Антиперспирантные или дезодорирующие композиции

Изобретение относится к области косметики. Безводная антиперспирантная или дезодорирующая композиция, которая содержит: частицы вяжущей антиперспирантной соли; 20-90 мас.% масла-носителя, гелеобразователь для масла-носителя и увлажнитель-полиол, увлажнитель-полиол составляет 0,1-10% в расчете на массу композиции, полиэтиленгликоль имеет среднюю молекулярную массу до 820. Продукт, содержащий композицию, находится в распределяющей емкости, содержащей баллончик, на одном конце которого имеется по меньшей мере одно отверстие, через которое композиция может выталкиваться, а на противоположном, втором конце имеется подъемник, пригнанный к внутренней поверхности баллончика и способный перемещаться к первому концу. Нетерапевтический способ подавления потоотделения или ослабления запаха тела, включающий стадию топического нанесения на кожу композиции. Изобретение обеспечивает хорошие сенсорные свойства композиции. 3 н. и 27 з.п. ф-лы, табл. 9, 1 ил.

Реферат

Изобретение относится к антиперспирантным или дезодорирующим композициям и, в частности, к безводным композициям.

УРОВЕНЬ ТЕХНИКИ

На рынке дезодорантов и антиперспирантов доминируют продукты на основе вяжущих солей алюминия и/или циркония, которые предназначены для локального предупреждения или по меньшей мере подавления потоотделения через кожу, в частности в подмышках. Поступая таким образом, пользователь может предупредить или по меньшей мере помешать образованию влажных пятен в области подмышек или на одежде, которая покрывает руки, что в некоторых обществах считается некрасивым. Контролируя таким образом объем пота на поверхности кожи, пользователь одновременно ограничивает снабжение органическими соединениями резидентной популяции бактерий кожи, которые превращают такие соединения в дурно пахнущие, следовательно, вяжущие соли также действуют как дезодоранты. Такие вяжущие антиперспирантные соли также могут действовать как бактерицидные и таким образом действовать как дезодорант, даже если их применяют в количестве, меньшем, чем необходимое для эффективной борьбы с потоотделением.

Однако был отмечен побочный эффект таких вяжущих солей, а именно: они имеют свойство сушить кожу и, в частности, роговой слой, и кожа до некоторой степени теряет свою эластичность. Преимущество преодоления такого недостатка признано, например, в EP 966258.

Для композиций, содержащих вяжущую антиперспирантную соль, которые предназначены для топического нанесения на кожу, предложено много изменений формы, например, предложены жидкие составы, приспособленные для нанесения распылением; аэрозоль обычно получается за счет насоса или газа-вытеснителя. Другие композиции, так называемые контактные составы, предназначены для втирания в кожу и содержат среду-носитель, в которой растворена или суспендирована антиперспирантная соль; среда-носитель превращена в гель (отверждена, структурирована) с образованием твердого или полутвердого состава. В зависимости от природы композиции и любой жидкости-носителя композиции и, в частности, контактные композиции могут быть безводными или содержать воду.

В определенных разновидностях, которые особенно популярны в Северной Америке и доступны в других странах, контактные композиции являются безводными и содержат частицы вяжущей соли, суспендированные в загущенном, несмешивающемся с водой масле. Как и в другие типы антиперспирантных композиций, в них желательно включать средство, которое противодействовало бы высушиванию кожи, которая контактирует с композицией. Для этой цели уже предложено использовать увлажнитель и, в частности, увлажнитель, содержащий несколько гидроксильных групп; также признано, что введение такого увлажнителя в такие безводные композиции может породить проблему образования твердых частиц. Хотя настоящее изобретение не зависит от того, окажется ли любое конкретное предположение, постулат, гипотеза, теория или убеждение верным, полиолы, по-видимому, способны мигрировать на поверхность частиц антиперспирантных солей при температурах, обычно используемых для диспергирования или растворения гелеобразователя в масле-носителе, и после этого действовать как связующее между частицами и тем самым вызывать агломерацию частиц. Твердые частицы особенно нежелательны в контактных композициях, потому что в лучшем случае у пользователя может может возникнуть неприятное ощущение, а в худшем случае такая композиция может раздражать или царапать кожу. Эта проблема может усиливаться привычкой пользователей, которая распространена в Северной Америке (и некоторые другие частях мира) и заключается в удалении перед нанесением антиперспиранта волос из подмышек с помощью бритья или выщипывания, что делает кожу более чувствительной. Действительно, раздражение кожи, вызванное или усиленное твердыми частицами или любым другим источником, причиняет пользователю неудобство или боль и подавляет у них желание продолжать использовать этот продукт или покупать его снова.

Формирование твердых частиц может также снижать биоактивность состава, под которым понимается способность активного ингредиента выполнять желаемую функцию, такую как увлажнение кожи полиолом. Опять-таки не будучи связанным теорией, биоактивность полиола уменьшается, если полиол перед высвобождением образует комплекс с антиперспирантным активным веществом, таким образом, образование комплексов может способствовать такому снижению биоактивности.

До настоящего времени было предложено два способа противодействия проблеме формирования твердых частиц. Согласно одному способу, описанному более подробно в EP 966258, дополнительное вещество - носитель отдушки - смешивают с увлажнителем, в частности с глицерином, до внесения последнего в смесь, содержащую антиперспирантную соль. Хотя этот способ может применяться, и он эффективно применялся с начала 1997 года, он налагает на изготовителя различные ограничения. Например, он налагает по меньшей мере некоторые ограничения на приготовление состава. Любое дополнительное вещество, включенное в композицию для решения проблемы образования твердых частиц, сокращает пространство для других ингредиентов. Кроме того, введение носителя отдушки создает риск задержки высвобождения или может препятствовать высвобождению отдушки из композиции после местного нанесения, тем самым уменьшая ее воздействие и по меньшей мере непосредственную биодоступность любого вещества, абсорбированного носителем.

Второй способ, позволяющий по меньшей мере ослабить формирование твердых частиц, состоящих из антиперспирантной соли и увлажнителя, во время изготовления безводной антиперспирантной композиции карандаша был предложен Reheis Inc. в USP 6649153. Reheis предлагает создавать комплекс увлажнителя и антиперспирантной соли во время получения соли. Подобная идея рассмотрена в WO 03/070210 на имя Unilever et al. До того, как была упомянута проблема образования твердых частиц, комплексы антиперспирантных солей и полиола были раскрыты или упомянуты в US 3981986, EP 217012, GB1267959, GB1159685, ES 3873686, US 4089120 и US 3792070. Хотя образование комплексов полиола с антиперспирантной солью может устранить проблему образования твердых частиц во время изготовления антиперспирантных композиций, полиол должен высвобождаться из комплекса прежде, чем сможет обеспечить увлажнения кожи, так что после нанесения композиции полиол не является немедленно доступным для увлажнения. Полиолы легко образуют комплексы с вяжущими солями алюминия и циркония, так что разрушение комплексов не является быстрым или легким процессом, протекающим in situ на коже. В результате эффективность находящегося в комплексе полиола как увлажнителя кожи в значительной степени снижена или даже не определяется.

В WO 01/70185 раскрыты антиперспирантные композиции, структурированные дибензилиденсорбитальацетатом и содержащие дипропиленгликоль, например, чтобы облегчить солюбилизацию структурообразователя. В тексте рассмотрена возможность альтернативного использования полиэтиленгликоля с молекулярной массой от 200 до 8000 или метоксиполиэтиленгликоля с молекулярной массой от 350 до 5000.

В USP 4280994 раскрыты антиперспирантные композиции, которые содержат полиэтиленгликоль со средней молекулярной массой от 950 до 1600, например, от 950 до 1050 или от 1300 до 1600, которые заявлены как более эстетически и косметически привлекательными по сравнению с карандашом, который содержит более высокую долю антиперспирантного активного вещества, но не содержит 6% неионогенного поверхностно-активного вещества. Эстетические различия нельзя однозначно приписать среднемолекулярному полиэтиленгликолю. Когда такие среднемолекулярные полиэтиленгликоли подверглись тестированию, влажность кожи снизилась, количество удерживаемой в коже влаги к конце теста оказалось ниже, чем в его начале.

В заявке на патент США № 2004/0022750 не рассматривается проблема формирования твердых частиц, заявка не обращается к этой проблеме, но в ней описан способ снижения размера частиц антиперспирантных активных веществ до среднего размера 2 мкм и менее путем размола их суспензии в неводном жидком носителе, в котором твердое антиперспирантное активное вещество нерастворимо. Текст иллюстрирует применение циклометиконов (летучих силиконов) в качестве неводной жидкости с отношением жидкости к твердому веществу 3:1 по массе, но в качестве жидкого носителя предполагаются многие другие классы жидкостей, а именно косметические сложные эфиры, гликоли и полиолы, нелетучие силиконы, углеводороды, спирты и смеси вышеупомянутого.

ЦЕЛЬ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является преодоление или ослабление одной проблемы или недостатка и более, раскрытых выше.

Целью определенных вариантов осуществления настоящего изобретения является разработка безводных антиперспирантных композиций, проявляющих положительную биодоступность увлажнителя и отсутствие ощутимых твердых частиц.

Целью различных предпочтительных вариантов осуществления настоящего изобретения является разработка композиций, которые содержат частицы вяжущего антиперспиранта и при этом противодействуют раздражению.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Первый аспект настоящего изобретения относится к безводной антиперспирантной или дезодорирующей композиции, содержащей

частицы вяжущей антиперспирантной соли;

масло-носитель,

гелеобразователь для масла и

увлажнитель-полиол,

в котором увлажнитель содержит низкомолекулярный полиэтиленгликоль

и в дальнейшем этот аспект упоминается как п.1.

Полиэтиленгликоль, являющийся жидкостью и не находящийся в предварительно образованном комплексе с антиперспирантной вяжущей солью, может считаться «свободным» полиэтиленгликолем.

Второй аспект настоящего изобретения относится к процессу ослабления или предотвращения образования твердых частиц во время изготовления безводной антиперспирантной или дезодорирующей композиции по первому аспекту, включающему стадии:

образования при повышенной температуре жидкой смеси, содержащей

частицы вяжущей соли алюминия и/или циркония, суспендированные в масле-носителе, в котором диспергирован или растворен гелеобразователь

и увлажнитель-полиол

с последующим охлаждением или самопроизвольным охлаждением смеси до температуры, при которой застывает смесь, в которой увлажнитель содержит низкомолекулярный полиэтиленгликоль.

Полученная в результате композиция продолжает содержать «свободный» полиэтиленгликоль.

Третий аспект настоящего изобретения относится к нетерапевтическому способу подавления потоотделения с одновременным уменьшением сухости кожи путем топического нанесения композиции по первому аспекту.

При использовании низкомолекулярного полиэтиленгликоля (далее иногда сокращено ПЭГ) в качестве увлажнителя, который не находится в комплексе с антиперспирантным активным веществом, можно создать безводную композицию, содержащую существенное количество увлажнителя-полиола, который доступен немедленно и может действовать как увлажнитель при контакте с кожей, не вызывая образования твердых частиц, или по меньшей мере значительно снижает долю образовавшихся твердых частиц по сравнению с введением глицерина в том же соотношении по массе.

«Безводный» в рамках изобретения означает, что отсутствует отдельная водная жидкая фаза, и содержание свободной воды составляет не более 5%, предпочтительно не более 3%, особенно предпочтительно не более 1% и наиболее предпочтительно не более 0,5 мас.% в расчете на массу всей композиции. Связанная или находящаяся в комплексе вода, например гидратная вода в антиперспирантной соли, не считается свободной.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ И ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ЕГО ОСУЩЕСТВЛЕНИЯ

Настоящее изобретение относится к отбору низкомолекулярного ПЭГ, обеспечивающему немедленную доступность увлажнителя при нанесении на кожу антиперспирантной или дезодорирующей композиции, такой ПЭГ менее склонен вызывать образование твердых частиц во время изготовление композиции при повышенных температурах, используемых, чтобы диспергировать или растворить гелеобразователь в масле-носителе. Возможно достижение положительной гидратации кожи. Следует понимать, что ПЭГ включают в композицию отдельно от антиперспирантного активного вещества, т.е. не в комплексе с ним.

Композиции по изобретению, рассмотренные в настоящей заявке, находятся в форме твердых веществ или твердых веществ мягкой консистенции (soft solids), последние иногда называются полутвердыми веществами или безводными кремами. Твердые вещества отличаются тем, что сохраняют свою форму без боковых опор, несмотря на влияние силы тяжести Земли. Твердые вещества по изобретению обычно применяют в форме карандашей. Твердость таких твердых веществ в целом и карандашей, в частности, можно измерить с помощью пенетрометрии, например, применяя лабораторно-промышленный PNT пенетрометр с восковым острием Seta (с массой 2,5 г и массой держателя 47,5 г), игла имеет точно установленный угол конусности 9°10'±15′′, иглу опускают на поверхность образца с плоской верхней поверхностью и отмечают глубину проникновения через 5 секунд. Желательно, чтобы глубина проникновения составляла не более 30 мм и предпочтительно - не более 25 мм. У многих подходящих твердых веществ глубина проникновения составляет по меньшей мере 5 мм, например, до 20 мм. Полутвердые вещества, как предполагает их название, не настолько тверды, как твердые вещества. Их можно экструдировать через узкое отверстие под давлением, составляющим приблизительно 3 фунта на кв. дюйм (около 20,7 кПа); требуется удерживающая боковая стенка, которая предупреждает их медленное растекание. Твердость полутвердых веществ, измеренная методом вдавливания сферы, обычно превышает 0,005 Н/мм2, обычно ниже 0,5 Н/мм2, и во многих композициях их твердость колеблется от 0,01 до 0,1 Н/мм2. Твердые вещества (твердые карандаши) отличает нагрузка при вдавливании сферы, превышающая 0,5 Н/мм2.

ВЯЖУЩИЕ АНТИПЕРСПИРАНТНЫЕ СОЛИ

Массовое соотношение вяжущей антиперспирантной соли в композиции или смеси, если используется более одной соли, варьирует на усмотрение изготовителя и обычно находится в пределах от 0,1 до 60 мас.% композиции. Для использования в качестве дезодоранта соотношение обычно составляет до 5 мас.%, часто по меньшей мере 0,5% или по меньшей мере 1% и, в частности, по меньшей мере 2 или 3%. Эффективность вяжущей соли по подавлению потоотделения увеличивается с нарастанием ее массы, так что обычно выбираемое соотношение находится в пределах от 5 до 30 мас.% и во многих желаемых композициях - от 10-15 мас.% до 26-30 мас.%.

Вяжущие антиперспирантные соли для применения по настоящему изобретению часто выбираются из вяжущих солей алюминия, циркония и смешанных солей алюминия/циркония, необязательно находящихся в комплексе. Предпочтительные соли алюминия, циркония и алюминия/циркония включают галогениды, в частности хлорид, и особенно предпочтительными солями являются основные соли, другими словами те, в которых часть галогена в пределах эмпирической формулы замещена связанными гидроксильными группами. Весьма желательны соли-хлоргидраты.

Галогидраты алюминия обычно описываются общей формулой Al2(ОH)xQy·wH2O, в которой Q представляет собой хлор, бром или йод, x является переменной от 2 до 5 и x+y=6, в то время как wH2O представляет собой переменное количество молекул воды. Хлоргидрат алюминия содержит смесь ряда различных разновидностей полимеров в различных соотношениях в зависимости от молярного соотношения алюминия и хлора и условий, использованных во время синтеза. Все такие смеси могут использоваться по настоящему изобретению. Особенно желательно использовать соединение, которое обычно называют активированным хлоргидратом алюминия или хлоргидратом алюминия с повышенной активностью, иногда обозначаемым аббревиатурой AACH, в котором доля более активных разновидностей, таких как разновидности Band III (определенных обычным хроматографическим способом), более высока из-за особенностей способа синтеза. В одном определении активированного вещества, данном в EP 6739, оно содержит более 20% Band III. Другие способы синтеза AACH приведены в EP 191628 и EP 451395. AACH часто получают выделением хлоргидрата алюминия из разбавленного раствора при строго контролируемых условиях реакции/созревания/дегидратации/сушки. AACH можно найти в продаже по своему названию либо по активированной или повышенной активности; он поступает от таких поставщиков, как Reheis, Summit Research и Β Κ Giulini.

Активные вещества циркония обычно можно описать общей эмпирической формулой: ZrO(ОH)2n-nzBz·wH2O, где z представляет собой переменную от 0,9 до 2,0, так чтобы значение 2n-nz было равно нулю или положительному числу, n является валентностью B, и Β выбрано из группы, состоящей из хлорида, другого галогена, сульфамата, сульфата и их смесей. Возможная гидратация в переменной степени представлена wH2O. Предпочтительно Β представляет собой хлорид, и переменная z находится в диапазоне от 1,5 до 1,87. На практике такие соли циркония обычно применяют не в чистом виде, а как компонент объединенного антиперспиранта на основе алюминия и циркония.

Вышеупомянутые соли алюминия и циркония, возможно, содержат координированную и/или связанную воду в различных количествах и/или могут присутствовать в виде полимерных разновидностей, смесей или комплексов. В частности, основные соли циркония часто представляют собой диапазон солей, содержащих различное количество гидроксильных групп. Особенно предпочтительным может быть хлоргидрат алюминия/циркония.

Могут использоваться антиперспирантные комплексы на основании вышеупомянутой вяжущей соли алюминия и/или циркония. В комплексе часто используется соединение с карбоксильной группой, выгодно, чтобы это была аминокислота. Примеры подходящих аминокислот включают dl-триптофан, dl-β-фенилаланин, dl-валин, dl-метионин и β-аланин и предпочтительно глицин, который имеет формулу CH2(NH2)COOH.

В некоторых вариантах осуществления настоящего изобретения очень желательно использовать комплексы комбинации галогидратов алюминия (особенно хлоргидратов) и хлоргидратов циркония вместе с аминокислотами, такими как глицин, который раскрыт в US-A-3792068 (Luedders et al). Некоторые из этих комплексов Al/Zr в литературе часто называются ZAG. Активные вещества ZAG, как правило, содержат алюминий, цирконий и хлорид с соотношением Al/Zr в диапазоне от 2 до 10, в частности 2-6, соотношение Al/Cl от 2,1 до 0,9 и переменное количество глицина. Активные вещества этого предпочтительного типа поставляются Westwood, Summit и Reheis.

Особенно предпочтительно, чтобы антиперспирантные соли были, по меньшей мере, по существу свободны от сульфата алюминия - это означает, что его массовая доля от общей массы всех присутствующих антиперспирантных солей составляет менее 5%, в частности менее 3% и в частности менее 1%. Очень подходящим было бы его полное отсутствие.

Другие активные вещества, которые могут использоваться, включают вяжущие соли титана, например описанные в GB 2299506A.

Размер частиц исходного материала для вяжущих антиперспирантных солей часто находится в пределах 0,1-100 мкм и, в частности, составляет по меньшей мере 0,2 мкм. Во многих желаемых продуктах по меньшей мере 95 мас.% исходного материала имеет размер менее 50 мкм, нередко со средним размером частиц от 3 до 30 мкм и во многих случаях от 5 до 25 мкм и в некоторых очень желательных видах исходного материала - от 10 до 25 мкм. Выгодно то, что посредством выбора первичного увлажнителя-полиола по настоящему изобретению и особенно по предпочтительным вариантам его осуществления можно ограничить размер частиц антиперспирантной соли в композициях по изобретению после изготовления по меньшей мере по существу до менее 100 мкм, например так, чтобы по меньшей мере 95%, предпочтительно по меньшей мере 99% и, в частности, 100% частиц имели диаметр ниже 100 мкм.

Там, где желательно получить антиперспирантные продукты, которые после местного нанесения на кожу образуют не более чем легкие отложения, предпочтительно выбирать исходные материалы, которые содержат преимущественно неполые твердые частицы, например не более 5% или, в частности, не более 2%, особенно менее 1% полых сферических частиц с диаметром выше 50 мкм. Полые частицы можно устранить с помощью подходящего аппарата и условий размола.

Масса частиц активной антиперспирантной соли в данном документе обычно включает любую присутствующую гидратационную воду.

Масла-носители

Композиции по настоящему изобретению содержат по меньшей мере одно масло-носитель, под которым понимается соединение, которое не смешивается с водой (альтернативно его можно описать как гидрофобное или липофильное) и является жидкостью при температуре от 20°C до температуры по меньшей мере такой, при которой гелеобразователь растворяется или диспергируется в масле-носителе, и масло, в котором состоящие из частиц ингредиенты, например антиперспирантная соль, суспендированы. Следует понимать, что такая температура растворения зависит и от гелеобразователя или смеси гелеобразователей, и от масла или смеси масел. Обычно точка кипения масла превышает 150°C и часто равна по меньшей мере 200°C. В данном документе термин «масла-носители» не включает жидкий ПЭГ-увлажнитель.

Массовая доля масел-носителей в композициях по изобретению обычно выбирается в пределах от 20 до 90% и во многих случаях составляет по меньшей мере 30%.

Масла-носители обычно составляют по меньшей мере 40 мас.% безводной суспензии композиции и во многих случаях по меньшей мере 45%. Максимальная доля масел-носителей в карандаше или твердом веществе мягкой консистенции обычно не превышает 90 мас.%, во многих желаемых композициях составляет до 80% и в некоторых особо предпочтительных композициях - 70% мас./мас. заключительной композиции. Композиции, содержащие 45-60% или 65% масел-носителй, позволяют легко включать в состав эффективное количество антиперспирантной соли, например 15-26% или 30%, увлажнитель и достаточное количество гелеобразователя, чтобы достичь желаемой твердости. Доля масел-носителей в композиции является дополнительной к доле увлажнителя.

Масла, которые могут использоваться по настоящему изобретению, обычно относятся к 2 категориям, а именно силиконовым маслам (иногда их называют органосиликоновыми маслами по причине органозамещения) и несиликоновым маслам. Кроме того, каждая из категорий может быть разделена на два типа, а именно летучие и нелетучие. Выбор баланса между силиконовыми и несиликоновыми маслами и между летучими и нелетучими маслами остается на усмотрение производителя косметического состава, который будет принимать во внимание, помимо прочего, сенсорные и другие физические свойства, которыми он желал бы наделить конечный продукт, а также любые ограничения, возникшие в результате выбора гелеобразователя (структурообразователя) или дополнительных ингредиентов.

Под летучим в рамках изобретения понимается масло, имеющее измеримое давление пара при 25°C. Типично давление паров летучего масла при 25°C находится в диапазоне, по меньшей мере, 1 Па или предпочтительно по меньшей мере 10 Па, хотя, как правило, оно будет меньше 4 кПа (30 мм рт.ст.). Нелетучим может считаться масло, которое при 25°C создает давление паров менее 1 Па. Выбирая силиконовые и/или несиликоновые масла в различных соотношениях и летучие и нелетучие масла в различных соотношениях, можно получить композиции, имеющие различные сенсорные свойства.

Желательно включать летучий силикон, потому что делает нанесенную пленку более сухой на ощупь после того, как композиция нанесена на кожу.

Летучие полиорганосилоксины могут быть линейными или циклическими или представлять собой их смеси. Предпочтительные циклические силоксаны включают полидиметилсилоксаны, особенно те из них, которые содержат от 3 до 9 атомов кремния и предпочтительно не более 7 атомов кремния и наиболее предпочтительно от 4 до 6 атомов кремния, которых часто называют циклометиконами. Предпочтительные линейные силоксаны включают полидиметилсилоксаны, содержащие от 3 до 9 атомов кремния. Летучие силоксаны обычно имеют вязкость ниже 10-5 м2/с (10 сСт) и, в частности, выше 10-7 м2/с (0,1 сСт), линейные силоксаны обычно имеют вязкость ниже 5×10-6 м2/с (5 сСт). Летучие силиконы также могут включать разветвленные линейные или циклические силоксаны, такие как вышеупомянутые линейные или циклические силоксаны, замещенной одной и более дополнительной группой -О-Si(CH3)3. Примеры имеющихся в продаже летучих силиконовых масел включают масла, имеющие обозначение сорта 344, 345, 244, 245 и 246 от Dow Corning Corporation; Силикон 7207TM и Силикон 7158TM от Union Carbide Corporation; и SF1202TM от General Electric.

Часто массовая доля летучих силиконовых масел составляет, по меньшей мере, 10 или 20% общей массы силиконовых масел в композиции по настоящему изобретению и во многих особенно подходящих композициях составляет по меньшей мере 70% и особенно по меньшей мере 85 мас.% силиконовых масел. В других высокожелательных композициях по настоящему изобретению, например, если требуется получить полупрозрачные композиции или композиции, оставляющие слабо видимые остатки, массовая доля летучих силиконовых масел обычно составляет менее 50%, предпочтительно менее 30%, например от 0 или 5% до 15 или 20% силиконовых масел.

Масла-носители, используемые в композициях по изобретению, могут альтернативно или дополнительно содержать одно и более нелетучее силиконовое масло, которое включает полиалкильные силоксаны, полиалкиларилсилоксаны и сополимеры полиэфирсилоксанов. Их можно соответственно выбирать из cо-полиолов диметикона и диметикона. Имеющиеся в продаже нелетучие силиконовые масла включают продукты, доступные под товарными знаками серий Dow Corning 556 и Dow Corning 200. Другие нелетучие силиконовые масла включают масла с товарным знаком DC704. Включение по меньшей мере небольшого количества нелетучего силиконового масла с высоким коэффициентом преломления, таким как более 1,5, в количестве, например по меньшей мере 10 мас.% силиконовых масел (предпочтительно по меньшей мере 25-100% и в частности 40-80%), может быть полезным в некоторых композициях, например в тех, в которых желательно уменьшить видимые отложения и/или получить полупрозрачную композицию, в которой коэффициент преломления диспергированных частиц антиперспирантной соли соответствует коэффициенту масла-носителя (учитывая влияние любого увлажнителя, который образует единую фазу с маслом-носителем). Многие несиликоновые масла действуют как смягчающие средства. Любое несиликоновое масло обеспечивает баланс силиконовых масел.

Жидкие силиконовые масла могут составлять до 100 мас.% несмешивающихся с водой жидких масел-носителей, например во многих желаемых вариантах осуществления их массовая доля выбирается в пределах от по меньшей мере 20 или 30% масел-носителей, часто в пределах от по меньшей мере 50% и в некоторых особенно предпочтительных вариантах осуществления массовая доля составляет по меньшей мере 70 мас.%. В различных вышеупомянутых и в других желаемых вариантах осуществления настоящего изобретения несиликоновые масла составляют большую или основную массовую долю или даже 100% масляной фазы, например по меньшей мере 20 или 30%, в частности выбирается в пределах от по меньшей мере 50% и особенно выбирается в пределах от по меньшей мере 70%.

Несиликоновые масла

Разработчик рецептур композиций по настоящему изобретению может включить одно несиликоновое масло и более, которые иногда альтернативно называют несиликоновыми гидрофобными или несмешивающимися с водой жидкостями, в дополнение или вместо всех или одной фракции силиконовых масел, упомянутых выше. Такие масла, как указано выше, являются жидкостями при 20°C и стандартном давлении, в действительности предпочтительно являются жидкостью при 15°C, и выгодны масла, имеющие точку кипения по меньшей мере 150°C. Данные о точках плавления и кипения для химических соединений легко получить из справочников, таких как CRC Handbook of Chemistry and Physics, опубликованное CRC Press, часто вместе с указанием, растворимо ли соединение в воде или может ли с ней смешиваться. Для любого соединения, для которого такие данные недоступны из литературы, их может легко получить любой химик, использующий обычные методы. Различные несиликоновые масла являются летучими и многие являются нелетучими.

Если используются нелетучие масла, их часто выбирают из одного и более следующих классов органических соединений, а именно углеводородных масел, сложноэфирных масел и эфирных масел.

И летучие и нелетучие углеводородные масла легкодоступны. Летучие масла включают, в частности, парафины и изопарафины, содержание промежуточное количество атомов углерода, например выбранное в пределах от 8 до 25 атомов углерода и часто по меньшей мере 10 атомов углерода в зависимости от его молекулярного строения. Однако неидеальные смеси углеводородов склонны иметь более высокую летучесть, чем это можно предположить по отдельным составным частям, и точки плавления и кипения имеют тенденцию увеличиваться с нарастанием молекулярной массы, таким образом, такие числовые пределы представляют лишь ориентиры, в действительности имеется диффузный переход к тем углеводородам, которые являются явно нелетучими. Летучие углеводороды могут использоваться вместо всех или доли летучих силиконовых масел, определенных в данном документе ранее. Во многих желаемых составах по изобретению летучий углеводород составляет от 0 до 20 мас.% и особенно от 0 до 10 мас.% смеси масел в целом.

Нелетучие алифатические углеводороды обычно выбираются из минеральных масел, гидрогенизированного полидецена и гидрогенизированного полиизобутена. Нелетучие углеводороды могут быть включены из-за своих желаемых свойств, поскольку многие из них обладают смягчающими свойствами, имеют такую же или более низкую вязкость, а также средний показатель преломления, например около 1,46 или 1,47, они, как правило, помогают снизить видимость вяжущих антиперспирантных солей, местно прилипших к коже или одежде. Нелетучие углеводородные масла предпочтительно присутствуют в количестве 0-50% мас./мас., в ряде предпочтительных вариантов осуществления - от 0 до 10% мас./мас. масел и в других выгодных вариантах осуществления - от 10% мас./мас. масел. Подходящие нелетучие углеводороды включают гидрогенизированный полидецен и вазелин, последний обычно является воскоподобным веществом с низкой точкой плавления, например, в области 35-45°C.

Сложноэфирные масла представляют особенно полезный класс несиликоновых масел. Другие подходящие гидрофобные носители включают жидкие алифатические или ароматические сложные эфиры. Типично такие масла считаются нелетучими. Сложноэфирные масла могут быть алифатическими, ароматическими или содержать и алифатическую, и ароматическую группу. Многие желаемые алифатические сложные эфиры содержат по меньшей мере одну длинноцепочечную углеводородную группу, например содержащую от 8 до 25 атомов углерода, полученную из одноатомного спирта или монокарбоновой кислоты. Подходящие алифатические сложные эфиры могут быть получены из одноатомных спиртов, таких как выбранные из C1-C20 алифатических спиртов, этерифицированных карбоновой кислотой, выбранной из C8-C20 моноалкановых кислот и C8-C20 алкандиовых кислот. Такие сложные эфиры включают изопропилмиристат, лаурилмиристат, изопропилпальмитат, диизопропилсебакат и диизопропиладипат. Другие подходящие сложноэфирные масла включают глицеридные масла и, в частности, триглицеридные масла, полученные из глицерина и жирных кислот, иногда олефиново ненасыщенных вместо насыщенных, содержащих по меньшей мере 6 атомов углерода и, в частности, природные масла, полученные из ненасыщенных карбоновых кислот, содержащих от 16 до 20 и, в частности, 18 атомов углерода.

Подходящие жидкие ароматические сложные эфиры или смешанные ароматические/алифатические сложные эфиры предпочтительно получают из бензойной кислоты. Примеры таких сложных эфиров включают подходящие C618 алкилбензоаты или их смеси, включая, в частности, C1215 алкилбензоаты. Многие подходящие эфиры бензойной кислоты имеются под торговым знаком Finsolv. Другие ароматические сложные эфиры, применение которые может рассматриваться в данном документе, содержат два ароматических остатка. Бензилбензоат, хотя и пригоден, предпочтительно по существу отсутствует, составляя, например, не более 5% и, в частности, не более 3% или 1 мас.% масляной смеси и более конкретно исключен. Предпочтительные двойные ароматические сложные эфиры содержат линейную или разветвленную алкильную цепь, например длиной от 1 до 3 атомов углерода, встроенную между сложноэфирными группами или замещенными фенильными группами простого эфира.

Алифатические сложные эфиры обычно имеют промежуточный коэффициент преломления, и поэтому их типично используют из-за смягчающих средств. Ароматические сложные эфиры обычно имеют более высокий коэффициент преломления, например приблизительно 1,49-1,50 и даже более высокий коэффициент преломления, если имеются два ароматических заместителя, что делает их особенно пригодными для приготовления полупрозрачных композиций, содержащих частицы вяжущей антиперспирантной соли и даже соли, содержащие цирконий.

Сложноэфирные масла, алифатические или ароматические желательно содержат от 0 до 60%, предпочтительно по меньшей мере от 10 или 15% до 35 или 40% мас./мас. масел, например в различных вариантах осуществления высоко желательно 15-35%. Следует понимать, что сложноэфирные масла, упомянутые в данном документе, обычно считаются нелетучими и соответственно их можно использовать в качестве заменителя нелетучих силиконовых масел, например силиконовых масел со сходным коэффициентом преломления, полного или частичного, на усмотрение разработчика рецептур.

В ряде очень желаемых вариантов осуществления композиции по изобретению содержат природное сложноэфирное масло вместе с любым другим сложноэфирным маслом или без такового. Такие природные масла наиболее желательно являются глицеридами, полученными из одной и более ненасыщенной C18 жирной кислоты. Во многих случаях масла содержат один триглицерид и более. Остатки жирных кислот в маслах могут содержать, как правило, от 1 до 3 ненасыщеных олефинных связей и часто 1 или 2. Хотя во многих случаях олефинные связи принимают транс-конфигурацию, в ряде желаемых продуктов связь или связи принимают цис-конфигурацию. Если присутствуют 2 или 3 ненасыщенные олефинные связи, они могут быть конъюгированными. Кроме того, жирная кислота может быть замещена гидроксильной группой. Природные масла, которые могут использоваться по настоящему изобретению, желательно содержат один и более триглицерид олеиновой кислоты, линолевой кислоты, линоленовой кислоты или рицинолевой кислоты. Различные изомеры таких кислот часто имеют общие названия, включая линоленалаидиновую кислоту, транс-7-октадеценовую кислоту, паринаровую кислоту, пиноленовую кислоту, пунициновую кислоту, петроселиновую кислоту и стеаридоновую кислоту. Особенно желательно использовать глицериды, полученные из олеиновой кислоты, линолевой кислоты или петроселиновой кислоты или смесей, содержащих одну из них и более.

Природные масла, содержащие один такой триглицерид и более, включают масло семени кориандра для производных петроселиновой кислоты, масло семян impatiens balsimina, жир косточек parinarium laurinarium или масло семян sabastiana brasilinensis для производных цис-паринаровой кислоты, дегидратированное масло семян клещевины для производных конъюгированной линолевой кислоты, масло семян бурачника и масло энотеры для производных линолевой и линоленовой кислот, масло aquilegia vulgaris для колумбиновой кислоты и подсолнечное, оливковое и сафлоровое масло для производных олеиновой кислоты, часто вместе с линолевой кислотой. Другие подходящие масла можно получить из конопли, которую можно обработать, чтобы получить производные стеарадоновой