Канал подтверждения для беспроводной связи

Иллюстрации

Показать все

Изобретение относится к беспроводным коммуникациям. Описываются системы и способы, которые облегчают установление канала подтверждения прямой линии связи и передачу сигналов подтверждения по нему. В частности, сигналы могут быть распределены в пределах смежных кластеров каналов в элементе диапазонов, где сигналы в кластере являются взаимно ортогональными друг к другу. Дополнительно сигналы могут быть мультиплексированы по множеству частотных областей. В этом случае сигналы подтверждения разносятся относительно частоты и помехи; кроме того, сигналы могут быть приняты и декодированы даже когда один из каналов испытывает большую помеху. Кроме того, сигналы подтверждения могут также передавать значение отмены назначения канала, которое позволяет устройствам использовать постоянные каналы для обмена данными с другим устройством, что является техническим результатом. 10 н. и 38 з.п. ф-лы, 12 ил.

Реферат

Ссылка на связанные заявки

Настоящая заявка испрашивает приоритет предварительной заявки на патент США № 60/862,649 "ACKNOWLEDGEMENT CHANNEL FOR A WIRELESS COMMUNICATION SYSTEM", которая была подана 24 октября 2006. Содержимое вышеупомянутой заявки включено в настоящее описание по ссылке.

Область техники

Нижеследующее описание относится в целом к беспроводным коммуникациям и более конкретно к каналам подтверждения прямой линии связи в системе беспроводной связи.

Уровень техники

Системы беспроводной связи широко развертываются, чтобы обеспечить различные типы контента связи (обмена), такие как, например, голос, данные и так далее. Типичные системы беспроводной связи могут быть системами множественного доступа, способными поддерживать обмен с множественными пользователями при совместном использовании доступных системных ресурсов (например, полосы частот, мощности передачи …). Примеры таких систем множественного доступа могут включать в себя системы множественного доступа с кодовым разделением каналов (CDMA), множественного доступа с временным разделением каналов (TDMA), множественного доступа с частотным разделением каналов (FDMA), множественного доступа с ортогональным частотным разделением (OFDMA) и т.п.

Обычно беспроводные системы связи со множественным доступом могут одновременно поддерживать обмен для множества мобильных устройств. Каждое мобильное устройство может обмениваться с одной или более базовыми станциями посредством передачи по прямым и обратным линиям связи. Прямая линия связи (или нисходящая линия связи) относится к линии связи от базовых станций к мобильным устройствам, и обратная линия связи (или восходящая линия связи) относится к линии связи от мобильных устройств к базовым станциям. Далее, обмены между мобильными устройствами и базовыми станциями могут быть установлены посредством систем один вход - один выход (SISO), множество входов - один выход (MISO), множество входов множество выходов (MIMO) и т.д.

В таких системах пакеты подтверждения могут быть посланы с базовой станции на мобильное устройство, чтобы указать, что часть данных была должным образом принята. Подтверждения могут иметь место для, по существу, всех коммуникаций (сообщений), посланных от мобильного устройства к базовой станции (например, по обратной линии связи). Кроме того, канал может быть установлен для каждого сообщения между мобильным устройством и базовой станцией или может быть постоянным до некоторой степени, чтобы не требовать установления для каждого обмена (сообщения).

Сущность изобретения

Ниже представлено упрощенное изложение одного или более вариантов осуществления, чтобы обеспечить основное понимание таких вариантов осуществления. Это краткое изложение не является обширным обзором всех рассмотренных вариантов осуществления и не предназначено ни для того чтобы идентифицировать ключевые или критические элементы всех вариантов осуществления, ни для того чтобы очертить объем каких- либо вариантов осуществления. Единственная цель состоит в том, чтобы представить некоторые понятия одного или более вариантов осуществления в упрощенной форме в качестве вводной части к более подробному описанию, которое представлено ниже.

В соответствии с одним или более вариантами осуществления и соответствующим их раскрытием различные аспекты описываются в связи с облегчением передачи подтверждений по каналу для принятого блока данных; подтверждение может быть распределено среди множества подтверждений в непрерывном кластере взаимно ортогональных каналов. Дополнительно подтверждение может быть мультиплексировано по множеству частотных областей и может содержать значение отмены назначения канала, чтобы обеспечить удобство использования постоянного канала.

Согласно связанным аспектам, описывается способ, который облегчает установление канала подтверждения прямой линии связи. Способ может включать в себя определение состояния демодуляции обмена из установленной обратной линии связи и определение значения отмены назначения канала, связанного с установленной обратной линией связи. Способ может также содержать модуляцию символа подтверждения, выбранного на основании, в частности, состояния и значения отмены назначения канала.

Согласно другому аспекту также описывается способ, который облегчает интерпретацию сигналов подтверждения прямой линии связи. Способ может содержать передачу сообщения обратной линии связи и прием непрерывного кластера множества сигналов подтверждения, причем по меньшей мере один из сигналов подтверждения указывает состояние демодуляции для сообщений обратной линии связи. Кроме того, способ может включать в себя определение сигнала подтверждения, который указывает состояние демодуляции для передачи по обратной линии связи.

Для выполнения вышеописанных и связанных задач один или более вариантов осуществления содержат признаки, полностью описанные ниже и конкретно указанные в формуле изобретения. Нижеследующее описание и прилагаемые чертежи формулируют подробно некоторые иллюстративные аспекты одного или более вариантов осуществления. Эти аспекты являются показательными, однако, нескольких из различных способов, посредством которых могут использоваться принципы различных вариантов осуществления, и описанные варианты осуществления предназначены для включения в себя всех таких аспектов и их эквивалентов.

Краткое описание чертежей

Фиг.1 является иллюстрацией системы беспроводной связи в соответствии с различными аспектами, сформулированными здесь.

Фиг.2 является иллюстрацией примерного устройства передачи для использования в среде беспроводной связи.

Фиг.3 является иллюстрацией примерной системы беспроводной связи, которая выполняет установление канала подтверждения прямой линии связи.

Фиг.4 является иллюстрацией примерных кадров сообщений между базовой станцией и мобильным устройством.

Фиг.5 является иллюстрацией примерных элементов диапазонов передачи для реализации непрерывных кластеров подтверждения.

Фиг.6 является иллюстрацией примерного способа, который облегчает передачу подтверждения и индикаторов отмены назначения канала.

Фиг.7 является иллюстрацией примерного способа, который облегчает прием и интерпретацию подтверждения и индикаторов отмены назначения канала.

Фиг.8 является иллюстрацией примерного мобильного устройства, которое облегчает прием сигналов подтверждения по постоянному каналу.

Фиг.9 является иллюстрацией примерной системы, которая облегчает передачу сигналов подтверждения по постоянным каналам.

Фиг.10 является иллюстрацией примерной беспроводной сетевой среды, которая может использоваться вместе с различными системами и способами, описанными здесь.

Фиг.11 является иллюстрацией примерной системы, которая передает сигналы подтверждения и управляет постоянными каналами.

Фиг.12 является иллюстрацией примерной системы, которая принимает сигнал подтверждения с индикатором отмены назначения канала.

Подробное описание

Различные варианты осуществления описываются со ссылками на чертежи, на которых аналогичные ссылочные позиции используются для ссылки на аналогичные элементы по всему описанию. В нижеследующем описании в целях объяснения формулируются многочисленные конкретные подробности, чтобы обеспечить полное понимание одного или более вариантов осуществления. Может быть очевидно, однако, что такой(ие) вариант(ы) осуществления могут быть осуществлены без этих конкретных подробностей. В других случаях известные структуры и устройства показаны в форме блок-схемы, чтобы облегчить описание одного или более вариантов осуществления.

Используемые в этой заявке термины "компонент", "модуль", "система" и т.п. предназначаются, чтобы ссылаться на связанный с применением компьютера объект или аппаратное обеспечение, программно-аппаратное обеспечение, комбинацию аппаратного обеспечения и программного обеспечения, программное обеспечение или программное обеспечение в процессе выполнения. Например, компонент может быть, но не ограничивается, процессом, выполняющимся на процессоре, процессором, объектом, выполняемой программой, потоком выполнения, программой и/или компьютером. В качестве иллюстрации как приложение, работающее на вычислительном устройстве, так и вычислительное устройство могут быть компонентом. Один или более компонентов могут постоянно находиться в процессе и/или потоке выполнения, и компонент может быть локализован на одном компьютере и/или распределен между двумя или более компьютерами. Кроме того, эти компоненты могут выполняться с различных считываемых компьютером носителей, хранящих различные структуры данных на нем. Компоненты могут обмениваться посредством локальных и/или удаленных процессов, например, в соответствии с сигналом, имеющим один или более пакетов данных (например, данные от одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе, и/или по сети, такой как Интернет, с другими системами посредством сигнала).

Кроме того, различные варианты осуществления описываются здесь со ссылками на мобильное устройство. Мобильное устройство можно также назвать системой, абонентским блоком, абонентской станцией, мобильной станцией, мобильным блоком, удаленной станцией, удаленным терминалом, терминалом доступа, пользовательским терминалом, терминалом, устройством беспроводной связи, агентом пользователя, пользовательским устройством или пользовательским оборудованием (UE). Мобильное устройство может быть сотовым телефоном, радиотелефоном, телефоном согласно протоколу инициирования сеанса связи (SIP), станцией местной радиосвязи (WLL), персональным цифровым ассистентом (PDA), ручным устройством, имеющим возможность беспроводного соединения, вычислительным устройством или другим устройством обработки, связанным с беспроводным модемом. Кроме того, различные варианты осуществления описываются здесь со ссылками на базовую станцию. Базовая станция может быть использована для обмена с мобильным(и) устройством(ами) и может также называться как точка доступа, Узел B, или некоторым другим термином.

Кроме того, различные аспекты или признаки, описанные здесь, могут быть реализованы как способ, устройство или изделие производства, используя стандартные программирующие и/или инженерные методики. Термин "изделие производства", используемое здесь, предназначается, чтобы охватить компьютерную программу, доступную от любого считываемого компьютером устройства, несущей или носителя. Например, считываемые компьютером носители могут включать в себя, но не ограничиваются ими, магнитные запоминающие устройства (например, жесткий диск, гибкий диск, магнитные ленты и т.д.), оптические диски (например, компакт-диск (CD), цифровой универсальный диск (DVD), и т.д.), смарт карты и перепрограммируемые запоминающие устройства (например, EPROM, плата, карта, ключевое устройство и т.д.). Дополнительно, различные носители данных, описанные здесь, могут представлять одно или более устройств и/или другие машино-считываемые носители для хранения информации. Термин "машиночитаемый носитель" может включать в себя, не будучи ограниченным, беспроводные каналы и различные другие носители, способные к сохранению, поддержанию и/или переносу инструкции (инструкций) и/или данных.

Со ссылками на Фиг.1 система беспроводной связи 100 иллюстрируется в соответствии с различными вариантами осуществления, представленными здесь. Система 100 содержит базовую станцию 102, которая может включать в себя группы из множественных антенн. Например, одна группа антенн может включать в себя антенны 104 и 106, другая группа может содержать антенны 108 и 110, и дополнительная группа может включать в себя антенны 112 и 114. Две антенны иллюстрируются для каждой группы антенны; однако, больше или меньше антенн может быть использовано для каждой группы. Базовая станция 102 может дополнительно включать в себя цепь передатчика и цепь приемника, каждая из которых может в свою очередь содержать множество компонентов, ассоциированных с передачей и приемом сигналов (например, процессоры, модуляторы, мультиплексоры, демодуляторы, демультиплексоры, антенны и т.д.), как очевидно для специалистов.

Базовая станция 102 может обмениваться с одним или более мобильными устройствами, такими как мобильное устройство 116 и мобильное устройство 122; однако, нужно понимать, что базовая станция 102 может обмениваться, по существу, с любым количеством мобильных устройств, аналогичных мобильным устройствам 116 и 122. Мобильные устройства 116 и 122 могут быть, например, сотовыми телефонами, смартфонами, ноутбуками, ручными устройствами связи, ручными вычислительными устройствами, спутниковыми радиоустройствами, глобальными системами определения местоположения, PDA, и/или любым другим подходящим устройством для обмена по системе беспроводной связи 100. Как изображено, мобильное устройство 116 находится в связи с антеннами 112 и 114, где антенны 112 и 114 передают информацию на мобильное устройство 116 по прямой линии связи 118 и принимают информацию от мобильного устройства 116 по обратной линии связи 120. Кроме того, мобильное устройство 122 находится в связи с антеннами 104 и 106, где антенны 104 и 106 передают информацию на мобильное устройство 122 по прямой линии связи 124 и принимают информацию от мобильного устройства 122 по обратной линии связи 126. В системе дуплексной передачи с частотным разделением (FDD) прямая линия связи 118 может использовать отличный диапазон частот, чем используемый обратной линией связи 120, и прямая линия связи 124 может использовать отличный диапазон частот, чем используемый обратной линией связи 126, например. Далее, в системе дуплексной передачи с временным разделением (TDD) прямая линия связи 118 и обратная линия связи 120 могут использовать общий диапазон частот и прямую линию связи 124, и обратная линия связи 126 может использовать общий диапазон частот.

Каждая группа антенн и/или область, в которой они назначаются для обмена, может называться сектором базовой станции 102. Например, группы антенны могут быть предназначены для обмена с мобильными устройствами в секторе из областей, охваченных базовой станцией 102. При связи по прямым линиям связи 118 и 124 передающие антенны базовой станции 102 могут использовать формирование диаграммы направленности, чтобы улучшить отношение сигнала к шуму прямых линий связи 118 и 124 для мобильных устройств 116 и 122. Кроме того, в то время как базовая станция 102 использует формирование диаграммы направленности, чтобы осуществлять передачи на мобильные устройства 116 и 122, рассеянные случайным образом, через ассоциированную зону охвата, мобильные устройства в соседних ячейках могут быть подвержены меньшим помехам по сравнению с передачей базовой станции через единственную антенну на все ее мобильные устройства.

Согласно примеру система 100 может быть системой связи с множеством входов и множеством выходов (MIMO). Далее, система 100 может использовать, по существу, любой тип методики дуплексной работы, чтобы разделить каналы связи (например, прямая линия связи, обратная линия связи...), такие как FDD, TDD и т.п. В одном примере коммуникационные сообщения от мобильных устройств 116 и 122 могут быть приняты и демодулированы в базовой станции 102. Чтобы гарантировать эффективную демодуляцию, базовая станция 102 может передавать сигнал подтверждения (ACK) назад на мобильные устройства 116 и 122 через одну или более антенн 104, 106, 108, 110, 112, и 114, указывающий успешную демодуляцию. В одном примере данные, посланные от мобильных устройств 116 и 122, могут войти во множество коммуникационных сообщений таким образом, что успешная демодуляция может не произойти до тех пор, пока, по существу, все данные пакета данных, например, не будут приняты базовой станцией 102. Согласно примеру, каналы связи могут быть назначены на мобильные устройства 116 и 122 от базовой станции 102 таким образом, что канал может продолжить существование вне отдельной передачи. В этом отношении отмена назначения канала должна указывать, что мобильное устройство или его пользователь больше не имеют право на канал. Чтобы минимизировать накладные расходы этих функциональных возможностей, в одном примере эта информация может содержаться также в сигнале ACK.

Мобильные устройства 116 и 122 могут принимать сигнал ACK, который может указывать канал подтверждения с четырьмя состояниями, включая возможные комбинации подтверждения или неподтверждения, и отмененное назначение или неотмененное назначение. Согласно одному примеру это может быть реализовано как состояния трехфазной кодовой манипуляции (PSK) плюс состояние «выключено» (например, всего 4 состояния) таким образом, что изменение в модуляции сигнала может указывать одну из упомянутых выше комбинаций. Таким образом, базовая станция может подтвердить коммуникационные сообщения и отменить назначение канала в одном пакете. Нужно понимать, что этот пакет, однако, может быть модулирован по множеству частотных областей, чтобы быть устойчивым относительно избирательного частотного замирания. В одном примере модуляция по множеству частотных областей, как описано ниже, может облегчить когерентную демодуляцию после приема пакета данных; это может быть выполнено, например, посредством использования пилот-канала в качестве эталона для демодуляции (пилот-канал может быть общим для множества каналов прямой линии связи в сегменте управления в одном примере). Дополнительно, в одном примере множественные подтверждения могут быть ортогонализированы в пределах данного элемента диапазонов (блок время/частота), чтобы противостоять появлению помех по отношению к соседним сигналам ACK.

Со ссылками на Фиг.2 иллюстрируется коммуникационное устройство 200 для среды беспроводной связи. Коммуникационное устройство 200 может быть базовой станцией, мобильным устройством или его частью, например. Коммуникационное устройство 200 может содержать блок 202 задания сигнала подтверждения, который может формировать сигнал, указывающий подтверждение или неподтверждение и отмену назначения или неотмену назначения, модулятор 204, который может модулировать сигнал по множеству элементов диапазонов (например, блоков время/частота), и передатчик 206, который передает модулированные элементы диапазонов. В одном примере коммуникационное устройство может принимать передачу от другого коммуникационного устройства (например, мобильного устройства, базовой станции и т.д.) по каналу и пытаться демодулировать передачу. Если демодуляция успешна, блок 202 задания сигнала подтверждения может создать пакет подтверждения, модулировать его по множеству элементов диапазонов, используя модулятор 204, и передать пакет назад на другое коммуникационное устройство.

Согласно примеру, коммуникационное устройство 200 может работать в конфигурации назначения постоянного канала, где каналы связи (например, каналы обратной линии связи) назначаются не обязательно только для одной передачи. В этом отношении канал может остаться открытым на период времени или многие передачи, например, таким образом, что запрос на и уведомление об отмене назначения желательны, чтобы скоординировать освобождение канала. Чтобы уменьшить служебные расходы в отмене назначения канала, эта информация может сопровождаться сигналом подтверждения, который может быть передан, по существу, для каждого пакета обмена. Таким образом, блок 202 задания сигнала подтверждения может сформировать сигнал подтверждения с 4 состояниями, соответствующими следующим возможным значениям в одном примере:

Значение Подтверждение Отмена назначения
0 Нет Нет
1 Нет Да
2 Да Нет
3 Да Да

Нужно понимать, что вышеупомянутая таблица является просто одной конфигурацией; эти значения могут совпадать с возможными значениями для подтверждения и отмены назначения в, по существу, любой возможной комбинации. Дополнительно больше полей может быть добавлено вместе с большим количеством значений, которые указывают различные значения для полей; кроме того, также может быть добавлено больше значений для этих полей (например, перечисления помимо двоичных значений). Согласно примеру блок 202 задания сигнала подтверждения может сформировать сигнал, чтобы указывать значения подтверждения и отмены назначения, чтобы сэкономить служебные расходы на отмену назначения каналов связи. В одном примере вышеприведенные значения могут соответствовать состояниям PSK таким образом, что на круге комплексной плоскости значения 1-3 могут соответствовать 3 точкам, удаленным, по существу, одинаково и в максимально возможной степени далеко друг от друга на круге (например, разнесены на 120 градусов), и значение 0 может соответствовать точке в центре круга.

Модулятор 204 в одном примере может расширять (распределять) желательное значение по множеству различных частотных областей или символов, например посредством использования дискретного преобразования Фурье (DFT), например, для разнесения и быть устойчивым относительно избирательного частотного замирания. Нужно понимать, однако, что в другом примере это значение можно послать в одном символе модуляции одного элемента диапазонов. Дополнительно, коммуникационное устройство 200 может взаимно ортогонально кластеризовать символ вместе с символами для многих других каналов связи таким образом, что передатчик 206 может мультиплексировать символы поверх друг друга во время передачи. Согласно примеру символы для каждого канала связи взвешивают, где вес может быть выбран таким образом, что значения являются взаимно ортогональными (например, кодом DFT, упомянутым ранее). В этом отношении мультиплексирование может вызвать усреднение для символов на каналах таким образом, что если есть помеха от выполнения передачи другим коммуникационным устройством по каналу, эти значения могут быть усреднены, чтобы определить ортогональные символы.

Со ссылками на Фиг.3 иллюстрируется система 300 беспроводной связи, которая реализует передачу подтверждений обратной линии связи. Система 300 беспроводной связи включает в себя базовую станцию 302, которая обменивается с мобильным устройством 304 (и/или любым количеством неравноправных мобильных устройств (не показаны)). Базовая станция 302 может передавать информацию на мобильное устройство 304 по каналу прямой линии связи, например; далее, базовая станция 302 может принимать информацию от мобильного устройства 304 по каналу обратной линии связи и посылать подтверждение прямой линии связи, чтобы подтвердить информацию обратной линии связи. Кроме того, система 300 беспроводной связи может быть системой MIMO в одном примере.

Базовая станция 302 может включать в себя администратор 306 постоянного канала, чтобы назначать и сообщать информацию относительно постоянных каналов обратной линии связи, демодулятор 308, чтобы демодулировать сигналы от мобильного устройства 304, блок 310 задания сигнала подтверждения, чтобы сформировать сигнал для посылки в мобильное устройство 304, указывающий успешную или неудачную демодуляцию трафика обратной линии связи, и модулятор 312, чтобы модулировать сигнал подтверждения для посылки в мобильное устройство 304. Мобильное устройство 304 может содержать блок 314 запрашивания постоянного канала, который может запрашивать установление постоянного канала обратной линии связи от базовой станции 302, модулятор 316 для модуляции данных, чтобы послать по каналу связи, и демодулятор 318, чтобы демодулировать сигналы, принятые от базовой станции 302.

В одном примере мобильное устройство 304 может использовать блок 314 запрашивания постоянного канала, чтобы запрашивать постоянный канал обратной линии связи от базовой станции 302; нужно понимать, что это может сопровождаться независимыми данными, такими как идентификатор мобильного устройства 304 (например, MAC ID), данными, связанными с принятым сигналом радиомаяка и/или подобным в одном примере. Дополнительно запрос может быть модулирован, используя модулятор 316. Администратор 306 постоянного канала может предоставить доступ для канала и управлять сроком действия и другими аспектами канала. Как только канал устанавливается (или также во время установления в одном примере), мобильное устройство 304 может модулировать данные, используя модулятор 316, и посылать его в базовую станцию 302 по постоянному каналу обратной линии связи. После приема данных базовая станция 302 может использовать демодулятор 308, чтобы попытаться демодулировать данные. Если данные успешно демодулированы, устройство 310 задания сигнала подтверждения может послать уведомление подтверждения, как описано, на мобильное устройство 304. В одном примере уведомление подтверждения может быть тем, которое включает в себя также решение об отмене назначения; кроме того, уведомление подтверждения может быть модулировано, используя модулятор 312, в ряд различных частотных областей для разнесения и избирательного замирания. Дополнительно уведомление подтверждения может быть мультиплексированным вместе с другими уведомлениями подтверждения, как описано, чтобы обеспечить взаимно ортогональные символы модуляции с учетом помех (например, символы могут дать среднее число таким образом, что если есть помеха, среднее число может быть использовано для различения символов). Кроме того, нужно понимать, что уведомление подтверждения может быть скремблировано согласно идентификатору мобильного устройства 304 и/или базовой станции 302.

Сигналы подтверждения могут быть посланы базовой станцией 302 для передачи коммуникационных сообщений от мобильного устройства 304, чтобы указывать успешную или неудачную демодуляцию или декодирование. Нужно понимать, что неудачная демодуляция или декодирование могут произойти, когда все коммуникационное сообщение еще не послано в одном примере; дополнительно, другие причины могут способствовать неудачной демодуляции или декодированию, включая плохое качество сигнала, плохо сформированное коммуникационное сообщение, помехи от коммуникационных сообщений, несовместимость, неуспешное кодирование или модуляцию и т.п. В одном примере передача гибридного запроса автоматического повторения (H-ARQ) может быть использована для передачи одной или более передач для пакета данных, пока пакет не будет декодирован корректно, или пока не будет достигнуто максимальное количество передач. Таким образом, как описано, базовая станция 302 может посылать уведомления неподтверждения (NAK) до тех пор, пока пакет не будет принят и декодирован полностью (или пока максимальное количество передач не будет достигнуто). Кроме того, как упомянуто, администратор 306 постоянного канала может желать отменить назначение мобильного устройства 304 от постоянного канала связи. В этом отношении блок задания сигнала подтверждения может включать это в пакет подтверждения в зависимости от выбранного значения (например, канал подтверждения с 4 состояниями, описанный ранее).

Согласно примеру, после определения состояния подтверждения, чтобы послать (например, подтверждение/отмену назначения, подтверждение/неотмену назначения, неподтверждение/отмена назначения, неподтверждение/неотмену назначения) блоком 310 задания сигнала подтверждения, модулятор 312 может модулировать символы, которые указывают состояние подтверждения по множеству частотных областей, чтобы обеспечить разнесение по отношению к каналам и помехам, так же как устойчивость по отношению к избирательному частотному замиранию; частотные области могут быть выбраны на основании, по меньшей мере частично, одного или более ресурсов время-частота, ассоциированных с ресурсами трафика обратной линии связи, которые могут соответствовать каналу подтверждения, например. Согласно другому примеру, частотные области могут быть выбраны на основании, по меньшей мере частично, идентификатора мобильного устройства 304 (например, MAC ID), такой, как тот, что передан в запросе установления канала. В одном примере символы повторяются через 3 частотных области. Кроме того, символы состояния подтверждения, которые должны быть посланы в мобильное устройство 304, могут быть взаимно ортогонально распределены среди смежных кластеров вместе с множественными символами для других устройств, которые могут обеспечить помеху и разнесение канала, сопротивление помеховым выбросам на отдельных символах модуляции, и сопротивление эффекту близко-далеко (near-far effect). В одном примере кластер может быть блоком из 4 смежных каналов; однако, нужно понимать, что, по существу, любое количество каналов может быть кластеризовано таким образом, что каждый канал является соседним по меньшей мере к одному другому каналу. В этом отношении алгоритм обнаружения может быть использован для обнаружения подходящего канала в кластере, такой как алгоритм минимальной средней квадратичной ошибки (MMSE) или другие алгоритмы усреднения.

После приема передачи (передач) подтверждения мобильное устройство 304 может обнаружить соответствующий канал, как описано (например, посредством MMSE или других алгоритмов) и демодулировать с использованием демодулятора 318. Получающийся символ(ы) может указывать одно из 4 состояний, как описано выше (хотя дополнительные состояния могут быть реализованы). Если подтверждение принимается вместе с неотменой назначения, мобильное устройство 304 может продолжить посылать другие данные, например. Если подтверждение принимается вместе с отменой назначения, мобильное устройство 304 может рассматривать, что базовая станция 302 принимает передачу успешно, и канал обратной линии связи «закрывается», в этот момент мобильное устройство 304 может запрашивать канал от другой или той же самой базовой станции 302 (или администратора 306 постоянного канала). Если принимается «неподтверждение» вместе с неотменой назначения, мобильное устройство 304 может продолжить посылать соответствующий пакет данных или его часть до тех пор, пока успешное подтверждение не будет принято (или пока максимальный порог передачи для пакета не будет достигнут). Если принимается «неподтверждение» вместе с отменой назначения, назначение канала обратной линии связи отменяется, и мобильное устройство 304 может запрашивать другой канал от той же самой или другой базовой станции 302 (или администратора 306 постоянного канала). Нужно понимать, что отмена назначения канала может быть результатом предыдущего запроса об отмене назначения, сделанного мобильным устройством 304, перемещения мобильного устройства 304 из зоны обслуживания, занятия канала более высокоприоритетными устройствами и т.д.

Теперь со ссылками на Фиг.4 показан примерный набор кадров обмена для базовой станции и мобильного устройства 400. Набор кадров может быть частью одного или более суперкадров в одном примере. Набор кадров может содержать коммуникационные сообщения, принятые базовой станцией от мобильного устройства 402, 406, 410, и 414, так же как соответствующий ответ, посланный в мобильное устройство, на основании уведомления подтверждения и/или отмены 404, 408 и 412 назначения канала. В одном примере передачи 402, 406, 410 и 414, принятые от мобильного устройства, могут быть передачами H-ARQ, где 402, 406 и 410 могут быть 3 частями передачи пакета данных из 3 частей, и 414 - частью другого пакета данных. В этом случае уведомления 404 и 408 подтверждения могут указывать неподтверждение, когда весь пакет данных не был принят. Затем уведомление 412 подтверждения может указывать успешное подтверждение, когда все части сообщения принимаются, демодулируются и декодируются. Дополнительно, как описано выше, индикацию относительно отмены назначения канала также можно послать с уведомлениями подтверждения.

На этом чертеже набор кадров разделяется на один или более кадров, начинающихся с m и отделяемых Q. В m, как описано, может быть принят блок 1 пакета 402 данных 1. Базовая станция может попытаться демодулировать и декодировать, формируя ошибку, поскольку есть больше блоков, которые должны быть приняты. Соответственно, NAK 404 может быть послано в терминал в m+q (где q есть задержка ACK/NAK и 1 <q <Q). После приема NAK терминал может посылать, и базовая станция может принимать, блок 2 пакета 406 данных 1 в m+Q. Снова демодулирование и декодирование может давать ошибку, заставляя базовую станцию послать NAK 408 в m+Q+q. Это может заставить устройство посылать блок 3 пакета 410 данных 1 в m+2Q к базовой станции. После приема этого блока в этом примере пакет данных может быть полностью и успешно декодирован, заставляя базовую станцию послать ACK 412 в m+2Q+q, вынуждая устройство закончить передачу пакета данных 1. Предполагая, что базовая станция также не отменяет назначение канала в этот момент, устройство может начать посылать блок нового пакета 414 в m+3Q. Согласно другому примеру отсутствие ACK может быть интерпретировано как NAK.

В этом примере блоки данных посылают каждые Q кадров; однако, нужно понимать, что вплоть до Q пакетов может быть передано чередующимся способом, чтобы улучшить использование канала. Например, первое чередование может быть сформировано с кадрами m, m+Q и т.д. и второе чередование - с кадрами m+1, m+Q+1 и т.д. и Q-е чередование формируется кадрами m+Q-1, m+2Q-1 и т.д. Так как Q чередований смещаются на один кадр, мобильное устройство может передавать вплоть до Q пакетов в Q чередованиях. Обычно задержка Q ретрансляции H-ARQ и задержка q ACK/NAK могут быть выбраны, чтобы обеспечить достаточное время обработки для базовой станции и мобильного устройства в одном примере.

Со ссылками на Фиг.5 отображаются примерные наборы компоновок 500 канала подтверждения. Показываются блоки время/частота или элементы диапазонов 502, 504, 506, 514 и 516, содержащие пилот-символы 522 и компоновки 508, 510, 512, 518 и 520 кластера символов подтверждения. Блоки 502, 504 и 506 представляют первую конфигурацию для распределения (расширения) символов подтверждения и назначения частот, как описано в настоящем описании. В частности, блоки 502, 504 и 506 показывают 4 взаимно ортогональных смежных кластера символов 508, 510 и 512 подтверждения, помещенных в 3 частотные области. Как описано, символы могут быть распределены по кластерам во взаимно ортогональной конфигурации таким образом, что они являются смежными; в этом случае каждый символ является соседним по меньшей мере с одним другим символом. Кроме того, символы модуляции могут, каждый, относиться к различным устройствам, имеющим установленный канал подтверждения обратной линии связи, как описано выше. Мультиплексирование символов, смежных с друг другом, может учесть идентификационную информацию символа подтверждения даже там, где помеха является большой на индивидуальном символе модуляции (таком как, например, от другого устройства). В другой конфигурации, представленной элементами диапазонов 514 и 516, больше чем 4 смежных символа подтверждения могут быть распределены по элементу диапазонов; кластеры 518 и 520 символов показывают конфигурации для 8 символов. Дополнительно конфигурация может измениться для заданного символа, когда он вещается по элементам диапазонов, как показано. Нужно понимать, что почти безграничные конфигурации возможны таким образом, что символы являются смежными. Дополнительно, по существу, безграничные возможности доступны для передачи символов по множеству частотных областей. Нужно понимать, что непрерывное распределение (расширение) символов, как описано, может повысить надежность связи, так как ортогональность мультиплексированных каналов может быть искажена изменениями времени и/или частотного канала; для этого распределение обеспечивает непрерывность времени и/или частоты, чтобы уменьшить избирательность влияния по времени и/или по частоте на каналы. Согласно примеру непрерывная (смежная) компоновка может быть фактором свойств канала, ожидаемых свойств канала, предварительной конфигурации, помех и/или подобного.

Согласно примеру распределение может быть реализовано посредством генерирования вектора n x 1 символов подтверждения; этот вектор 3n x 1 переданных символов x модуляции может быть задан уравнением x = Sa, где x - переданный вектор, S - матрица распределения, и a - подт