Динамическое надежное уплотнение заголовка

Иллюстрации

Показать все

Изобретение относится к системам связи. Технический результат заключается в повышении надежности связи. Устройство выполняет операцию уплотнения или операцию разуплотнения информации для передачи в пакетах по беспроводному каналу связи. Передача по беспроводному каналу связи происходит так, что пакеты могут стать переупорядоченными по сравнению с последовательностью передачи. Операция уплотнения и операция разуплотнения связаны с определением соотношения между надежностью и глубиной переупорядочивания. Надежность является показателем степени потери информации в канале связи, которую допускают операция уплотнения и операция разуплотнения; глубина переупорядочивания является степенью переупорядочивания пакетов, которое допускают операция уплотнения и операция разуплотнения. Устройство динамически настраивает соотношение между надежностью и глубиной переупорядочивания в соответствии с характеристиками канала связи. В примерном варианте осуществления информацией, с которой выполняют операцию уплотнения и операцию разуплотнения, является информация порядкового номера заголовка пакета. 4 н. и 22 з.п. ф-лы, 13 ил., 1 табл.

Реферат

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к телекоммуникациям, и в частности - к уплотнению заголовков пакетов, таких как пакеты мультимедийных данных (медиапакеты). Описанная технология в общем случае применяется к уплотнению заголовка, и она не ограничивает существующие механизмы ROHC-алгоритмом и способам кодирования, а вместо этого предлагает новые механизмы для лучшей настройки сжатия, основываясь на фактических характеристиках основного канала связи в присутствии переупорядочивания.

СВЯЗАННЫЙ УРОВЕНЬ ТЕХНИКИ И ДРУГИЕ СООБРАЖЕНИЯ

Связанный уровень техники включает в себя международную публикацию WO 01/35534 A2, озаглавленную «Variable-length encoding of compressed data». Однако WO 01/35534 A2 относится к кодированию полей с последовательным увеличением для обеспечения надежности при потере этих полей.

Другие релевантные документы включают в себя документ Kapoor, R., Haipeng J. and M. Kretz, Robust Header Compression (ROHC): Support for Reordering and Constant IP-ID, Интернет-проект (работа над проектом продолжается), <draft-ietf-kapoor-rohc-rtp-new-requirements-00.txt>, март 2005, который является предложением рабочей группы ROHC IETF для новых технических требований для ROHC. Kapoor обеспечивает предложения о том, как улучшить надежность при переупорядочивании для кодирования LSB последовательно увеличивающихся полей, которые предложены, но использует другой подход к проблеме.

Из-за огромного успеха Интернет стало перспективной задачей использовать Интернет протокол (IP) для всех видов каналов связи. Однако из-за того факта, что заголовки IP-протоколов являются довольно большими, осуществление этого для узкополосных каналов связи, таких как сотовые каналы связи, например, не всегда является простой задачей. Например, рассматривают обычные голосовые данные транспортируемыми в соответствии с протоколами (IP, UDP, RTP), используемыми для передачи голоса по Интернет протоколу (VoIP), где заголовок может составлять приблизительно 70% пакета, что приводит к очень неэффективному использованию канала связи.

Термин «сжатия (уплотнение) заголовка» охватывает технику уменьшения необходимой полосы пропускания для информации, переносимой в заголовках на основе сегмента сети по двухточечным линиям связи. Методы уплотнения заголовка в общем случае имеют более чем десятилетнюю историю в пределах сообщества Интернет. Существуют несколько обычно используемых протоколов уплотнения заголовка, таких как следующие: (1) Van Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. IETF RFC 1144, IETF Network Working Group, February 1990; (2) Mikael Degermark, Bjorn Nordgren, Stephen Pink. IP Header Compression, IETF RFC 2507, IETF Network Working Group, February 1999; и (3) Steven Casner, Van Jacobson. Compressing IF VUDF VRTP Headers for Low-Speed Serial Links, IETF RFC 2508, IETF Network Working Group, February 1999, которые в своей полноте представлены в данной работе для справки.

Уплотнение заголовка использует тот факт, что некоторые поля в заголовках не изменяются в пределах потока или изменяются на небольшие и/или предсказуемые значения. Схемы уплотнения заголовка используют эти характеристики и посылают статическую информацию только первоначального, в то время как изменяющиеся поля посылаются с помощью их абсолютных величин или как различия от пакета к пакету. Полностью случайную информацию необходимо посылать совсем без уплотнения.

Таким образом уплотнение заголовка является важным компонентом для того, чтобы сделать IP-услуги по радиосвязи, такие как голосовые и видео услуги, экономически обоснованными. Решения по уплотнению заголовка были разработаны рабочей группой надежного уплотнения заголовка (ROHC) инженерной группы по развитию Интернета (IETF) для улучшения эффективности таких услуг.

Надежное уплотнение заголовка (ROHC), как определено в RFC 3095 («[ROHC]», т.е. Bormann, C, «RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed», RFC 3095, Internet Engineering Task Force, July 2001), является расширяемой структурой, для которой могут быть определены профили (совокупности параметров) для уплотнения различных протоколов. Для мультимедийных услуг в реальном времени (например, передачи голоса, видео) данные прикладной программы транспортируются от начала до конца в пределах потока IP/UDP/RTP. Уплотнение заголовка IP/UDP/RTP определяется с помощью профиля ROHC 0x0001 (ROHC RTP) и применяется, в числе прочего, для услуги передачи голоса по IP (VoIP). Схема уплотнения заголовка ROHC RTP разработана для эффективного уплотнения заголовков IP/UDP/RTP на произвольном канальном уровне.

Также для уплотнения определено множество других профилей ROHC. Среди них - (1) заголовки IP/UDP/RTP (описаны в: Jonsson. L. and G. Pelletier. RObust Header Compression (ROHC): A Link-Layer Assisted ROHC Profile for IP/UDP/RTP, IETF RFC 3242, April 2002; и Liu, Z and K. Le, Zero-byte Support for Bidirectional Reliable Mode (R-mode) in Extended Link-Layer Assisted RObust Header Compression (ROHC) Profile, IETF RFC 3408, December 2002); (2) заголовки только IP (описаны в: Jonsson, L. and G. Pelletier, RObust Header Compression (ROHC): A compression profile for IP, IETF RFC 3843, June 2004); (3) заголовки IP/TCP (описаны в: Pelletier, G., Jonsson, L., et al., RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP), Internet Draft (work in progress), <draft-ietf-rohc-tcp-11.txt>, January 4, 2006); и (4) заголовки IP/UDP-Lite/RTP (описаны в: Pelletier, G., RObust Header Compression (ROHC): Profiles for UDP-Lite, IETF RFC 4019, March 2005). Все процитированные в данной работе «рабочие предложения» (RFC) включены в настоящее описание полностью посредством ссылки.

За исключением согласования (см. также Bormann, C, Robust Header Compression (ROHC) over PPP, IETF RFC 3241, April 2002), профили ROHC требуют только, чтобы формирование кадров и обнаружение ошибок было обеспечено канальным уровнем, в то время как все другие функциональные возможности обрабатываются в соответствии с самой схемой ROHC.

Схема уплотнения заголовка (такая как профиль ROHC) может быть концептуализирована и/или реализована как конечный автомат. Перспективной задачей является сохранение состояния блока уплотнения (“компрессора”) и блока разуплотнения (“декомпрессора”), которые называют контекстами, совместимыми друг с другом, сохраняя служебную информацию заголовка настолько малой, насколько это возможно. Существует один конечный автомат для блока уплотнения и один конечный автомат для блока разуплотнения. Конечный автомат блока уплотнения непосредственно воздействует на эффективность уплотнения, поскольку она является важной частью логики, которая управляет выбором вида уплотненного пакета, подлежащего передаче. Цель конечного автомата блока разуплотнения состоит в том, чтобы главным образом обеспечить логику для обратной связи (если применяется) и идентифицировать вид пакета, для которого может быть предпринято разуплотнение.

Контекст уплотнения содержит и поддерживает соответствующую информацию о прошлых пакетах, и эта информация используется для уплотнения и разуплотнения последующих пакетов. Как объясняется в документации ROHC, контекст блока уплотнения является состоянием, которое он использует для уплотнения заголовка. Контекст блока разуплотнения является состоянием, которое он использует для разуплотнения заголовка. Любой из них или оба в комбинации обычно упоминаются как «контекст», если ясно, который из них имеется в виду. Контекст содержит релевантную информацию из предыдущих заголовков в потоке пакетов, такую как статические поля и возможные значения эталона для уплотнения и разуплотнения. Кроме того, дополнительная информация, описывающая поток пакетов, также является частью контекста, например, информация о том, как поле «идентификатор IP» изменяется и обычное увеличение порядковых номеров или временных меток между пакетами.

Пакетом, который обеспечивает средство для блока разуплотнения для проверки успешного разуплотнения, является пакет обновления контекста. Когда разуплотнение можно проверять, этот вид пакета может обновлять контекст. Для ROHC, пакеты обновления контекста переносят циклический избыточный код (ЦИК) в пределах своего формата; это контрольная сумма, вычисленная для исходного неуплотненного заголовка. Этот ЦИК используется для проверки успешного разуплотнения каждого пакета; при успешном выполнении контекст можно обновлять.

Пакет, который полагается на другие средства обеспечения успешного разуплотнения - т.е. на формат пакета, не обеспечивает средства для блока разуплотнения для проверки успешного разуплотнения, и переносит только информацию, необходимую непосредственно для разуплотнения, является «ограниченным» пакетом. Эти пакеты не обновляют контекст.

Все профили ROHC, определенные в RFC 3095, RFC 3242, RFC 3408, «IP-ONLY» (Jonsson, L. and G. Pelletier, RObust Header Compression (ROHC): A compression profile for IP, IETF RFC 3843, June 2004) и «ROHC-UDPLite» (Pelletier, G., RObust Header Compression (ROHC): Profiles for UDP-Lite, Интернет-проект (работа над проектом продолжается), RFC 4019, April 2005), поддерживают три различных режима работы. Вкратце, для определенного контекста режим работы управляет действиями и логикой выполнения, а также типами пакетов для использования во время различных состояний операции уплотнения заголовка. Типы и форматы пакетов, которые разрешены, могут изменяться от одного режима к другому. Однонаправленный режим (U-режим) используется в начале любого уплотнения ROHC, прежде чем может произойти какой-либо переход к другим режимам. Двунаправленный оптимистический режим (O-режим) стремится максимизировать эффективность уплотнения и редкое использование канала обратной связи. Двунаправленный надежный режим (R-режим) стремится сделать максимальной надежность при потерях пакетов и повреждении контекста при распространении сигнала.

В U-режиме пакеты посылают только из блока уплотнения в блок разуплотнения. U-режим таким образом пригоден для использования в каналах связи, где обратный канал из блока разуплотнения в блок уплотнения или не нужен, или не доступен. Периодические регенерации используются в U-режиме. U-режим особенно часто применяют для широковещательных или групповых каналов.

O-режим аналогичен U-режиму, с тем отличием, что канал обратной связи используется для передачи запросов на восстановление при ошибках и (опционально) подтверждений значительных обновлений контекста из блока разуплотнения в блок уплотнения.

Следует отметить, что для большинства профилей ROHC, U-режим и O-режим часто не различая, упоминают, используя термин U/O-режим. Это происходит потому, что U-режим и O-режим имеют до некоторой степени аналогичные характеристики, такие как идентичный набор форматов пакетов для обоих режимов, а также аналогичную логику для выполнения обновлений контекста. Эта логика называется «оптимистическим подходом» и обеспечивает надежность при потерях пакетов для процедуры обновления контекста в U/O-режиме. См. также [RFC 3095 [ROHC], раздел 5.3.1.1.для более подробной информации.

R-режим значительно отличается от двух других режимов. В частности, R-режим использует несколько других видов пакета, которые понимаются и используются только в этом режиме. Однако R-режим отличается главным образом более широким использованием канала обратной связи и использует более строгую логику для выполнения обновления контекста. Эта логика основана на принципе обеспечения надежности с помощью эталона и обеспечивает надежность при потерях пакетов для процедуры обновления контекста в R-режиме. См. также [RFC 3095 [ROHC], раздел 5.5.1.для более подробной информации.

Профили уплотнения заголовка, определенные в RFC 3095 [ROHC], были разработаны в предположении, что канал между блоком уплотнения и блоком разуплотнения не будет переупорядочивать пакеты с уплотненным заголовком; канал обязан поддерживать порядок пакетов для каждого уплотненного потока. Это предположение было мотивировано тем, что каналы, которые первоначально рассматривались как потенциальные кандидаты для использования ROHC, действительно гарантировали упорядоченную доставку пакетов. Это предположение было полезно для улучшения эффективности уплотнения и допустимости потерь пакетов, цели, которые имели наивысший ранг в списке требований в то время. Профиль для уплотнения заголовков только IP [IP-ONLY] и профили для UDP-Lite - по существу расширения профилей, которые можно найти в [RFC 3095 [ROHC]]. Поэтому эти профили также наследуют то же самое предположение об упорядоченной доставке.

Блок уплотнения заголовка может использовать «оптимистический подход» для уменьшения служебной информации заголовка, выполняя обновления контекста. Блок уплотнения обычно повторяет то же самое обновление, пока он не будет твердо уверен, что блок разуплотнения успешно принял данную информацию. Количество последовательных пакетов, необходимых для получения этой уверенности, обычно зависит от воплощения, и это количество обычно связано с характеристиками потерь пакетов в канале связи, в котором используется уплотнение заголовка. Все виды пакетов, используемых при оптимистическом подходе, являются пакетами обновления контекста.

Блок уплотнения заголовка может использовать «принцип обеспечения надежности с помощью эталона», чтобы гарантировать, что синхронизация контекста между блоком уплотнения и блоком разуплотнения не может быть потеряна из-за потерь пакетов. Используя принцип обеспечения надежности с помощью эталона, блок уплотнения получает свою уверенность в том, что блок разуплотнения успешно обновил контекст с помощью пакета обновления контекста, основываясь на подтверждениях, принимаемых блоком разуплотнения. Однако большинство типов пакетов, используемых при принципе обеспечения надежности с помощью эталона, являются «автономными (замкнутыми)» и таким образом не предназначены для обновления контекста.

Рабочая группа (WG) по транспортировке аудио- и видеоинформации (AVT) IETF работает над уплотнением заголовка по множеству сегментов сети. Хотя уплотнение заголовка главным образом предназначено для медленно действующих каналов связи, где полоса пропускания недостаточна, экономия полосы пропускания в оборудовании магистральных сетей также важна из-за высокой стоимости и значительного объема переносимого трафика. Уплотнение заголовка можно применять как при двухточечных соединениях между каждым из узлов в базовой (магистральной) сети, однако это требует, чтобы пакеты разуплотнялись и повторно уплотнялись в каждом узле. Обработку можно уменьшать, выполняя уплотнение между несмежными узлами в базовой сети, по трассе с множеством сегментов (ретрансляционных участков) сети.

Например, трасса с множеством сегментов может быть маршрутом технологии коммутации пакетов в многопротокольных сетях на базе меток (MPLS) в базовой сети, или IP-туннелем. Более высокая вероятность потерь пакетов и возможное переупорядочивание пакетов характерны для таких виртуальных каналов связи, которые охватывают множество сегментов. Это может быть результатом того, что пакеты переадресуются или просто отбрасываются в узле из-за перегрузки или отказа узла. Технические требования для уплотнения заголовка по множеству сегментов сети описаны в документе Ash. J., Goode, B. and Hand. J., Requirements for Header Compression over MPLS. Интернет-проект (работа над проектом продолжается). RFC 4247. November 2005 [«AVT-HC»] and Ash. J. et al. Protocol Extensions For Header Compression Over MPLS, IETF Internet Draft AVT Working Group, <draft-ietf-avt-hc-over-mpls-protocol-07.txt>, May 2006.

Рабочая группа (WG) надежного уплотнения заголовка (ROHC) IETF работает над надежным уплотнением заголовков и, вероятно, скоро обновит свою основную спецификацию RFC 3095 для того, чтобы откорректировать ее профили уплотнения так, чтобы они могли обрабатывать переупорядочивание, поддерживая высокие характеристики надежности современных профилей ROHC.

Способ кодирования, известный как способ кодирования младших значащих битов (LSB), используется для кодирования полей заголовка, значения которых обычно подвержены небольшим изменениям, таких как порядковые номера (SN), например порядковые номера (SN) протокола RTP или порядковые номера, создаваемые в блоке разуплотнения при сжатии протоколов, которые не имеют нумерации последовательности в формате заголовка. В способе кодирования младших значащих битов (LSB) k младших значащих битов значения поля посылают вместо всего значения поля, где k - положительное целое число. Принимая эти биты, блок разуплотнения получает исходное значение, используя ранее принятое значение v_ref.

Гарантируется, что способ кодирования младших значащих битов (LSB) дает правильный результат, если и блок уплотнения, и блок разуплотнения используют «интервалы интерпретации», в которых находится исходное значение и в которых исходное значение является единственным значением, которое имеет такие же биты LSB, как переданные. Концепция интервала интерпретации показана на фиг.1. Как показано в интервале интерпретации на фиг.1, параметр p (известный как «параметр сдвига интервала» или «смещение») используется для сдвига интервала интерпретации относительно ранее принятого значения v_ref.

Другой способ кодирования, который является производным от способа кодирования младших значащих битов (LSB) и который известен как кодирование «окна LSB» (W-LSB), использует окно кандидатов v_ref. При принципе обеспечения надежности с помощью эталона, подтверждения от блока разуплотнения позволяют блоку уплотнения удалять значения v_ref, которые старше, чем значение, подтвержденное в окне переменной длительности. LSB и W-LSB описаны в [RFC 3095 [ROHC]]. Более конкретно, интервал интерпретации можно явно делить на два (под)интервала, например подинтервал «переупорядочивание» и подинтервал «надежность», как показано на фиг.2.

В сущности, правильная интерпретация кодированного значения с использованием кодирования LSB зависит от: (1) достаточного количества кодированных битов для восстановления правильного значения в пределах правильного интервала; (2) достаточно большого подинтервала «переупорядочивание» для смягчения или уменьшения возможного переупорядочивания; и (3) достаточно большого подинтервала «надежность» для смягчения возможных потерь пакетов или временно отсутствующих пакетов, при их переупорядочивании.

Одним из последствий принципа обеспечения надежности с помощью эталона (когда не все пакеты являются пакетами обновления контекста) является то, что только значения, подтвержденные блоком разуплотнения, включает в себя подвижное окно кодирования в качестве эталона (например, кодирование LSB или W-LSB). Этот принцип надежности позволяет посылать уплотненные пакеты в формате, который не включает в себя средство для блока разуплотнения для проверки правильного разуплотнения (используя, например, контрольную сумму для исходного неуплотненного заголовка), поскольку прием кодированных LSB битов, применяемых к эталону надежности, достаточен для правильного разуплотнения. Самый оптимальный вид пакета в R-режиме, вид пакета 0 (R-0), а также вид пакета R-1*, не переносит циклического избыточного кода (ЦИК), который является контрольной суммой, вычисленной для неуплотненного заголовка. Этот вид пакета рассматривается для большинства трафика с уплотненными заголовками. Разуплотнение полностью основано на совокупном результате предыдущих обновлений для эталона обеспечения надежности, и уплотненные данные основаны на текущем значении эталона, который должен быть одинаковым и для блока уплотнения, и для блока разуплотнения. Это применяется, когда гарантируется упорядоченная доставка между блоком уплотнения и блоком разуплотнения.

Однако, если может произойти переупорядочивание, последствием этого принципа надежности является то, что блок разуплотнения не имеет средства для проверки разуплотнения «замкнутых» пакетов, т.е. не предназначен для обновления эталона обеспечения надежности; эти пакеты обычно рассматриваются в большинстве случаев как пакеты, обмениваемые между блоком уплотнения и блоком разуплотнения.

Для минимизации проблемы надежности, при работе в R-режиме, можно посылать большее количество битов порядкового номера (SN), и/или можно изменять интервал интерпретации, чтобы предоставить возможность большему количеству значений находиться в пределах интервала интерпретации для переупорядочивания.

Рассмотрим прямой канал связи 3GPP2 EV-DO (развитие только для передачи данных) для получения значения для наихудшего случая глубины переупорядочивания. Для прямого канала связи 3GPP2 EV-DO (развитие только для передачи данных) следующее выражение обеспечивает задержку при переупорядоченной последовательности, в мс:

задержка (переупорядоченной последовательности)=[# сегментов передачи]*[глубина блока перемежения]*[период времени сегмента]

Рассмотрим конфигурацию, которая использует передачу 16 сегментов по ARQ-1, за которой следует передача 1 сегмента по ARQ-2:

[# сегментов передачи]=16-2 (учитывая окончание ARQ-2 передачи)

[глубина блока перемежения]=4

[период времени сегмента]=1,667 мс

Задержка наихудшего случая в прямом канале связи - 106,24-3,334=102,906 мс. Если используется задержанная передача ARQ, то существует дополнительный промежуток времени, чтобы распознать, что пакет, посланный по ARQ-1, не был принят, и тот же самый пакет посылается снова. Предполагая, что данный промежуток времени равен 10 мс, глубина переупорядоченной последовательности становится равной 2*106,24+10=222,48 мс.

Таким образом другими словами, для услуги с длительностью пакета 20 мс, такой как VoIP, максимальная глубина переупорядочивания в пакетах в прямом канале связи может быть до 222,48/20, что примерно равно 11 пакетам.

В современном уровне техники уплотнения заголовка используют форматы пакетов, которые являются предопределенными с фиксированным количеством битов для каждого поля. Некоторые форматы пакетов, через использование расширений, присутствие которых в явной форме передается непосредственно в формате пакета, могут обеспечивать дополнительные биты для некоторых полей. Это особенно удобно для увеличения интервала интерпретации кодирования LSB.

Более конкретно, для профилей ROHC, определенных в RFC 3095 [ROHC], параметр p сдвига интервала определяется следующим образом:

Для профилей 0x0001, 0x0003 и 0x0007:

p=1, когда количество битов (SN)<=4;

иначе p=2^(количество битов (SN)-5)-1.

Интервал интерпретации для этих обычных профилей ROHC выражается с помощью таблицы. Как показано в таблице, способность ROHC обрабатывать пакеты, которые имеют переупорядоченную последовательность, зависит от количества битов, посылаемых в каждом пакете. Например, последовательно запаздывающий пакет типа 0 (или с 4, или 6 битами SN) устанавливает ограничение до одного несвоевременного пакета для того, чтобы успешное разуплотнение было возможным.

Биты (SN) k Смещение p (переупорядочивание) (2^k-1)-p (потери)
4 1 14
5 0 31
6 1 62
7 3 124
8 7 248
9 15 496

С другой стороны, для профилей 0x0002, 0x0004 и 0x0008, «параметр сдвига интервала» или параметр «смещения» p=-1, независимо от количества битов (SN). Значение p=-1 означает, что смещение интервала интерпретации может принимать только положительные значения и что никакой запоздавший пакет последовательности не может быть разуплотнен, если переупорядочивание происходит в канале связи.

В сущности, согласно таблице, чтобы гарантировать надежность канала связи 1xEV-DO, по меньшей мере, 9 битов порядкового номера (SN) нужно посылать в любое время. Это обеспечило бы ситуацию максимального переупорядочивания 300 мс, а также устранило бы потерю 495 последовательных пакетов. Полагая, что данный канал связи является, конечно, достаточно надежным, чтобы гарантировать меньше, чем несколько последовательных потерь пакетов, и полагая, что наличие девяти битов порядкового номера приводит к использованию пакета, который по меньшей мере на 2-3 октета больше, чем наименьший размер уплотненного пакета, данное соотношение не является хорошо сбалансированным.

Недостатком указанного выше подхода является то, что форматы пакетов настроены только для некоторых определенных сценариев. Например, при ROHC форматы пакетов определяются так, чтобы они могли обрабатывать максимальное ожидаемое количество последовательных потерь в канале связи, обрабатывая очень небольшое количество переупорядочивания (или в некоторых случаях вообще не обрабатывая).

Таким образом, при таком подходе существует компромисс, когда разрабатывают надежные форматы пакетов, которые могут одинаково обрабатывать и надежность при потерях пакетов, и достаточно большую глубину переупорядочивания, которые будут работать в канале связи любого вида. При работе с самым эффективным уплотнением многие поля остаются статическими и неизменными, в то время как другие являются линейной функцией от порядкового номера, такие как поля порядкового номера (SN) RTP. Таким образом, простая передача достаточного количества битов этого порядкового номера позволяет передавать изменения во всех полях заголовка. Соотношение при использовании интервала интерпретации LSB показано на фиг.3.

При увеличивающемся использовании беспроводных каналов связи с более высокими скоростями передачи данных и более низкими задержками (все еще относительно высокими задержками относительно скорости передачи данных) предположение о доставке в правильном порядке больше не применимо. Такие каналы связи включают в себя каналы технологии высокоскоростной передачи пакетных данных (HSDPA) 3GPP (проекта партнерства третьего поколения), 3GPP2 (развитие для передачи данных и голоса) EV-DV и 3GPP2 (развитие только для передачи данных) EV-DO.

Таким образом, существует потребность, как также описано в Kapoor, R., Haipeng J. and M. Kretz, Robust Header Compression (ROHC): Support for Reordering and Constant IP-ID, <draft-ietf-kapoor-rohc-rtp-new-requirements-00.txt>, March 2005, в различных сценариях IP-туннелей в проводной инфраструктуре для алгоритмов уплотнения заголовка, чтобы они были надежными не только по отношению у потерям пакетов, но также и по отношению к переупорядочиванию пакетов. Таким образом, проблемой является определение такого соотношения между интервалами переупорядочивания и надежности, которое настолько эффективно, насколько это возможно, для канала связи с любыми характеристиками/конфигурациями, непосредственно в пределах алгоритма уплотнения.

Работа над уплотнением заголовка по множеству сегментов сети продолжается в IETF. AVT WG определяет соответствующие технические требования, см., например, Ash, J., Goode, B. and Hand, J., Requirements for Header Compression over MPLS, Интернет проект (работа над проектом продолжается), RFC 4247, November 2005, и Ash, J. et al., Protocol Extensions For Header Compression Over MPLS, IETF Internet Draft AVT Working Group, <draft-ietf-avt-he-over-mpls-protocol-07.txt>, May 2006. Ожидается, что рабочая группа закончит работу, которая вероятно предоставит возможность по меньшей мере eCRTP (см.. например, Koren, T., Casner, S., Geevarghese, J., Thompson B. and P. Ruddy, Enhanced Compressed RTP (CRTP) for Links with High Delay, Packet Loss and Reordering. IETF RFC 3545, IETF Network Working Group, July 2003) и ROHC (см., например, Carsten Bormann, et al. RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP and uncompressed, IETF RFC 3095, April 2001) использовать в каналах связи с переупорядочиванием, в результате этих технических требований.

Как указано ранее, некоторые алгоритмы уплотнения заголовка (например, ROHC), возможно, были разработаны, учитывая, что канал между блоком уплотнения и блоком разуплотнения доставляет пакеты к блоку разуплотнения в том же самом порядке, как они выходят из блока уплотнения. Это означает, что современный блок уплотнения будет обычно выбирать самый оптимальный вид пакета, основываясь на характеристиках заголовка, который необходимо уплотнять, и основываясь на контексте, но не основываясь на возможных характеристиках переупорядочивания канала связи.

Это также означает, что современный алгоритм уплотнения не будет иметь возможности эффективно учитывать переупорядочивание и надежность для любой структуры переупорядочивания/потерь канального уровня.

Фиг.4 показывает типичный пример интервала интерпретации, например, современный уровень техники с интервалом интерпретации LSB. Таблица на фиг.4 показывает значения, которые явно указывают смещение к обработке потерянных пакетов (надежность) относительно обработки переупорядочивания. Пакет с 4 битами SN обеспечивает глубину переупорядочивания 1 пакет, но выдерживает потерю до 14 последовательных пакетов до того, как он будет принимать их по порядку, чтобы успешно их разуплотнять.

Для канала связи, в котором блок разуплотнения определяет, что потери почти отсутствуют (близки к нулю), но пакеты могут переупорядочиваться до, например, 14 пакетов, блоку уплотнения потребовалось бы использовать по меньшей мере 9 битов SN - намного больше, чем требуются в данном случае. Кроме того, форматы пакетов с большим количеством битов LSB обычно менее эффективны, обычно переносят больше информации определения последовательности.

Таким образом, частично суммируя описанное ранее, надежность и допущение переупорядочивания кодирования LSB (например, в ROHC) ограничены количеством битов порядкового номера (SN) в формате пакета, а также параметром смещения p. В предшествующем уровне техники форматы пакетов (ФП) и значение параметра p определяются статически для каждого профиля. Порядковый номер (SN) протокола RTP в самой эффективной операции уплотнения является единственным полем, для которого биты переносятся в уплотненной форме, используя, например, кодирование LSB (другие поля могут разуплотняться на основе на SN или не изменяются).

Интервал интерпретации определяет, какая глубина переупорядочивания и сколько потерянных последовательных пакетов будет обрабатываться с помощью кодирования LSB. Обычно и параметр смещения p, и количество битов порядкового номера (SN) в пакетах фиксировано. Однако соотношение интервалов переупорядочивания/надежности является определенным для каналов связи различных технологий и конфигураций. Например, высокоскоростной канал связи (1xEV-DO, HSDPA) может быть надежным (~0 потерь), но иметь высокое время переупорядочивания (до 220 мс), или передавать в реальном времени (~5-10% FER (коэффициент ошибок для кадров)) без переупорядочивания (0 повторных передач).

Поэтому необходимы и являются целью настоящего изобретения устройство, методы и способы уплотнения заголовка, которые надежны не только по отношению к потерям пакетов, но также и по отношению к переупорядочиванию пакетов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Устройство выполняет операцию уплотнения или операцию разуплотнения по отношению к информации для передачи в пакетах по беспроводному каналу связи. Передача по беспроводному каналу связи происходит таким образом, что пакеты могут стать переупорядоченными по сравнению с последовательностью передачи. Операция уплотнения и операция разуплотнения связаны с компромиссом между глубиной переупорядочивания и надежностью. Надежность является показателем степени потери информации в канале связи, которую допускают операция уплотнения и операция разуплотнения; глубина переупорядочивания является степенью переупорядочивания пакетов, которое допускают операция уплотнения и операция разуплотнения. Устройство динамически настраивает компромиссный выбор между надежностью и глубиной переупорядочивания в соответствии с характеристиками канала связи. В примерном варианте осуществления информация, над которой выполняется операция уплотнения и операция разуплотнения, является информацией порядкового номера заголовка пакета.

В некоторых неограничивающих примерных вариантах осуществления устройством, которое выполняет динамическую настройку, является блок уплотнения, который выполняет операцию уплотнения. Блок уплотнения передает по беспроводному каналу связи к блоку разуплотнения, который выполняет операцию разуплотнения, по меньшей мере, один фактор (показатель), относящийся к настройке соотношения. Блок уплотнения настраивает формат пакетов в соответствии с характеристиками канала связи, которые определяют на передающей стороне беспроводного канала связи.

В других неограничивающих примерных вариантах осуществления устройством, которое выполняет динамическую настройку, является блок разуплотнения, который выполняет операцию разуплотнения. Блок разуплотнения передает по беспроводному каналу связи на блок уплотнения, который выполняет операцию уплотнения, фактор, относящийся к настройке соотношения. Блок разуплотнения настраивает формат пакетов в соответствии с характеристиками канала связи, которые определяют на приемной стороне беспроводного канала связи. В некоторых из этих вариантов осуществления блок разуплотнения и блок уплотнения синхронизируют переход к новому формату пакета, что отражает динамическую настройку соотношения. Настройка соотношения приводит к новому формату пакета. В некоторых из этих вариантов осуществления одно из полей нового формата пакета указывает параметр размера нового формата пакета, таким образом обеспечивая синхронизацию по беспроводному каналу связи относительно нового формата пакета. В примерном воплощении параметром размера является количество битов в поле порядкового номера нового формата пакета.

Компромисс выражается с помощью интервала интерпретации, который, в свою очередь, выражается на основе количества уплотненных битов, и смещения Pvar интервала интерпретации. Глубина переупорядочивания зависит от смещения Pvar интервала интерпретации; надежность зависит от количества уплотненных битов и смещения интервала интерпретации Pvar. В примерном воплощении устройство динамически настраивает компромиссный выбор, динамически изменяя количество уплотненных битов и динамически изменяя смещение интервала интерпретации. Например, количество уплотненных битов может быть выражено фактором k и фактором S расширения, и устройство динамически изменяет количество уплотненных битов, изменяя фактор S расширения. Устройство передает фактор S расширения и смещение интервала интерпретации на составляющее пару устройство по беспроводному каналу связи.

В одном из описанных аспектов технология содержит способ работы сети передачи данных. Способ включает в себя выполнение операции уплотнения информации заголовка пакета для формирования уплотненных заголовков пакетов. Операция уплотнения связана с компромиссом между надежностью и глубиной переупорядочивания (надежность является показателем степени потери информации в канале связи, которую допускает операция уплотнения, глубина переупорядочивания является степенью переупорядочивания пакетов, которое допускает операция уплотнения). Способ также включает в себя передачу уплотненных заголовков пакетов по беспроводному каналу связи, в которой пакеты могут стать переупорядоченными по сравнению с последовательностью передачи. Способ дополнительно включает в себя динамическую настройку компромиссного выбора (соотношения) между надежностью и глубиной переупорядочивания в соответствии с характеристиками канала связи.

Таким образом, в одном из примерных аспектов данная технология содержит: (1) передачу значения p из блока уплотнения в блок разуплотнения: (2) создание всей совокупности форматов пакетов переменного размера, основываясь на значении S, которое поддерживается в контексте: S (+0, 1, 2 октета); и (3) передачу значения S контекста из блока уплотнения в блок разуплотнения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Описанные ранее и другие задачи, особенности и преимущества изобретения будут очевидны из последующего более конкретного описания предпочтительных вариантов осуществления, которые показаны на чертежах, на которых ссылочные позиции обозначения относятся к тем же самым частям на различных представлениях. Чертежи не обязательно представлены в масштабе, а главным образом иллюстрируют принципы изобретения.

Фиг.1 - схематичное представление интервала интерпретации в способе кодирования младших значащих битов.

Фиг.2 - схематичное представление интервала интерпретации в способе кодирования «окна LSB».

Фиг.3 - схематичное представление, иллюстрирующее соотношение, использующее интервал интерпретации LSB.

Фиг.4 - схематичное представление, включающее в себя таблицу, которая изображает типичный пример (современное состояние) интервала интерпретации.

Фиг.5 - схематичное представление, включающее в себя таблицу, которая изображает интервал интерпретации с помощью переменного значения параметра смещения p и переменного фактора S.

Фиг.6 - схематичное представление, показывающее пример обычного варианта осуществления системы связи, имеющей блок уплотнения заголовка и блок разуплотнения заголовка, которые имеют возможность динамической настройки соотношения между переупорядочиванием/надежностью для уплотнения заголовка.