Композиция газойля
Настоящее изобретение относится к композиции газойля для зимнего применения, которая обеспечивает одновременное снижение нагрузки на окружающую среду. Технический результат - отличные низкотемпературные свойства и низкий расход топлива. Композиция газойля содержит в расчете на ее общую массу синтетическое базовое масло ФТ (Фишера-Тропша) и/или гидрированное животное или растительное масло с конкретными свойствами в количестве 70% по объему или больше и 98% по объему или меньше, нефтяное базовое масло с конкретными свойствами в количестве 2% по объему или больше и 30% по объему или меньше и присадку, которая повышает хладотекучесть, такой присадкой является сополимер этилен-винилацетата и/или соединение с поверхностно-активным действием. Каждое из масел характеризуется температурами 10%, 90% дистилляции, конечной температурой дистилляции, содержанием нормальных парафинов, нафтеновых, содержанием серы, композиция характеризуется низкотемпературными свойствами. 1 з.п. ф-лы, 1 ил., 5 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к композициям газойлей, содержащим главным образом синтетическое базовое масло ФТ, в частности, к композициям газойлей, подходящим образом используемых в зимний сезон, что позволяет одновременно достичь снижения нагрузки на окружающую среду, обеспечивает отличные низкотемпературные свойства и низкий расход топлива.
Уровень техники
В общем, композицию газойля получают смешением одного или нескольких типов базового масла, полученного гидроочисткой или гидродесульфурацией прямого газойля или прямого керосина, полученных при дистилляции сырой нефти при атмосферном давлении. В частности, часто случается, что составляющая доли вышеупомянутого керосинового базового масла и базового масла газойля регулируется таким образом, чтобы обеспечить хладотекучесть в зимний сезон. При необходимости, базовые масла смешивают с такими присадками, как повысители цетанового числа, детергенты и повысители хладотекучести (см., например, непатентный документ №1, указанный ниже).
Считается, что пониженные содержания серы и ароматических соединений способствуют подавлению образования вредных компонентов, таких как NOx и РМ в выхлопных газах двигателей. С этой точки зрения, внимание было направлено на топлива, такие как жидкие фракции, соответствующие нафте, керосину и газойлю, полученные реакцией Фишера-Тропша (ФТ) смешанного газа, содержащего, главным образом, водород и оксид углерода, полученного из природного газа, угля, биомассы или ила (далее по тексту часто называемому «синтетическим газом»); углеводородным смесям, полученным гидроочисткой или гидрокрекингом данных жидких фракций; и углеводородным смесям, полученным гидроочисткой или гидрокрекингом жидких фракций и воска ФТ, полученных реакцией Фишера-Тропша, как топлив, способствующих снижению нагрузки на окружающую среду.
Однако, поскольку реакция ФТ как таковая содержит процесс образования воска, гидрированные продукты из продуктов реакции ФТ содержат относительно большое количество линейных насыщенных углеводородных соединений (нормальных парафинов). Отмечено, что особенно когда в гидрированном продукте содержатся тяжелые нормальные парафиновые соединения, существует вероятность того, что они будут откладываться в виде воска. Кроме того, синтетическое базовое масло ФТ представляет собой углеводородную смесь, содержащую преимущественно вышеназванные нормальные парафины и насыщенные углеводороды, содержащие боковые цепи (изопарафины), и таким образом обычно обладает низкой способностью растворять масла. Поэтому существует вероятность того, что присадки, которые растворены в топливных маслах, таких как газойль, в значительной степени зависимые от их маслорастворимых групп (линейных алкильных групп или т.п.), будут трудно растворимыми. Среди данных присадок могут быть использованы традиционные повысители хладотекучести (СFI), состоящие из сополимерной смеси этилен-винилацетат, вследствие ограниченной растворимости в топливе.
В патентном документе №1 предложено в его примере синтетическое топливо, содержащее только фракцию газойля, полученную из синтетического базового масла ФТ. Однако данный газойль представляет собой чрезвычайно легкое топливо, содержащее фракцию керосина в большом количестве, так как целью документа является решение проблемы, касающейся низкотемпературных пусковых свойств, и таким образом метод улучшения низкотемпературных свойств с повысителем хладотекучести не может быть выбран. И как результат этого, нельзя избежать значительного снижения плотности, кинематической вязкости и объемной теплотворной способности, и кроме того, нельзя отрицать, что данные снижения приведут к существенному ухудшению расхода топлива, заклиниванию насосов для впрыска топлива, кавитационным повреждениям и дефектам при повторном пуске двигателя при высоких температурах.
То есть очень трудно создать высококачественное топливо, которое могло бы обеспечить на высоком уровне одновременно выполнение требований, предъявляемых для композиций газойля, обеспечивающих снижение нагрузки на окружающую среду, обладающих отличными эксплуатационными свойствами в условиях зимнего сезона и предотвращающих ухудшение расхода топлива, и не существует примера или сведений об исследованиях данного топлива, удовлетворяющего в достаточной мере требованиям к различным свойствам, предъявляемым к топливу, отличающемуся от рассмотренного ниже, и практического способа получения топлива.
(1) Патентный документ №1: выложенная публикация патента Японии № 2005-529213.
(2) Непатентный документ №1: Konishi Seiichi, “Nenryo Kogaku Gairon”, Shokabo Publishing Co., Ltd., March, 1991, pages 136-144.
Сущность изобретения
Настоящее изобретение разработано с учетом рассмотренных выше положений и имеет своей целью разработку композиции газойля, содержащей главным образом синтетическое базовое масло ФТ, более конкретно, такую композицию газойля, которая может обеспечить одновременно снижение нагрузки на окружающую среду, отличные низкотемпературные свойства и низкое потребление топлива и подходящим образом может быть использована в зимний сезон. Настоящее изобретение явилось результатом обширного изучения и исследований, проведенных авторами изобретения для решения вышеназванных проблем.
То есть настоящее изобретение относится к композиции газойля, содержащей в расчете на общую массу композиции:
синтетическое базовое масло ФТ и/или гидрированное животное или растительное масло в количестве от 70% по объему или больше до 98% по объему или меньше;
нефтяное базовое масло в количестве от 2% по объему или больше до 30% по объему или меньше; и
повыситель хладотекучести, содержащий сополимер этилен-винилацетат и/или соединение с поверхностно-активным действием в количестве 20 мг/л или больше и 1000 мг/л или меньше в единицах активного компонента,
синтетическое базовое масло ФТ и/или гидрированное животное или растительное масло, имеющее температуру 10% дистилляции 160°С или выше и 230°С или ниже, температуру 90% дистилляции 280°С или выше и 340°С или ниже и конечную точку дистилляции 360°С или ниже в параметрах дистилляции, содержание высших алифатических спиртов 100 частей на млн. по массе или меньше, содержание серы 1 часть на млн. по массе или меньше и общее содержание нормальных парафинов, содержащих от 20 до 30 атомов углерода, меньше чем 8% по массе;
нефтяное базовое масло, имеющее температуру 10% дистилляции 150°С или выше и 250°С или ниже, температуру 90% дистилляции 210°С или выше и 355°С или ниже и конечную точку дистилляции 365°С или ниже в параметрах дистилляции, содержание серы 10 частей на млн. по массе или меньше, общее содержание нормальных парафинов, содержащих от 20 до 30 атомов углерода, меньше чем 6% по массе, содержание ароматических соединений 10% по объему или больше и 60% по объему или меньше и содержание нафтеновых соединений 10% по объему или больше и 60% по объему или меньше;
композиция имеет температуру помутнения -3°С или ниже, температуру закупоривания холодного фильтра -10°С или ниже, величину, полученную вычитанием температуры закупоривания холодного фильтра из температуры помутнения, 3°С или выше, температуру потери текучести -12,5°С или ниже, показатель растворимости 0 или больше, содержание ароматических соединений 1% по объему или больше и 15% по объему или меньше, цетановое число 50 или больше и 80 или меньше и диаметр пятна изнашивания по HFRR (WS1.4) 400 мкм или меньше.
Предпочтительно, композиция газойля настоящего изобретения имеет плотность при 15°С 760 кг/м3 или больше и 840 кг/м3 или меньше, температуру 90% дистилляции 280°С или выше и 350°С или ниже, кинематическую вязкость при 30°С 2,5 мм2/с или больше и 5,0 мм2/с или меньше и содержание воды 100 частей на млн. по объему или меньше.
Задачи настоящего изобретения следующие. Топливо будет подвергаться отрицательным воздействиям, если оно получено способом, в котором содержание воска чрезвычайно низкое за счет избыточного облегчения, и топливо с низкой растворяющей способностью к маслам, которое получают полностью из синтетического базового масла ФТ и/или гидрированного масла животного или растительного происхождения, будет трудно растворять добавки, что повысит вероятность того, что добавки не смогут реализовать своего исходного преимущественного действия. Поэтому настоящее изобретение направлено на создание и внедрение метода создания качества, требуемого для придания топливу с пониженной способностью растворять масла улучшенной хладотекучести, обусловленной добавлением таких присадок, как CFI, путем применения базовых масел с конкретными свойствами в топливе с восстановлением растворяющей способности к маслам.
Положительные результаты изобретения
Согласно настоящему изобретению использование композиции газойля, полученной вышеописанным способом и соответствующей вышерассмотренным требованиям, касающимся фракций и т.п., делает возможным легко получать композицию газойля, подходящую для зимних сезонов, которая может обеспечить снижения нагрузки на окружающую среду, отличные низкотемпературные свойства и низкий расход топлива одновременно, чего трудно было бы достичь при использовании традиционных композиций газойлей.
Наилучший путь для осуществления изобретения
Ниже настоящее изобретение будет рассмотрено более подробно.
Композиция газойля настоящего изобретения обязательно содержит синтетическое базовое масло ФТ и/или гидрированное животное или растительное масло, обладающее конкретными свойствами. Синтетическое базовое масло ФT и/или гидрированное животное или растительное масло состоят из насыщенных углеводородных соединений, и композиция газойля настоящего изобретения может быть легко получена регулированием состава смеси углеводородных соединений.
Названное в настоящем документе синтетическое базовое масло ФT обозначает различные синтетические масла, такие как жидкие фракции, соответствующие нафте, керосину и газойлю, полученные обработкой смешанного газа, содержащего главным образом водород и оксид углерода (далее по тексту часто называемый «синтетическим газом»), по реакции Фишера-Тропша (ФT); углеводородные смеси, полученные гидроочисткой или гидрокрекингом данных жидких фракций, и углеводородные смеси, полученные гидроочисткой или гидрокрекингом жидких фракций и воска ФT, полученных по реакции Фишера-Тропша.
Смешанный газ, который будет являться сырьем для синтетического масла ФT, получают окислением вещества, содержащего углерод, при использовании кислорода и/или воды и/или диоксида углерода в качестве окислителя, а затем, если необходимо, сдвигом реакции с использованием воды, чтобы скорректировать состав в сторону заранее заданных концентраций водорода и оксида углерода.
Вещества, содержащие углерод, которые могут быть использованы в настоящем документе, обычно представляют собой газообразные компоненты, состоящие из углеводородов, которые являются газообразными при нормальных температурах, такие как природный газ, сжиженный нефтяной газ и газообразный метан, нефтяной асфальт, биомасса, кокс, отходы, такие как строительные материалы, и макулатура, ил, тяжелые сырые нефти, которые трудно утилизировать обычными методами, и смешанный газ, полученный воздействием высоких температур на нетрадиционные источники нефти. Однако в настоящем изобретении нет конкретного ограничения на сырье, поскольку может быть получен смешанный газ, содержащий главным образом водород и оксид углерода.
Реакция Фишера-Тропша требует металлического катализатора. Предпочтительно использовать металлы группы 8 периодической таблицы, такие как кобальт, рутений, родий, палладий, никель и железо, более предпочтительно, металлы группы 8, 4 периода в качестве активного каталитического компонента. В альтернативном варианте может быть использована группа смешанных металлов, содержащая данные металлы в подходящих количествах. Данные активные металлы обычно используют в форме катализатора, полученного нанесением его на носитель, такой как оксид алюминия, диоксид титана и диоксид кремния-оксид алюминия.
В альтернативном случае использование вышеупомянутых активных металлов в комбинации со вторым металлом может улучшить эксплуатационные свойства образующегося катализатора. Примеры второго металла содержат щелочные или щелочноземельные металлы, такие как натрий, литий и магний, цирконий, гафний и титан, которые будут использованы в зависимости от целей, таких как увеличение скорости конверсии оксида углерода или вероятность роста цепи (α), которая является показателем образующегося количества воска.
Реакция Фишера-Тропша представляет собой метод синтеза для получения жидких фракций и воска ФT при использовании в качестве сырья смешанного газа. Обычно предпочтительно регулировать отношение водорода к оксиду углерода в смешанном газе, для того чтобы эффективно осуществить метод синтеза. В общем, молярное отношение водорода к оксиду углерода в смеси (водород/оксид углерода) предпочтительно составляет 1,2 или больше, более предпочтительно, 1,5 или больше, более предпочтительно, 1,8 или больше. Отношение также предпочтительно составляет 3 или меньше, более предпочтительно, 2,6 или меньше, более предпочтительно, 2,2 или меньше.
Температура, при которой протекает реакция Фишера-Тропша в присутствии вышеназванного катализатора, предпочтительно составляет 180°С или выше и 320°С или ниже, более предпочтительно, 200°С или выше и 300°С или ниже. При температурах реакции ниже 180°С оксид углерода трудно взаимодействует, что приводит к тенденции снижения выхода углеводорода. При температурах реакции выше 320°С образуется повышенное количество газа, такого как метан, что приводит к снижению эффективности образования жидких фракций и воска ФТ.
Нет конкретных ограничений на часовую объемную скорость газа относительно катализатора. Однако предпочтительно она составляет 500 ч-1 или больше и 4000 ч-1 или меньше, более предпочтительно, 1000 ч-1 или больше и 3000 ч-1 или меньше. Часовая объемная скорость газа меньше чем 500 ч-1, вероятно, снизит образование жидкого топлива, тогда как при часовой объемной скорости газа более чем 400 ч-1 возникает необходимость увеличить температуру реакции, и повышается количество образующегося газа, что приводит к снижению выхода целевого продукта.
Нет конкретного ограничения на давление реакции (парциальное давление синтетического газа, состоящего из оксида углерода и водорода). Однако предпочтительно оно составляет 0,5 МПа или больше и 7 МПа или меньше, более предпочтительно, 2 МПа или больше и 4 МПа или меньше. Если давление реакции меньше чем 0,5 МПа, выход жидкого топлива будет снижаться. Если давление реакции больше чем 7 МПа, то это экономически нецелесообразно, потому что увеличатся капитальные вложения в производство.
Жидкие фракции и воск ФT, образованные в вышерассмотренной реакции ФT, могут быть подвергнуты гидроочистке или гидрокрекингу любым подходящим образом, так чтобы скорректировать параметры дистилляции или состав с достижением целей изобретения. В зависимости от целей может быть выбрана гидроочистка или гидрокрекинг, и настоящее изобретение не ограничено выбором либо одного, либо их обоих до такой степени, чтобы была получена композиция газойля настоящего изобретения.
Катализаторы, использованные для гидроочистки, обычно представляют собой те, которые содержат активный металл для гидрирования, нанесенный на пористый носитель, но настоящее изобретение не ограничено им, поскольку достигаются те же эффекты.
Пористым носителем предпочтительно является неорганический оксид. Конкретные примеры содержат оксид алюминия, диоксид титана, диоксид циркония, оксид бора, диоксид кремния, цеолит и т.п.
Цеолит представляет собой кристаллический алюмосиликат, примеры которого содержат цеолиты типа фожазита, пентасила и морденита. Предпочтительными типами цеолитов являются фожазит, бета-цеолит и морденит, и особенно предпочтительными являются цеолиты Y-типа и бета-типа. Цеолиты Y-типа являются предпочтительно ультрастабильными.
Предпочтительными активными металлами является металлы следующих двух типов (активный металл А типа и активный металл В типа).
Активный металл А типа представляет собой, по меньшей мере, один тип металла, выбранного из группы, содержащей металлы группы 8 периодической таблицы. Предпочтительно, по меньшей мере, один тип выбран из группы, содержащей Ru, Rh, Ir, Pd и Pt, и более предпочтительно, Pd и/или Pt. Активный металл может находиться в виде комбинации данных металлов, такой как Pt-Pd, Pt-Rh, Pt-Ru, Ir-Pd, Ir-Rh, Ir-Ru, Pt-Pd-Rh, Pt-Rh-Ru, Ir-Pd-Rh и Ir-Rh-Ru. Катализатор на основе благородного металла, образованный данными металлами, может быть использован после прохождения предварительной восстановительной обработки в токе водорода. В общем, катализатор нагревают при температуре 200°С или выше в соответствии с заранее заданной последовательностью проведения операций, обеспечивая циркуляцию газа, содержащего водород, так что активный металл на катализаторе восстанавливается и таким образом проявляет гидрирующую активность.
Активный металла В типа содержит предпочтительно, по меньшей мере, один тип металла, выбранного из группы, содержащей металлы групп 6А и 8 периодической таблицы, желательно два или несколько типов металлов, выбранных из их числа. Примеры данных металлов содержат Co-Mo, Ni-Mo, Ni-Co-Mo и Ni-W. Когда используют катализатор на основе сульфида металла, полученный из данных металлов, он должен пройти процесс предварительной десульфурации.
Источником металла может быть обычная неорганическая соль или комплексное соединение типа соли. Методом нанесения на носитель может быть любой метод нанесения на носитель, который традиционно используется для катализаторов гидрирования, такой как метод импрегнирования и ионного обмена. Когда на носитель наносят несколько металлов, они могут быть нанесены на носитель одновременно, при использовании их смешанного раствора, или последовательно, при использовании отдельных растворов, содержащих каждый металл. Металлосодержащим раствором может быть водный раствор или раствор на основе органического растворителя.
Температура реакции, при которой осуществляют гидроочистку с использованием катализатора, состоящего из активного металла типа А, предпочтительно составляет 180°С или выше и 400°С или ниже, более предпочтительно, 200°С или выше и 370°С или ниже, более предпочтительно, 250°С или выше и 350°С или ниже, более предпочтительно, 280°С или выше и 350°С или ниже. Температура реакции выше чем 370°С не является предпочтительной, поскольку выход средней фракции резко падает вследствие увеличения скорости побочной реакции, где жидкая фракция или воск ФT расщепляется до фракции нафты. Температура реакции ниже чем 180°С также не является предпочтительной, потому что спирты не могут удаляться и остаются, таким образом, в реакционной системе.
Температура реакции, при которой осуществляют гидроочистку при использовании катализатора, состоящего из активного металла типа В, предпочтительно составляет 170°С или выше или 320°С или ниже, более предпочтительно, 175°С или выше и 300°С или ниже, более предпочтительно, 180°С или выше и 280°С или ниже. Температура реакции выше чем 320°С не является предпочтительной, потому что выход средней фракции снижается вследствие увеличения скорости побочной реакции, когда жидкая фракция или воск ФT расщепляются до фракции нафты. Температура реакции ниже чем 170°С также не является предпочтительной, потому что спирты не могут быть удалены и остаются, таким образом, в реакционной системе.
Давление водорода, при котором осуществляют гидроочистку при использовании катализатора, состоящего из активного металла А типа, предпочтительно составляет 0,5 МПа или выше и 12 МПа или ниже, более предпочтительно, 1,0 МПа или выше и 5,0 МПа или ниже. Хотя при более высоком давлении водорода ускоряется реакция гидрирования, обычно существует оптимальная точка, определяемая экономическими соображениями.
Давление водорода, при котором осуществляют гидроочистку с использованием катализатора, состоящего из активного металла типа В, предпочтительно составляет 2 МПа или выше и 10 МПа или ниже, более предпочтительно, 2,5 МПа или выше и 8 МПа или ниже, более предпочтительно, 3 МПа или выше и 7 МПа или ниже. Хотя при более высоком давлении водорода ускоряется реакция гидрирования, обычно существует оптимальная точка, определяемая экономическими соображениями.
Часовая объемная скорость жидкости (LHSV), при которой осуществляют гидроочистку с использованием катализатора, состоящего из активного металла А типа, предпочтительно составляет 0,1 ч-1 или больше и 10,0 ч-1 или меньше, более предпочтительно, 0,3 ч-1 или больше и 3,5 ч-1 или меньше. Хотя более низкая LHSV предпочтительна для реакции, но слишком низкая LHSV не является экономически предпочтительной, потому что требует чрезвычайно большого объема реактора, что влечет излишние капитальные вложения в установку.
Часовая объемная скорость жидкости (LHSV), при которой осуществляют гидроочистку с использованием катализатора, состоящего из активного металла В типа, предпочтительно составляет 0,1 ч-1 или больше и 2 ч-1 или меньше, более предпочтительно, 0,2 ч-1 или больше и 1,5 ч-1 или меньше, более предпочтительно, 0,3 ч-1 или больше и 1,2 ч-1 или меньше. Хотя более низкая LHSV предпочтительна для реакции, но слишком низкая LHSV не является экономически предпочтительной, потому что требует чрезвычайно большого объема реактора, что влечет излишние капитальные вложения в установку.
Отношение водород/масло, при котором осуществляется гидроочистка с использованием катализатора, состоящего из активного металла А типа, предпочтительно составляет 50 нл/л или больше и 1000 нл/л или меньше, более предпочтительно, 70 нл/л или больше и 800 нл/л или меньше. Хотя более высокое отношение водород/масло ускоряет реакцию, но обычно имеется оптимальная точка, определяемая экономическими соображениями.
Отношение водород/масло, при котором осуществляется гидроочистка с использованием катализатора, состоящего из активного металла В типа, предпочтительно составляет 100 нл/л или больше и 800 нл/л или меньше, более предпочтительно, 120 нл/л или больше и 600 нл/л или меньше, более предпочтительно, 150 нл/л или больше и 500 нл/л или меньше. Хотя более высокое отношение водород/масло ускоряет реакцию, но обычно имеется оптимальная точка, определяемая экономическими соображениями.
Катализаторы, использованные для гидрокрекинга, обычно представляют собой те, которые содержат активный металл гидрирования, нанесенный на носитель с кислотными свойствами в твердом состоянии, но настоящее изобретение не ограничивается им, поскольку могут быть достигнуты те же положительные эффекты.
Что касается носителя с кислотными свойствами в твердом состоянии, то существуют аморфные и кристаллические типы цеолитов. Конкретные примеры содержат диоксид кремния-оксид алюминия, диоксид кремния-оксид магния, диоксид кремния-диоксид циркония и диоксид кремния-диоксид титана, которые представляют собой аморфные типы носителей, и цеолиты фожазита, бета, MFI и морденитового типа, предпочтительно Y-типа и бета-типа. Цеолиты Y-типа предпочтительно представляют собой те, которые являются ультрастабильными.
Предпочтительными активными металлами являются металлы следующих двух типов (активный металла А типа и активный металла В типа).
Активный металла А типа представляет собой, по меньшей мере, один тип металла, в основном выбранного из группы, содержащей металлы групп 6А и 8 периодической таблицы. Предпочтительно, это, по меньшей мере, металл одного типа, выбранный из группы, содержащей Ni, Co, Mo, Pt, Pd и W. Катализатор на основе благородного металла, образованный данными металлами, может быть использован после прохождения предварительной восстановительной обработки в токе водорода. В общем, катализатор нагревают при температуре 200°С или выше в соответствии с заранее выбранной последовательностью операций, обеспечивая циркуляцию газа, содержащего водород, так что активный металл на катализаторе восстанавливается и таким образом проявляет гидрирующую активность.
Активный металла В типа может представлять собой комбинацию данных металлов, такую как Pt-Pd, Co-Mo, Ni-Mo, Ni-W и Ni-Co-Mo. Когда используют катализатор на основе данных металлов, перед использованием он предпочтительно должен пройти процесс предварительной десульфурации.
Источником металла может быть обычная неорганическая соль или комплексное соединение типа соли. Методом нанесения на носитель может быть любой метод нанесения на носитель, который традиционно используется для катализаторов гидрирования, такой как метод импрегнирования и ионного обмена. Когда на носитель наносят несколько металлов, они могут быть нанесены на носитель одновременно, при использовании их смешанного раствора, или последовательно, при использовании отдельных растворов, содержащих каждый металл. Металлосодержащим раствором может быть водный раствор или раствор на основе органического растворителя.
Температура реакции, при которой осуществляют гидрокрекинг с использованием катализатора, состоящего из активного металла типа А и активного металла типа В, предпочтительно составляет 200°С или выше и 450°С или ниже, более предпочтительно, 250°С или выше и 430°С или ниже, более предпочтительно, 300°С или выше и 400°С или ниже. Температура реакции выше чем 450°С не является предпочтительной, поскольку выход средней фракции резко падает вследствие увеличения скорости побочной реакции, на которой жидкая фракции или воск ФT расщепляется до фракции нафты. Температура реакции ниже чем 200°С также не является предпочтительной, потому что активность катализатора резко снижается.
Давление водорода, при котором осуществляют гидрокрекинг с использованием катализатора, состоящего из активного металла А типа и активного металла В типа, предпочтительно составляет 1 МПа или выше и 20 МПа или ниже, более предпочтительно, 4 МПа или выше и 16 МПа или ниже, более предпочтительно, 6 МПа или выше и 13 МПа или ниже. Хотя при более высоком давлении водорода ускоряется реакция гидрирования, реакция расщепления будет скорее проходить медленно, и таким образом потребуется корректировка условий ее проведения за счет увеличения температуры реакции, что приведет к короткому сроку службы катализатора. Поэтому обычно существует оптимальная точка, определяемая экономическими соображениями.
Часовая объемная скорость жидкости (LHSV), при которой осуществляют гидрокрекинг с использованием катализатора, состоящего из активного металла А типа, предпочтительно составляет 0,1 ч-1 или больше и 10,0 ч-1 или меньше, более предпочтительно, 0,3 ч-1 или больше и 3,5 ч-1 или меньше. Хотя более низкая LHSV предпочтительна для реакции, но слишком низкая LHSV не является экономически предпочтительной, потому что требует чрезвычайно большого объема реактора, что влечет излишние капитальные вложения в установку.
Часовая объемная скорость жидкости (LHSV), при которой осуществляют гидрокрекинг с использованием катализатора, состоящего из активного металла В типа, предпочтительно составляет 0,1 ч-1 или больше и 2 ч-1 или меньше, более предпочтительно, 0,2 ч-1 или больше и 1,7 ч-1 или меньше, более предпочтительно, 0,3 ч-1 или больше и 1,5 ч-1 или меньше. Хотя более низкая LHSV предпочтительна для реакции, но слишком низкая LHSV не является экономически предпочтительной, потому что требует чрезвычайно большого объема реактора, что влечет излишние капитальные вложения в установку.
Отношение водород/масло, при котором осуществляется гидрокрекинг с использованием катализатора, состоящего из активного металла А типа, предпочтительно составляет 50 нл/л или больше и 1000 нл/л или меньше, более предпочтительно, 70 нл/л или больше и 800 нл/л или меньше, более предпочтительно, 400 нл/л или больше и 1500 нл/л или меньше. Хотя более высокое отношение водород/масло ускоряет реакцию, но обычно имеется оптимальная точка, определяемая экономическими соображениями.
Отношение водород/масло, при котором осуществляется гидрокрекинг с использованием катализатора, состоящего из активного металла В типа, предпочтительно составляет 150 нл/л или больше и 2000 нл/л или меньше, более предпочтительно, 300 нл/л или больше и 1700 нл/л или меньше, более предпочтительно, 400 нл/л или больше и 1500 нл/л или меньше. Хотя более высокое отношение водород/масло ускоряет реакцию, но обычно имеется оптимальная точка, определяемая экономическими соображениями.
Реактором гидрирования может быть реактор любой конструкции, и может быть использована одна или несколько реакционных башен. Водород может дополнительно подаваться между несколькими реакционными башнями. Реактор может быть снабжен установкой для удаления сероводорода и дистилляционной колонной для фракционной перегонки гидрированных продуктов с получением желательных фракций.
Реактор гидрирования может работать в режиме реактора со стационарным слоем. Водород может подаваться в сырье в режиме противотока или прямотока. В альтернативном случае, режим реактора может представлять собой комбинацию режимов противотока и прямотока со множеством реакционных башен. Режим подачи сырья обычно представляет собой режим нисходящего потока и, предпочтительно, представляет собой режим газожидкостного прямотока. Газообразный водород может подаваться как охладитель в среднюю часть реактора с целью удаления теплоты реакции или увеличения парциального давления водорода.
Композиция газойля настоящего изобретения может содержать гидрированное животное или растительное масло, имеющее свойства, эквивалентные свойствам синтетического масла ФТ.
Гидрированное животное или растительное масло представляет собой базовое масло, состоящее из углеводородов с насыщенными цепями, полученных в результате применения химической реакционной обработки, используемой для производства нефтяного базового масла, к маслам или жирам, полученным из животного или растительного сырья. В частности, гидрированное животное или растительное масло представляют собой содержащее углеводороды смешанное базовое масло, полученное контактным взаимодействием под давлением водорода сырья, которое представляет собой углеводородную фракцию, содержащую животный или растительный жир, и компонента, образованного из него, с катализатором, содержащим, по меньшей мере, один или несколько типов металлов, выбранных из группы 6А и 8 периодической таблицы, и неорганическим оксидом с кислотными свойствами. Сырье из гидрированного животного или растительного масла представляет собой обязательно животный или растительный жир или компонент, полученный из них. Примеры животного или растительного жира или компонента, образованного из них, использованного в настоящем изобретении, содержат природные или искусственно полученные животные или растительные жиры. Примеры исходных материалов для животных жиров и животных масел содержат говяжий жир, молочный жир (масло), сало, бараний жир, китовый жир, рыбий жир и печеночное масло. Примеры исходных материалов для растительных жиров и растительных масел содержат семена и другие части кокоса, пальмового дерева, олив, сафлоры, рапса (цветков рапса), рисовой шелухи, подсолнечника, семян хлопчатника, кукурузы, бобов сои, кунжута, льна и ятрофы. Использование жиров и масел, отличающихся от указанных, не создаст никакой проблемы. Сырье может быть твердым или жидким, но предпочтительно получено из растительных жиров или растительных масел с целью легкой транспортировки, поглощения диоксида углерода и высокой производительности. В альтернативном случае в качестве сырья могут быть использованы отработанные масла, образующиеся при использовании данных животных и растительных масел в домашнем хозяйстве, промышленности и приготовлении пищи, после удаления из этих масел остаточных материалов.
Примеры типичной композиции жирнокислотной части глицеридных соединений, содержащихся в данных типах сырья, содержат жирные кислоты, так называемые насыщенные жирные кислоты, не содержащие в молекуле ненасыщенных связей, такие как масляная кислота (С3Н7СООН), капроновая кислота (С5Н11СООН), каприловая кислота (С7Н15СООН), каприновая кислота (С9Н19СООН), лауриновая кислота (С11Н23СООН), миристиновая кислота (С13Н27СООН), пальмитиновая кислота (С15Н31СООН), стеариновая кислота (С17Н35СООН), и так называемые ненасыщенные жирные кислоты, содержащие в молекуле одну или несколько ненасыщенных связей, такие как олеиновая кислота (С17Н33СООН), линолевая кислота (С17Н31СООН), линоленовая кислота (С17Н29СООН) и рицинолеиновая кислота (С17Н32(ОН)СООН). В общем, углеводородные части данных жирных кислот, содержащихся в веществах, существующих в природе, представляют собой, в большинстве случаев, линейные цепи. Однако жирная кислота может быть любой из тех, которые имеют разветвленную структуру, т.е. изомеров, если удовлетворяются требования к свойствам, определенным настоящим изобретением. Ненасыщенной жирной кислотой может быть любая из тех, существование которых обычно признано в природе, а также из тех, которые содержат ненасыщенную связь в молекуле, положение которой регулируется условиями химического синтеза, если удовлетворяются требования к свойствам, определенным настоящим изобретением.
Вышерассмотренное сырье (животные или растительные жиры и компоненты, образованные ими) содержит одну или несколько данных жирных кислот, которые меняются в зависимости от сырьевых материалов. Например, кокосовое масло содержит относительно большое количество групп насыщенных жирных кислот, таких как группы лауриновой кислоты и миристиновой кислоты, тогда как масло бобов сои содержит большое количество групп ненасыщенных жирных кислот, таких как группы олеиновой кислоты и линолевой кислоты.
Сырье предпочтительно содержит фракцию, точка кипения которой предпочтительно составляет 250°С или выше, более предпочтительно, фракцию, точка кипения которой составляет 300°С или выше, и более предпочтительно, фракцию, точка кипения которой составляет 360°С или выше. Если сырье не содержит фракции, точка кипения которой составляет 250°С или выше, выход жидкого продукта снизится вследствие увеличения доли газа, образованного в процессе производства, вероятно приводя к увеличению периода эксплуатации диоксида углерода.
В альтернативном варианте сырье для гидрированного животного или растительного масла может представлять собой смесь животного или растительного жира и компонента, полученного из него, с нефтяной углеводородной фракцией. Когда сырьем является данная смесь, доля нефтяной углеводородной фракции предпочтительно составляет от 10 до 99% по объему, более предпочтительно, от 30 до 99% по объему и более предпочтительно, от 60 до 98% по объему, в расчете на общий объем сырья. Если доля составляет меньше чем нижний предел, может возникнуть необходимость в установках по утилизации воды, образующейся в качестве побочного продукта. Если доля превышает верхний предел, то это не является предпочтительным с точки зрения снижения периода эксплуатации диоксида углерода.
Гидрирование сырья предпочтительно проводят в условиях, при которых давление водорода составляет от 6 до 20 МПа, часовая объемная скорость жидкости (LHSV) составляет от 0,1 до 1,5 ч-1, отношение водород/масло составляет от 200 до 2000 нл/л и температура реакции находится в интервале от 180 до 440°С, более предпочтительно, в условиях, при которых давление водорода составляет от 8 до 17 МПа, часовая объемная скорость жидкости (LHSV) составляет от 0,2 до 1,1 ч-1 и отношение водород/масло лежит в интервале от 300 до 1800 нл/л, а температура реакции находится в интервале от 200 до 420°С, более предпочтительно, в условиях, при которых дав