Способ обогащения сурьмяных руд и линия для его осуществления

Иллюстрации

Показать все

Группа изобретений относится к способу обогащения сурьмяных руд и линии для его осуществления. Способ включает рудоподготовку с грохочением и флотацию. При грохочении материал классифицируется на классы -150+20 мм, -20+2 мм и -2 мм, а после грохочения осуществляют рентгенорадиометрическую сепарацию руды класса -150+20 мм с последующей тяжелосредной сепарацией обогащенного материала отсева крупностью -20+2 мм. Затем проводят предварительную активацию смесью катионов цинка и меди и флотацию легкой фракции тяжелосредной сепарации и фракции крупностью -2 мм смесью ксантогената калия и дитиофосфата натрия или смесью ксантогената калия и диметилдитиокарбамата натрия, и использованием индустриального масла ИС-40 и флотореагента «Берамин». Линия состоит из последовательно установленных модуля рудоподготовки, модуля грохочения и флотационного обогащения. При этом она дополнительно содержит модуль приемки и модуль рентгенорадиометрической сепарации, модуль гравитационного обогащения с аппаратами для тяжелосредной сепарации, выполненными в виде наклонного гидроциклона и барабанных сепараторов. Техническим результатом является повышение извлечения сурьмы и благородных металлов в товарные, самостоятельные продукты. 2 н. и 7 з.п. ф-лы, 7 табл., 1 ил.

Реферат

Предлагаемый способ относится к металлургии цветных металлов, в частности к обогащению сурьмяных руд, который распространен в РФ и зарубежных странах. Известные способы обогащения сурьмяных руд предусматривают флотацию или комбинированные способы - гравитационно-флотационные схемы обогащения.

Недостатками указанных способов являются высокий расход дорогостоящих флотационных реагентов, пониженное извлечение сурьмы и благородных металлов.

Известен способ переработки сульфидных сурьмяных руд путем их флотации [1-3]. Недостатком подобного способа является невысокое извлечение металла в концентрат при высоких затратах реагентов.

Задачей изобретения является исключение загрязнения окружающей среды растворами, повышение извлечения сурьмы и попутных благородных металлов, снижение затрат реагентов.

Технический результат изобретения выражается в повышении извлечения сурьмы и благородных металлов в товарные, самостоятельные продукты.

Технический результат достигается тем, что сурьмяные руды обогащаются по комбинированной технологической схеме: с учетом рентгенорадиометрической сепарации (РРС), тяжелосредной сепарации, флотации сульфидных и окисленных минералов сурьмы;

- рентгенорадиометрическая сепарация (РРС) позволяет получать концентрат (обогащенный продукт) и отвальные хвосты;

- обогащенный продукт подвергается тяжелосредной сепарации (ТСС) с получением товарного сурьмяного концентрата;

- из отсева класса -20+2 мм ТСС выделяют товарный сурьмяный концентрат.

Испытания рентгенорадиометрической сепарации (РРС) были проведены на технологической пробе весом 15 т, размер фракций был меньше 150 мм. Проба представляет порошково-вкрапленную кварц-антимонитовую руду в окварцованных и аргиллизированных конгломератах. Вмещающие породы представлены конгломератами и аргиллизитами с реликтовой текстурой конгломератов.

Из 15 мешков (биг-бэг) пробы было отобрано 3 мешка (биг-бэг) для предварительных испытаний, каждый мешок был подвергнут грохочению на класс -150+20 мм и класс -20+0 мм. РРС осуществлялась на классе -150+20 мм при пороге 0,3 и 0,2 с получением концентрата и хвостов. Материал РРС каждого мешка объединялся, продукты испытаний подвергались проборазделке с определением относительных выходов. Сепарация была выполнена на технологическом стенде «РАДОС» [3].

В табл.1 представлены результаты РРС класса -150+20 мм. Выход этого класса колебался 83,3% (опыт 1+2), 75,6% (опыт 3+4), 71,6% (опыт 5+6), 76,6% (для всех опытов), а выход класса -20+0 мм составил 23,4% с содержанием сурьмы 1,04%.

Таблица 1
Технологические показатели РРС бедной сурьмяной руды
Опыты (порог РРС) Наименование продуктов Выход, % (Масса, кг) Содержание Sb, % Измельчение Sb, %
Опыт 1 (порог 0,3) Концентрат 15,2 (36,0) 9,6 94,5
Хвосты 84,8 (201,0) 0,1 5,5
Исходный 100,0 (237,0) 1,54 100,0
Опыт 2 (порог 0,3) Концентрат 25,9 (60,0) 11,5 97,1
Хвосты 74,1 (172,0) 0,12 2,9
Исходный 100,0 (232,0) 3,07 100,0
Опыт 3 (порог 0,3) Концентрат 16,2 (41,0) 13,3 97,3
Хвосты 83,8 (212,0) 0,07 2,7
Исходный 100 (253,0) 2,21 100,0
Объединенные показатели
Опыты (1+3) (порог 0,3) Концентрат 19,0 (137,0) 11,5 96,9
Хвосты 81,0 (585,0) 0,093 3,1
Исходный 100,0 (722,0) 2,26 100,0
Опыт 4 (порог 0,26) Концентрат 24,7 (65,0) 4,1 96,4
Хвосты 75,3 (198,0) 0,043 3,6
Исходный 100,0 (263,0) 1,05 100,0
Опыт 5 (порог 0,26) Концентрат 38,2 (89,0) 8,9 98,8
Хвосты 61,8 (144,0) 0,064 1,2
Исходный 100,0 (233) 3,44 100,0
Опыт 6(порог 0,26) Концентрат 20,6 (52,0) 8,9 96,5
Хвосты 79,4 (200,0) 0,085 3,5
Исходный 100,0 (252,0) 1,90 100,0
Объединенные показатели
Опыты 4+6 (порог 0,26) Концентрат 27,8 (206,0) 7,4 97,6
Хвосты 72,2 (542,0) 0,064 2,4
Исходный 100,0 (748,0) 2,08 2,4

Из приведенных результатов следуют:

- чем больше исходное содержание сурьмы в исходном материале, тем богаче по содержанию сурьмы и концентрат;

- чем выше порог РРС, тем выше качество концентрата;

- из руды с исходным содержанием Sb 1,5-3,44% уверенно выделяются концентраты (в зависимости от порога) с содержанием Sb от 8,9% до 13,3%, в среднем составляя: 8,9% (с порогом 0,26) и 11 (с порогом 0,30);

- при содержании в пробе Sb~1,0% получен концентрат с 4,1% Sb при выходе 25%.

Разработанная методика и технология РРС является высокоэффективной, гарантирующей получение заданных концентратов (8-10% Sb) из исходной руды (содержащей около 1,5-2,0% Sb), при этом почти вся сурьма (94,5-98,8%) извлекается в концентрат с минимальными потерями Sb в хвостах сепарации (содержание Sb в хвостах РРС составило всего 0,043-0,12%).

Обогащение класса (отсева) -20+2 мм руды в тяжелой среде осуществляли при плотности ферросилиция 2800 кг/м3, что позволило выделить сурьмяный концентрат (тяжелая фракция) с выходом 2,97% с содержанием 27,6% Sb и извлечением 63,7% Sb. Выход хвостов (легкая фракция) составил 97,3% с содержанием 0,48% Sb и извлечением 27,08% Sb из продукта с содержанием 1,3% Sb (таблица 2).

Таблица 2
Показатели тяжелосредной сепарации (ТСС) класса -20+2 мм исходной руды (отсев) при плотности суспензии 2,8 г/см3
Наименование продуктов Выход, % Содержание сурьмы, % Извлечение, %
от класса от продукта от исх. руды от класса От продукта от исх. руды
Концентрат 2,97 2,34 0,59 27,6 63,7 47,3 8,6
Хвосты 97,03 76,36 19,32 0,48 36,3 27,0 4,9
Класс -20+2 мм 100,0 78,70 19,91 1,3 100,0 74,3 13,5
Класс -2 мм 21,30 5,39 1,65 25,7 4,7
Отсев (минус 20 мм) 100,0 25,3 1,37 100,0 18,2

Тяжелосредная сепарация обогащенного материала также осуществлялась в среде ферросилиция и магнетита при отношении FeC:Fе3O4=1:1 для получения плотности среды 2,8-3,0 г/см3. Технологические показатели аналогичны данным табл.3.

В таблице 3 показано, что при плотности среды 3,0 г/см3 получен концентрат с содержанием сурьмы 32,52% при выходе 14,63% и извлечении сурьмы 62,6% по операции. В хвостах содержание сурьмы составило 3,32%.

Таблица 3
Показатели тяжелосредного обогащения классов минус 40+2 мм концентрата РРС при плотности среды 3,0 г/см3
Наименование продуктов Выход, % Содержание сурьмы, % Извлечение, %
от класса от продукта от исх. руды от класса от продукта от исх. руды
Концентрат 14,63 13,62 2,2 32,52 62,6 55,8 41,1
Хвосты 85,37 79,48 13,0 3,32 37,4 33,3 24,6
Класс -40+2 мм 100,0 93,1 15,2 7,59 100,0 89,1 65,7
Класс -2 мм 6,3 1,1 12,5 10,9 8,0
Концентрат РРС 100,0 16,3 7,93 100,0 73,7

Флотация была применена только для хвостов тяжелосредной сепарации и класса минус 2 мм (отсева).

Поставлены сравнительные опыты по активации антимонита с использованием азотнокислого свинца при расходе 0,5 кг/т и смеси медного с цинковым купоросом при их соотношении 1:1 и расходе по 0,25 кг/т каждого. Результаты сравнительных опытов представлены в табл.4

Как видно из сравнительных данных, при использовании медного и цинкового купороса, возможно получать высококачественный сурьмяный концентрат (Sb 65,42%) по сравнению с ксантогенатом (Sb 51,0%). Отмечается практически одинаковое содержание сурьмы в хвостах контрольной флотации 1,09% Sb, по сравнению с использованием азотнокислого свинца (1,02% Sb).

Исследовали также диметилдитиокарбамат натрия (ДМДТКNa) при использовании его 2% раствора в смеси с ксантогенатом при соотношении 1:1 при разных расходах. Результаты поставленных опытов приведены в табл.5.

Из данных табл.5 видно, что при использовании смеси ДМДТКNа и ксантогената получен высокий по качеству флотационный концентрат при извлечении 66,3-66,8%. Следует отметить, что замена азотнокислого свинца на смесь цинкового и медного купороса позволяет получить практически одинаковые технологические показатели.

С целью повышения извлечения антимонита проведены исследования по применению реагента группы диалкилдитиофосфатов - дибутилдитиофосфата натрия (аэрофлот - флотореагент БТФ).

Проверены разные режимы флотации с применением флотореагента БТФ:

- без использования активации антимонита;

- при активации азотнокислым свинцом;

- с медным и цинковым купоросом.

Результаты представлены в табл.6.

Из данных табл.6 видно, что использование флотореагента БТФ способствует повышению собирательных свойств ксантогената по отношению не только к сурьме, но и к сопутствующим сульфидам (пирит, арсенопирит и др.), о чем свидетельствует снижение качества концентрата (30,97-33,38%) при извлечении 66,7-67,9%, несмотря на активацию азотнокислым свинцом и повышение расхода реагентов. При этом отмечается снижение потерь до 14,1% за счет снижения содержания сурьмы в хвостах до 0,79%.

При замене активатора азотнокислого свинца на медный и цинковый купорос повышается качество пенного продукта основной флотации до 43,48%.

Потери сурьмы с хвостами увеличились до 23,6% за счет повышенного содержания сурьмы 1,25%.

Повышенные потери сурьмы с отвальными хвостами объясняются наличием в них окисленных форм сурьмы и тонких зерен антимонита.

Установлено, что эффективными собирателями для флотации окислов сурьмы являются катионные реагенты, поэтому в лаборатории проверена подача в контрольную флотацию катионного собирателя группы аминов - флотореагента «Берамин» производства ОАО «Бератон», представляющего собой прозрачную жидкость желтого цвета, хорошо растворимую в воде. Результаты представлены в табл.7.

Как видно из результатов, при довольно высоком качестве концентрата 55,52% по содержанию сурьмы извлечение составило 68,6%. Потери с хвостами снизились незначительно в отличие от проверенного режима при использовании бутилового аэрофлота (БТФ).

Проведены поисковые исследования по замене вспенивателя.

В лаборатории проведена проверка по замене широко используемого ранее для флотации сульфидных руд вспенивателя Оксаль Т-80 ввиду отсутствия отечественных производителей данного реагента.

Поставлены сравнительные опыты по использованию соснового масла и индустриального масла ИС-40 в качестве вспенивателей при флотации бутиловым ксантогенатом.

Из сравнительных данных видно, что при замене вспенивателя Оксаль Т-80 на сосновое масло получены практически равнозначные показатели, но при прочих равных условиях отмечается увеличение времени флотации всех операций в среднем на 2-3 минуты. Следует отметить получение равнозначных показателей с двумя перечистками на сосновом масле при замене активатора азотнокислого свинца на медный и цинковый купорос.

Проверка использования индустриального масла марки ИС-40, которое подавалось в процесс при температуре 35-40°С, показала принципиальную возможность его применения и уже на первой перечистной операции получать качественный показатель 51,8% по содержанию сурьмы при извлечении 66,9%. По времени флотации процесс протекал быстрее, чем при подаче Т-80, на 2-3 минуты.

Известна линия обогащения сурьмяных руд, в которой по ходу технологического процесса установлены связанные между собой транспортными средствами модуль рудоподготовки и модуль флотационного обогащения [1-3]. Недостатком этой линии является то, что она не позволяет получать качественный флотоконцентрат, удовлетворяющий допустимым техническим условиям по содержанию мышьяка.

Наиболее близкой к предлагаемой является линия обогащения золото-сурьмяных руд, включающая установленные по ходу технологического процесса и связанные между собой транспортными средствами модуль рудоподготовки, модуль гравитационного и флотационного обогащения. Недостатком известной линии является, то, что она сложна в аппаратурном оформлении, создает циркуляционные потоки.

Техническим результатом является увеличение эффективности извлечения сурьмы, повышение качества получаемого концентрата и экологической безопасности за счет выделения на первой стадии переработки руды отвальных хвостов.

Сущность изобретения заключается в том, что выявленный технический результат достигается совокупностью признаков, характеризующих линию для обогащения сурьмяных руд, включающую установленные по ходу технологического процесса и связанные между собой транспортными средствами модуль рудоподготовки, модуль грохочения и флотационного обогащения, отличающуюся тем, что линия дополнительно содержит модуль приемки и модуль рентгенорадиометрической сепарации, модуль гравитационного обогащения с аппаратами для тяжелосредной сепарации, выполненными в виде наклонного гидроциклона и барабанных сепараторов.

На чертеже показана качественно-количественная схема обогащения сурьмяных руд.

Линия для обогащения сурьмяных руд состоит из модулей: рудоподготовки, модуль приемки и модуль рентгенорадиометрической сепарации, модуль гравитационного обогащения с аппаратами для тяжелосредной сепарации, выполненными в виде наклонного гидроциклона и барабанных сепараторов, установленных по ходу технологического процесса и связанных между собой транспортными средствами.

Модуль рудоподготовки предназначен для дробления руды по классу минус 150 мм и подготовки руды к гравитационному и флотационному обогащению.

Модуль приемки и модуль рентгенорадиометрической сепарации осуществляют грохочение продуктов по заданным классам крупности, предназначен для грохочения руды по классам: -150+20 мм, -20+2 мм, -2 мм и для выделения обогащенного продукта и получения отвальных хвостов из материала крупностью -150+20 мм.

Модуль гравитационного обогащения для тяжелосредной сепарации с аппаратами, выполненными в виде наклонного гидроциклона и барабанных сепараторов для тяжелосредной сепарации (ТСС) обогащенного материала РРС и отсева, крупностью -20+2 мм.

Модуль флотационный предназначен для подготовки материала к флотации, который состоит из:

- классификации «хвостов» тяжелосредной сепарации обогащенного материала и класса -20+2 мм, а также отсева исходной руды -2 мм (крупность слива 70% класса -0,074%);

- I стадии измельчения песков классификации;

- сгущения слива классификации в гидроциклонах;

- обезвоживания слива гидроциклонов по удалению избытка жидкой фазы и пустой породы в отвальные хвосты.

Модуль доводки флотационного концентрата дополнительно снабжен устройством для сушки материала, предусматривает:

- обработку в контактном чане сгущенного продукта пластинчатого сгустителя активатором антимонита;

- основную флотацию по выделению в пенный продукт чернового концентрата;

- три перечистных операции пенного продукта основной флотации, работающих с возвратом камерного продукта в предыдущую операцию.

Модуль обезвоживания и сушки готовой продукции включает сгущение флотационного концентрата; фильтрацию и сушку флотационного и гравитационного сурьмяных концентратов; упаковку и комплектование партий готовой продукции.

Линия для переработки сурьмяных руд работает следующим образом. Руда из бункера подается в модуль рудоподготовки для дробления руды в дробилке до крупности -150 мм.

Дробленый материал поступает в модуль приемки и модуль рентгенорадиометрической сепарации. На грохоте материал классифицируется на три класса крупности руды: класс -150+20 мм, -20+2 мм и -2 мм. Материал крупностью -150+20 мм поступает в модуль рентгенорадиометрической сепарации (РРС). После РРС на сепараторах выделяется обогащенный продукт с содержанием сурьмы в пределах 8-12% и отвальные хвосты с выходом в пределах 56-60%, содержанием сурьмы от 0,12 до 0,3% и извлечением 8-10% сурьмы.

Обогащенный продукт РРС и класс -20+2 мм направляются в модуль гравитационного обогащения для тяжелосредной сепарации (ТСС) в аппаратах, выполненных в виде наклонного гидроциклона и барабанных сепараторов для тяжелосредной сепарации обогащенного материала и отсева, крупность -20+2 мм.

После ТСС тяжелая фракция в виде готового сурьмяного концентрата с содержанием сурьмы больше 30% Sb после сушки направляется потребителю.

Легкая фракция ТСС и материал -2 мм направляются в модуль флотационный для подготовки материала к флотации. Материал классифицируется, пески классификации направляются на I стадию измельчения, слив мельницы поступает на классификацию в гидроциклоны. Слив гидроциклонов содержит материал, крупностью 70% класса -0,074 мм, который направляется на обезвоживание для удаления избытка жидкой фазы и пустой породы в отвальные хвосты. Сгущенный продукт слива гидроциклонов направляется в модуль доводки флотационного концентрата, который дополнительно снабжен устройством для сушки материала.

Слив обрабатывается в контактном чане с реагентами: активатором и собирателем антимонита и затем подается на основную флотацию по выделению в пенный продукт чернового концентрата; последний поступает на три перечистных операции, работающих с возвратом камерного продукта в предыдущую операцию.

В этом модуле осуществляется контрольная флотация камерного продукта основной флотации и перечистка пенного концентрата контрольной флотации для дополнительного извлечения минералов сурьмы.

Предложенная компоновка аппаратов в поточной линии переработки сурьмяных руд позволяет дополнительно повысить эффективность извлечения сурьмы, а также повысить качество получаемого сурьмяного концентра для металлургического передела и экологическую безопасность за счет сокращения технологического процесса и вывода значительного количества пустой породы.

Источники информации

1. Zhan Tian-cong. The metallurgy of antimony/ Central South University of Technology. Press Changsha the Peoples Republic. 1988. P.731.

2. Соложенкин П.М., Зинченко З.А. Флотация сурьмяных руд. М.: Наука. 1985. 211 С.

3. Соложенкин П.М. Проблемы экологии и новые тенденции рационального использования золото-сурьмяных руд и концентратов. Научные и технические аспекты охраны окружающей среды. Обзорная информация. ВИНИТИ. Москва, 2006, выпуск №2. - 122 С.

1. Способ обогащения сурьмяных руд, включающий рудоподготовку с грохочением и флотацию, отличающийся тем, что при грохочении материал классифицируется на классы -150+20 мм, -20+2 мм и -2 мм, после грохочения осуществляют рентгенорадиометрическую сепарацию руды класса -150+20 мм с последующей тяжелосредной сепарацией обогащенного материала отсева крупностью -20+2 мм, перед флотацией проводят предварительную активацию смесью катионов цинка и меди, а флотацию легкой фракции тяжелосредной сепарации и фракции крупностью -2 мм ведут смесью ксантогената калия и дитиофосфата натрия или смесью ксантогената калия и диметилдитиокарбамата натрия, и использованием индустриального масла ИС-40 и флотореагента «Берамин».

2. Способ по п.1, отличающийся тем, что легкую фракцию тяжелосредной сепарации и класс -2 мм подвергают процессу флотации при активации минералов сурьмы смесью сульфата цинка и сульфата меди при их отношении 1:2.

3. Способ по п.1, отличающийся тем, что флотацию минералов сурьмы осуществляют смесью ксантогената калия и дитиофосфата натрия при их соотношении 1:1.

4. Способ по п.1, отличающийся тем, что флотацию минералов сурьмы осуществляют смесью ксантогената калия и диметилдитиокарбамата натрия при их соотношении 1:1-2.

5. Способ по п.1, отличающийся тем, что при флотации используют сосновое масло и индустриальное масло ИС-40 в качестве вспенивателей при флотации бутиловым ксантогенатом.

6. Способ по п.1, отличающийся тем, что тяжелосредную сепарацию обогащенного материала осуществляют в среде ферросилиция при плотности 2800 кг/м3.

7. Способ по п.1, отличающийся тем, что тяжелосредную сепарацию обогащенного материала осуществляют в среде ферросилиция и магнетита при отношении FeC:Fe2O4=1:1.

8. Линия для обогащения сурьмяных руд, состоящая из последовательно установленных модуля рудоподготовки, модуля грохочения и флотационного обогащения, отличающаяся тем, что она дополнительно содержит модуль приемки и модуль рентгенорадиометрической сепарации, модуль гравитационного обогащения с аппаратами для тяжелосредной сепарации, выполненными в виде наклонного гидроциклона и барабанных сепараторов.

9. Линия по п.8, отличающаяся тем, что рентгенорадиометрическую сепарацию руды осуществляют при пороге сепарации в пределах 0,26 и 0,3, крупностью -150+20 мм, производительностью 30 т/ч.