Способ управления и стабилизации подвижного носителя, интегрированная система, устройство приведения зеркала антенны в поворотное движение в двух взаимно перпендикулярных плоскостях и устройство приведения в действие дифференциальных аэродинамических рулей для его осуществления

Иллюстрации

Показать все

Изобретение относится к системам управления, стабилизации и высокоточного самонаведения подвижного носителя на заданный объект визирования (ОВ), содержащим устройства с изменяющейся ориентацией диаграммы направленности волн, излучаемых антенной. Сущность изобретения заключается в том, что по заданным начальным координатам взаимного положения подвижного носителя и ОВ и начальным условиям выставки инерциальной измерительной системы, а также по измеряемым с момента старта подвижного носителя проекциям вектора кажущегося ускорения движения и проекциям вектора абсолютной угловой скорости вектора визирования заданного ОВ на соответствующие оси базовой антенной системы координат формируют сигналы, пропорциональные текущим значениям параметров вектора визирования заданного ОВ. Заявленное изобретение обеспечивает высокоточную отработку сформированных сигналов и помехоустойчивость управления и стабилизации направления вектора визирования ОВ и сигналов управления и стабилизации подвижного носителя с одновременным регулированием скорости поворота осей и валов соответственно устройства приведения зеркала антенны в поворотное движение в двух взаимно перпендикулярных плоскостях и устройства приведения в действие дифференциальных аэродинамических рулей (АДР) подвижного носителя. 4 н.п. ф-лы, 10 ил.

Реферат

Изобретение относится к системам управления, стабилизации и высокоточного самонаведения подвижных носителей на заданный объект визирования (OB), содержащим устройства с изменяющейся ориентацией диаграммы направленности волн, излучаемых антенной, а именно поворотно-чувствительные устройства, основанные на использовании гироинерциальных датчиков сигналов пространственного перемещения подвижного носителя, а также устройства управления аэродинамическими рулями (АДР) подвижного носителя.

Изобретение предназначено для управления и стабилизации подвижного носителя в процессе его самонаведения на первоначально заданную точку прицеливания (ТП) при его движения по траектории автономно и/или при локационном контакте с OB, подвижным или неподвижным, и может быть использовано:

- в инерциальных измерительных системах, в частности системах инерциального измерения параметров вектора визирования заданного OB для автономного его пеленгования в двух взаимно перпендикулярных плоскостях в базовой антенной системе координат и инерциального его автосопровождения;

- в системах инерциального самонаведения подвижных носителей на заданный OB,

- в интегрированных комплексированных бортовых систем самонаведения (БССН) в составе систем управления и стабилизации подвижных носителей,

- в системах управления и стабилизации от короткопериодических колебаний относительно центра масс, в том числе и вращающихся по крену подвижных носителей,

- в системах управления и стабилизации направления линии (вектора) визирования антенных устройств, например радиолокационного и инерциального (автономного) автосопровождения OB,

- в системах управления АДР подвижных носителей.

При создании подвижных носителей с высокоточным самонаведением на первоначально заданный OB, оснащенных системой управления и стабилизации, содержащей интегрированную БССН, включающую в свой состав радиолокационное антенное устройство, содержащее двухосный карданов подвес, несущий акселерометры и гироприборы, важной задачей является:

- обеспечение качественного инерциального управления направлением на первоначально заданный OB зеркала, например, радиолокационного антенного устройства на автономном участке траектории самонаведения подвижного носителя,

- качественная ориентация диаграммы направленности волн, излучаемых устройством, основание которого жестко закреплено внутри носовой части корпуса головного отсека подвижного носителя, в том числе и вращающегося по крену, при качественной стабилизации (от короткопериодических колебаний подвижного носителя относительно своего центра масс) направления зеркала антенного устройства на заданный OB,

- одновременно при этом обеспечение высокоточного самонаведения подвижного носителя (в том числе и вращающегося по крену) на заданный OB,

- формирование сигналов управления и стабилизации подвижного носителя с высокоточным самонаведением на основе информации инерциального измерителя параметров вектора визирования (ИИПВВ) заданного OB как инерциальной измерительной системы,

- разработка технических и специальных конструкторских решений, обеспечивающих высокоточную и быстродействующую отработку сигналов управления и стабилизации направления вектора (линии) визирования заданного OB и отработку сигналов управления и стабилизации подвижного носителя, а также минимально возможные, технологически обоснованные массогабаритные характеристики аппаратуры системы управления и стабилизации, предназначенной для оснащения подвижных носителей различного назначения.

Известны, например, следующие способы управления и стабилизации, системы и устройства, осуществляющие их:

1. Способ аэробаллистического управления аэродинамическим летательным аппаратом (WO 49361 A1, 16.02.99, 7F41G 7/22), «который состоит в том, что летательный аппарат содержит инерциальную систему, бортовой вычислитель и активную радиолокационную или пассивную оптическую головку самонаведения. Согласно этому способу полет аэродинамического летательного аппарата происходит по произвольной траектории на ее нисходящей части до тех пор, пока не будет достигнут заданный разворот аппарата. Способ дополнительно предполагает изменение направления вектора скорости летательного аппарата и включение режима планирующего спуска. На участке снижения вектор скорости летательного аппарата последовательно меняет направление в вертикальной плоскости относительно его направления на вершине траектории».

2. Способ и устройство управления ракетой (WO 9939149 А1, 20.01.99, 6F41G 7/20, F42B 15/01), при котором «ракета имеет информацию о своем положении, векторе скорости и будущем профиле скорости, а также непрерывно принимает информацию о положении и векторе скорости цели. На основании указанной информации предсказывается положение точки А, в которой ожидается перехват цели. Затем вычисляется время полета ракеты до предсказанной точки А. Дополнительно вычисляется фиктивная точка В, в которой ожидается перехват ракетной цели, причем эта точка располагается на большей высоте, чем предсказанная точка перехвата. Расстояние между точками А и В зависит от вычисленного времени полета. Окончательно вектор скорости ракеты направляется в указанную фиктивную точку».

3. Система управления ракетами с алгоритмом работы, содержащим нелинейный коэффициент усиления (US 5975460 А, 10.11.97, 6F41G 7/00), которая «генерирует команды управления для наведения ракеты на цель и содержит систему управления для наведения ракеты на цель и содержит систему управления, вычислитель, блок, автопилот и комплект электромагнитных датчиков. Система управления получает текущие параметры наведения от датчиков ракеты и головки наведения. Параметры наведения содержат навигационные данные, скорость сближения с целью, скорость перемещения линии визирования, параметры маневренности ракеты и параметры скорости ракеты. Вычислитель при помощи программного обеспечения определяет текущий коэффициент усилия параметра наведения в зависимости от текущих характеристик маневренности ракеты. В отдельном варианте исполнения система содержит нелинейную цель, которая генерирует команду ускорения в зависимости от параметров наведения, которые варьируются при изменении параметров маневренности ракеты. Блок определяет закон наведения ракеты на цель. Автопилот обеспечивает заданные характеристики маневренности ракеты. Нелинейный коэффициент усиления является функцией отношения скорости перемещения линии визирования к максимальной скорости перемещения идеальной линии визирования и зависит от текущих характеристик ракеты».

4. Способ автономного управления артиллерийским снарядом, стабилизированным вращением, и автономный управляемый снаряд для осуществления способа (DE 19740888 А1, 17.09.97, 6F41G 7/00, F42В 30/08, G05D 1/12), предназначенный «для наведения на цель артиллерийского снаряда, стабилизированного вращением». При этом «требуется, чтобы снаряд точно попадал в цель при удалении ≥35 км. С этой целью предусмотрено передать на снаряд перед выстрелом предварительно определенные данные цели. После выстрела снаряда эти данные сравниваются с данными положения снаряда, обнаруженными с помощью спутниковой навигационной приемной станции. Данные коррекции, полученные из этого сравнения, применяются для управления снарядом. Для этого снаряд переводится незадолго до достижения фазы управления из состояния полета, стабилизированного вращением, в полет, стабилизированным оперением. Причем тогда аэродинамическое управление снарядом осуществляется с помощью установленного на его носовой части откидного поворотного крыла и в застопоренном состоянии тормоза вращения действуют в качестве несущих поверхностей».

5. Способ формирования управляющих сигналов при самонаведении (RU 2239769 С2, 2002.11.27, 7F41G 7/22), сущность которого «состоит в следующем: разворот антенны головки самонаведения на цель после пропадания сигнала, отраженного от цели, осуществляют с переменной угловой скоростью, пропорциональной текущей оценке углового рассогласования, формируемой интегрированием разности угловой скорости линии визирования, полученной с оптимального фильтра, используемого для формирования команд управления в системе самонаведения, и ее значения, измеренного головкой самонаведения. В качестве оценки угловой скорости может быть также использовано нулевое значение».

6. Инерциальное наведение и система измерения (WO 3085358 А1, 31.03.2003, 7G01C 19/30, B64G 1/28, В64С 17/06) состоят в том, что содержат «гироскоп с управляемым моментом, шарнир карданов, устройство подвески шарнира карданов для возможности вращения шарнира карданов вокруг оси и двигателя шарнира для вращения шарнира вокруг оси для падения вращающего момента. С помощью датчика определяют угловую скорость транспортного средства по величине вращающего момента и углового ускорения шарнира карданов».

7. Система самонаведения для самодвижущегося снаряда (GB 2331352 А1, 07.02/84, 6F41G 7/22, G05D 1/12), которая «снабжена датчиком цели с асимметричным полем обзора. Автопилоты рыскания, тангажа и крена действуют в соответствии с командами, полученными из потребных сигналов ускорения на основе превышения, азимута и угла места. Чтобы держать цель в ограниченном поле обзора, команда угловой скорости по крену включает в себя расчетную составляющую, полученную на основе угловой скорости по тангажу и взятую в обратном масштабе относительно угла азимута. Датчик обеспечивает увеличенный обзор по азимуту и за счет этого может быть несимметрично смещен по азимуту относительно линии прицеливания. После поступления команды, соответствующей большой расчетной угловой скорости по крену, система прекращает движение по рысканию или временно заменяет входные сигналы, поступающие в автопилоты, сигналами управления по линии прицеливания».

8. Блок управления рулями на ракете или снаряде (US 6604705 В2, 19.03.2002, 7F42D 10/06), который «содержит изолированный корпус. На внешней стороне корпуса расположены две управляющие поверхности в форме рулей или полурулей, которые установлены на шарнирах, могут поворачиваться и управляются приводами. Корпус имеет две полости с электродвигателями. Через понижающий зубчатый редуктор двигатели управляют колебаниями относительно продольной оси управляющего узла из двух колец, установленных в гнездах. С кольцами сцеплены при помощи концевых соединителей полурули, которые установлены напротив друг друга на дополнительном кольце. Это кольцо расположено в гнезде корпуса и может свободно поворачиваться относительно продольной оси».

9. Блок рулевого привода управляемого снаряда (RU 2248519 С1, 2003.10.15, 7F42B 15/00), который «включает ось рулей с коромыслом, с которым связаны силовые цилиндры с поршнем мембранного типа с жестким центром и односторонним штоком, а также узлы центровки поршней. Каждый узел центровки в виде центрального стержня постоянного диаметра, установленного в полости цилиндра, и кольцевой направляющей втулки, выполненной на штоке со стороны выхода осевого глухого отверстия, образованного на штоке, образующей со стержнем подвижную посадку. Расстояние от оси рулей до оси каждого цилиндра определяется по определенной зависимости».

10. Блок управляемого привода управляемого снаряда (RU 2248520 С1, 2003.07.02, 7F42B 15/01), в котором «рули соединены посредством полуоси, в которой вдоль продольной оси снаряда выполнено центральное отверстие, перпендикулярно продольной оси выполнены соосные отверстия для установки осей рулей. Полуось содержит элементы соединения с силовыми цилиндрами».

11. Рулевой привод управляемого снаряда (RU 2257534 С1, 2004.03.30, 7F42B 15/00), который «содержит рулевую машину с силовым цилиндром, распределительным устройством и управляющим электромагнитом. Распределительное устройство размещается во входном канале рулевой машины, связанном с полостями силового цилиндра, в котором установлены фильтры и дроссели, на выходе из полости силового цилиндра установлены сопла, перекрываемые заслонкой, связанной с якорем управляющего электромагнита. Площадь дросселя и площадь сопла выполнены при определенном соотношении».

12. Блок рулевого привода управляемого снаряда (RU 2258895 С1, 2004.04.14, 7F42B 15/00), который «содержит шпангоут, рули, рулевую машину со штоком. Рулевая машина жестко закреплена со шпангоутом, на конце штока укреплено водило с отверстием, перпендикулярным оси поршня с размещенным в нем вкладышем. Во вкладыше выполнено отверстие, в котором установлен цилиндрический палец, укрепленный на рычаге, соединенном с рулями».

13. Способ управления ракетой и блок рулевого привода (варианты) (RU 2288439 С1, 2005.07.04, F42B 15/00, 10/60, В64С 13/40), который включает формирование системой управления ракеты сигнала на рулевой привод и соответствующее угловое отклонение аэродинамических рулей приводом относительно продольной оси ракеты в диапазоне между двумя максимальными значениями. В момент достижения аэродинамическими рулями максимального угла отклонения прекращают действие сигнала системы управления на рулевой привод, в котором формируют воздействие, обеспечивающее угловое отклонение аэродинамических рулей в противоположную сторону. В первом варианте блок рулевого привода содержит рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, разделенном расположенной вдоль оси рулей перегородкой на рабочие камеры, боковые стенки которых имеют сферические поверхности. Общая задняя стенка выполнена с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством. У задней стенки поднутрением боковых стенок образована промежуточная полость. При этом расстояние от оси вращения аэродинамических рулей до задней стенки и протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки выполнены величиной, определяемой из первого математического выражения. Во втором варианте блок рулевого привода содержит последовательно соединенные входной сумматор, усилитель, рулевую машину и датчик обратной связи. В него введен ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления».

14. Управляемый снаряд (RU 2295698 С1, 2005.09.20, F42B 15/00), который содержит «в головном отсеке основание, на котором размещен механизм раскрытия рулей. В обтекателе выполнены пазы для выхода рулей. Площадь пазов в обтекателе, являющихся сбросными каналами, выполнена в соотношении 10-15 от площади воздухозаборного устройства».

Следовательно, согласно упомянутой выше задаче, которую необходимо решить, ни один из рассмотренных выше аналогов не может быть принят наиболее близким по технической сущности и назначению в качестве прототипа предлагаемых технических решений (способа, системы и устройств для его осуществления).

Целью заявляемых технических решений (способа, интегрированной системы и устройств для его осуществления) является решение задачи оптимального построения интегрированной комплексированной БССН и на ее основе - интегрированной системы управления и стабилизации подвижного носителя с одновременным обеспечением повышенных его технических характеристик и потребительских свойств.

Сущность изобретения заключается в том, что по предлагаемому способу формируют длиннопериодические управляющие сигналы, пропорциональные скорости изменения углов визирования, определяющих текущее направление зеркала антенного устройства на заданный OB в горизонтальной и в вертикальной плоскости (фиг.1, фиг.3), а также сигналы, пропорциональные текущим значениям модуля скорости изменения наклонной дальности сближения с заданным OB подвижного носителя, начальным и текущим значениям тангажа и рыскания подвижного носителя. Для этого во время предстартовой подготовки к пуску подвижного носителя системы управления и стабилизации определяют и задают сигналы, пропорциональные начальным координатам L0, εН0, εГ0 взаимного положения подвижного носителя и первоначально заданного OB (фиг.4). Затем формируют сигналы в виде пакета последовательных информационных слов. Пакет содержит начальные значения:

- пеленгов, т.е. угла наклона εН0 и азимута εА0 заданного OB относительно основания антенного устройства, жестко установленного внутри корпуса подвижного носителя, в связанной с центром масс подвижного носителя системе координат Ox1y1z1 (фиг.4);

- наклонной дальности L0 до заданного OB и наклонной скорости сближения с заданным OB основания антенного устройства вместе с подвижным носителем в предстартовом положении (фиг.1);

- рыскания ψ0, тангажа ϑ0 и крена γ0 подвижного носителя вместе с основанием антенного устройства (фиг.5),

а также начальные условия выставки инерциального измерения параметров вектора визирования заданного OB, т.е. сигналы, пропорциональные начальным значениям:

- проекций V0ζ, V0η, V0ξ вектора V линейной скорости предстартового движения основания антенного устройства вместе с подвижным носителем на соответствующие оси местной горизонтальной системы координат Оξηζ (фиг.1, фиг.3);

- декартовых координат ξ0 (D0), η00), ζ0 подвижного носителя в местной горизонтальной системе координат (фиг.1);

- долготы λ0 и географической широты φ0 подвижного носителя (фиг.1) и, кроме того, сигналы, пропорциональные необходимым режимным параметрам по дальности, контрольное слово и командное слово.

Далее проверяют сформированные сигналы в виде пакета последовательных информационных слов на отсутствие в них искажений. После этого сигналы, характеризующие пакет последовательных информационных слов, преобразуют в параллельную форму для инерциального измерения параметров вектора визирования заданного OB. Затем на борту подвижного носителя преобразуют сигналы, пропорциональные начальным условиям выставки инерциального измерения параметров вектора визирования заданного OB, в сигналы, пропорциональные начальным значениям:

- проекций V0x, V0y, V0z вектора линейной скорости предстартового движения основания антенного устройства вместе с подвижным носителем на соответствующие оси базовой антенной системы координат Оxyz (фиг.1, фиг.2),

- углов εГ0 и εВ0 визирования заданного OB соответственно в горизонтальной и в вертикальной плоскости в местной горизонтальной системе координат Оζηξ (фиг.1, фиг.3),

- составляющие e01 и е02 пространственной угловой координаты заданного OB в базовой антенной системе координат Оxyz, т.е. сигналов рассогласования (ошибки) между направлением оптической оси зеркала антенного устройства и направлением вектора (линии) визирования на заданный OB, отсчитываемых в базовой антенной системе координат относительно оптической оси зеркала антенного устройства во взаимно перпендикулярных плоскостях пеленгования OB (фиг.2),

- направляющих косинусов β0ij (где i, j=1, 2, 3), определяющих начальное взаимное положение базовой антенной системы координат Оxyz и опорной геоцентрической системы координат Сξ0η0ζ0, связанной одной своей осью Сζ0 с заданным OB, расположенным на земной поверхности (фиг.1).

В момент старта подвижного носителя обновление сигналов начальной информации прекращается, а во время его движения по траектории после старта измеряют сигналы, пропорциональные проекциям nx, ny nz вектора кажущегося линейного ускорения движения и проекциям ωx, ωy, ωz вектора абсолютной угловой скорости поворота зеркала антенного устройства на соответствующие оси системы координат Охзyзzз, связанной с зеркалом антенного устройства. По этим измеренным сигналам с учетом переменной электрической редукции между углами поворота зеркала антенного устройства и линии и/или вектора визирования заданного OB определяют сигналы, пропорциональные проекциям nx, ny, nz вектора кажущегося линейного ускорения движения и проекциям ωх, ωy, ωz вектора абсолютной угловой скорости поворота вектора визирования заданного OB на соответствующие оси базовой антенной системы координат Oxyz. По полученным сигналам формируют с учетом сигналов, определенных и заданных во время предстартовой подготовки подвижного носителя, сигналы, пропорциональные текущим значениям параметров вектора визирования заданного OB, а именно:

- проекций Vx, Vy, Vz вектора линейной скорости сближения с заданным OB основания антенного устройства вместе с подвижным носителем на соответствующие оси базовой антенной системы координат,

- наклонной дальности L и наклонной скорости сближения с заданным OB основания антенного устройства вместе с подвижным носителем,

- составляющих e1 и e2 пространственной угловой координаты заданного OB в базовой антенной системе координат Оxyz,

- направляющих косинусов βij (где i, j=1, 2, 3) взаимного текущего углового положения базовой антенной системы координат Oxyz и опорной геоцентрической системы координат Сξоηоζо.

По этим сформированным сигналам, пропорциональным текущим значениям наклонной дальности L и наклонной скорости сближения с заданным OB основания антенного устройства вместе с подвижным носителем, осуществляют инерциальное автосопровождение заданного OB по дальности, а по полученным сигналам, пропорциональным текущим значениям составляющих е1 и е2 пространственной угловой координаты заданного OB в базовой системе координат Oxyz, которые являются сигналами рассогласования между направлением оптической оси зеркала антенного устройства и направлением на заданный OB в двух соответственно взаимно перпендикулярных плоскостях пеленгования в базовой антенной системе координат, одновременно осуществляют инерциальное автосопровождение по направлению заданного OB, назначенного при предстартовой подготовке подвижного носителя. Для этого преобразуют путем интегрирования в замкнутом контуре инерциального автосопровождения по направлению заданного OB полученные сигналы, пропорциональные текущим значениям составляющих e1 и е2 пространственной угловой координаты заданного OB, в управляющие длиннопериодические сигналы, пропорциональные соответственно скорости изменения углов визирования заданного OB и , определяющие текущее направление зеркала антенного устройства на заданный OB в вертикальной и в горизонтальной плоскости, обусловленные движением основания антенного устройства вместе с подвижным носителем по направлению к заданному OB.

Этими длиннопериодическими сигналами воздействуют на соответствующие датчики момента управляемого трехстепенного гироскопа, установленного во внутренней рамке двухосного карданова подвеса антенного устройства, наружная и внутренняя рамки которого шарнирно связаны с его зеркалом (фиг.6, фиг.7).

Под действием длиннопериодических сигналов создаются длиннопериодические возмущающие управляющие моменты, вызывающие моменты гироскопической реакции в опорах осей прецессии соответствующих рамок трехосного карданова подвеса ротора гироскопа. При этом согласно прецессионной теории гироскопа возникает длиннопериодическое прецессионное отклонение соответствующих рамок трехосного карданова подвеса ротора гироскопа с угловой скоростью, близкой по величине к угловой скорости и изменения соответствующих углов визирования заданного OB. Одновременно определяют сигналы, пропорциональные рассогласованию между направлением вектора кинетического момента ротора гироскопа и направлением на OB, задаваемым сформированными длиннопериодическими сигналами, пропорциональными соответственно скорости и изменения углов визирования заданного OB в горизонтальной и в вертикальной плоскости и соответственно длиннопериодическим возмущающим управляющим моментам.

Эти сигналы преобразуют в длиннопериодические сигналы управления электродвигателями поворота рамок двухосного карданова подвеса антенного устройства. По сигналам управления электродвигатели развивают длиннопериодические поворотные моменты, равные и совпадающие по направлению с направлением соответствующих длиннопериодических возмущающих управляющих моментов, для поворота наружной и внутренней рамок двухосного карданова подвеса антенного устройства и шарнирно связанного с ним зеркала в текущее направление на заданный OB. При этом одновременно определяют сигналы, пропорциональные соответственно углу наклона εнз и азимуту εAз заданного OB относительно основания антенного устройства, которое установлено жестко внутри корпуса подвижного носителя.

При круговом вращении основания антенного устройства вместе с вращающимся по крену подвижным носителем также одновременно формируют сигналы, пропорциональные соответственно углу наклона εнз и азимуту εАз заданного OB относительно основания антенного устройства, характеризующиеся амплитудой и частотой короткопериодических колебаний, сдвинутых по фазе на 90 градусов, соответственно наружной и внутренней рамок двухосного карданова подвеса антенного устройства и шарнирно связанного с ним зеркала относительно своих осей вращения. Кроме того, одновременно также формируют короткопериодические сигналы, пропорциональные колебаниям основания антенного устройства вместе с короткопериодическими колебаниями подвижного носителя по рысканию ψ и по тангажу ϑ, которые воздействуют на основание антенного устройства при одновременном его вращении по крену γ вместе с подвижным носителем.

Вследствие этого возникают аддитивные короткопериодические возмущающие моменты, которые, в свою очередь, вызывают короткопериодические моменты гироскопической реакции в опорах осей прецессии соответствующих рамок трехосного карданова подвеса ротора гироскопа. При этом согласно прецессионной теории гироскопа возникает короткопериодическое прецессионное колебание соответствующих рамок карданова подвеса ротора гироскопа с угловыми скоростями, направление вектора которых совпадает с направлением векторов аддитивных короткопериодических возмущающих моментов.

Одновременно определяют сигналы, пропорциональные рассогласованию между направлением вектора кинетического момента ротора гироскопа и направлением вектора аддитивных короткопериодических возмущающих моментов. Эти сигналы преобразуют в аддитивные короткопериодические сигналы управления соответствующих электродвигателей поворота рамок двухосного карданова подвеса антенного устройства.

По сигналам управления электродвигатели развивают аддитивные короткопериодические поворотные моменты, равные и противоположно направленные соответственно направлению аддитивных короткопериодических возмущающих моментов, действующих вокруг соответствующих осей вращения наружной и внутренней рамок двухосного карданова подвеса антенного устройства, для отработки аддитивных короткопериодических сигналов, обусловленных вращением основания антенного устройства вместе с вращающимся по крену γ подвижным носителем и их колебаниями по тангажу ϑ и по рысканию ψ в заданном текущем направлении на заданный OB с одновременной отработкой сигналов, пропорциональных угловой скорости короткопериодических отклонений рамок двухосного карданова подвеса антенного устройства. При этом отработанные аддитивные короткопериодические сигналы регистрируют и по этим короткопериодическим сигналам, характеризующимся амплитудой и частотой короткопериодических колебаний рамок двухосного карданова подвеса антенного устройства, определяют сигнал, пропорциональный периоду колебаний рамок двухосного карданова подвеса антенного устройства. По этому сигналу в течение всего времени вращения по крену подвижного носителя антенного устройства определяют сигнал, пропорциональный угловой скорости вращения по крену подвижного носителя. Одновременно также формируют при необходимости по зарегистрированным сигналам короткопериодические сигналы торможения вращения подвижного носителя по крену γ, сдвинутые по фазе на 90 градусов. Эти сигналы преобразуют в электрические сигналы торможения и одновременно подают на входы приводов соответствующих четырех дифференциальных аэродинамических рулей (АДР), осуществляющих управление подвижным носителем относительно его двух взаимно перпендикулярных осей симметрии. АДР по этим сигналам развивают короткопериодические вращающие моменты торможения, равные и противоположно направленные соответственно действующим аддитивным короткопериодическим возмущающим моментам, обусловленным вращением по крену γ подвижного носителя антенного устройства. При торможении вращения по крену подвижного носителя, когда сигнал, пропорциональный периоду короткопериодических колебаний рамок двухосного карданова подвеса антенного устройства, превышает пороговое значение периода, соответствующее величине угловой скорости вращения по крену у подвижного носителя, близкой к нулю, определяют сигнал остановки вращения по крену подвижного носителя. При этом одновременно определяют сигналы, пропорциональные углу наклона εн и азимуту εA заданного OB. После остановки вращения по крену γ подвижного носителя одновременно осуществляют стабилизацию текущего направления зеркала антенного устройства на заданный OB от действующих короткопериодических колебаний подвижного носителя относительно своего центра масс по крену γ, по тангажу ϑ и по рысканию ψ. При этом по сформированным управляющим длиннопериодическим сигналам, пропорциональным скорости и изменения углов визирования, определяют стабилизированное от аддитивных короткопериодических колебаний текущее направление зеркала антенного устройства на заданный OB в горизонтальной и в вертикальной плоскости и осуществляют инерциальное управление стабилизированным направлением зеркала антенного устройства на заданный OB также и при круговом вращении основания антенного устройства вместе с вращающимся по крену подвижным носителем.

При перемещении по траектории после старта подвижного носителя по сигналам, пропорциональным полученным проекциям ωх, ωy, ωz вектора абсолютной угловой скорости поворота вектора визирования заданного OB на соответствующие оси базовой антенной системы координат Oxyz, формируют сигналы, пропорциональные проекциям , , вектора абсолютной угловой скорости поворота вектора визирования заданного OB на соответствующие оси системы координат Ox1y1z1, связанной с осями симметрии подвижного носителя (фиг.5). Затем по этим сигналам формируют сигналы, пропорциональные проекциям , , вектора углового ускорения поворота вектора визирования заданного OB на соответствующие оси связанной системы координат Ox1y1z1, а также с учетом начальных знаний крена γ0, тангажа ϑ0 и рыскания ψ0, заданных при предстартовой подготовке подвижного носителя к пуску, определяют короткопериодические сигналы, пропорциональные текущим значениям крена γ, тангажа ϑ, рыскания ψ и соответственно угловой скорости , , их изменения.

Далее по полученным сигналам формируют короткопериодические сигналы стабилизации подвижного носителя в вертикальной плоскости, в горизонтальной плоскости и крену γ. По этим сигналам формируют короткопериодические сигналы, пропорциональные стабилизирующим моментам, которые поступают на вход соответственно каждого широкополосного контура управления соответствующих четырех приводов дифференциальных АДР подвижного носителя. Кроме того, одновременно по сигналам, пропорциональным полученным измеренным проекциям nx, ny, nz вектора кажущегося ускорения движения вектора визирования заданного OB на соответствующие оси базовой антенной системы координат Oxyz, формируют сигналы, пропорциональные проекциям nξ, nη, nζ вектора кажущегося линейного ускорения движения вектора визирования заданного OB на соответствующие оси местной горизонтальной системы координат Оξηζ (фиг.1).

По полученным сигналам, пропорциональным текущим значениям модуля вектора скорости изменения наклонной дальности сближения с заданным OB основания антенного устройства вместе с подвижным носителем, скорости и изменения углов визирования заданного OB соответственно в горизонтальной и в вертикальной плоскости, а также начальным и текущим значениями горизонтального угла визирования εг0 и εг и вертикального угла визирования εв0 и εв заданного OB, формируют управляющие сигналы автономного самонаведения подвижного носителя вместе с основанием антенного устройства на заданный OB, пропорциональные заданным перегрузкам nгзад и nвзад соответственно в горизонтальной и вертикальной плоскости.

Затем полученные сигналы, пропорциональные задаваемым перегрузкам nгзад и гвзад, сравнивают соответственно с сформированными сигналами, пропорциональными вертикальной nη и горизонтальной nζ проекциям вектора кажущегося ускорения движения подвижного носителя на соответствующие оси местной горизонтальной системы координат Оξηζ. Далее полученные сигналы преобразуют в управляющие длиннопериодические сигналы, которые поступают на вход узкополосных контуров управления соответствующих четырех приводов дифференциальных АДР подвижного носителя, где их суммируют соответственно со сформированными короткопериодическими сигналами, пропорциональными стабилизирующим моментам. Полученные сигналы преобразуют в электрические сигналы управл