно получаемого стабилизатора.

Способ получения предварительно полученного стабилизатора В подобен способу получения полимер-полиола. Возможные значения температуры не являются критическими и могут варьироваться от около 80°С до около 150°С или,