Управление со следящей обратной связью на основе выделенного сканирующего следящего луча в системах отображения со сканирующими лучами и светоизлучающими экранами

Иллюстрации

Показать все

Изобретение относится к системам формирования изображения. Техническим результатом является управление пространственным согласованием пространственных положений оптических импульсов в луче возбуждения на экране. Результат достигается тем, что разворачивают один следящий луч и луч возбуждения по экрану, излучающему видимый свет при возбуждении его светом луча возбуждения, и обеспечивают управление оптическим согласованием луча возбуждения на основе положения следящего луча на экране посредством управления с обратной связью. 3 н. и 12 з.п. ф-лы, 38 ил.

Реферат

Притязание на приоритет и родственная патентная заявка

По данной заявке испрашивается приоритет и преимущества патентной заявки США №11/769580 «Servo Feedback Control Based on Invisible Scanning Servo Beam in Scanning Beam Display Systems with Light-Emitting Screens», поданной 27 июня 2007 года. Содержание патентной заявки США №11/769580 включено сюда в качестве ссылки как часть описания данной заявки PCT.

Область техники, к которой относится изобретение

Данная патентная заявка относится к системам отображения со сканирующими лучами.

Уровень техники

В системе отображения (система формирования изображения) со сканирующими лучами оптический луч может разворачиваться по экрану, формируя на нем изображения. Во многих системах формирования изображения, таких как лазерные системы отображения, используют полигональный сканер с множеством отражающих граней для обеспечения горизонтального сканирования и вертикальное сканирующее зеркало, такое как зеркало с гальванометрическим приводом, для обеспечения вертикального сканирования. В процессе функционирования одна грань полигонального сканера сканирует одну горизонтальную строку при вращении полигонального сканера для изменения ориентации и положения грани, а следующая грань сканирует следующую горизонтальную строку. Горизонтальное сканирование и вертикальное сканирование синхронизированы друг с другом для проецирования изображений на экран.

Сущность изобретения

В данной патентной заявке среди прочего описываются варианты реализации систем и устройств отображения на основе сканирования лучем света по светоизлучающему экрану при оптическом возбуждении. В описанных системах отображения используют светоизлучающие экраны с оптическим возбуждением и по меньшей мере один оптический луч возбуждения для возбуждения одного или нескольких светоизлучающих материалов на экране, которые излучают свет, формируя изображения. Для таких систем отображения описаны механизмы следящего управления (сервомеханизмы), которые основаны на использовании выделенного следящего луча, разворачивающегося по экрану тем же сканирующим модулем, который разворачивает или сканирует оптический луч возбуждения, несущий изображение. Этот выделенный следящий луч используют для обеспечения управления со следящей обратной связью сканирующим лучом возбуждения для обеспечения необходимого оптического согласования и точной подачи оптических импульсов в луче возбуждения во время нормального режима отображения. В некоторых вариантах реализации для одновременной развертки по экрану множества лазерных лучей возбуждения возможно использование множества лазеров. Например, множество лазерных лучей могут единовременно облучать один экранный сегмент и последовательно сканировать множество экранных сегментов для отработки всего экрана.

В одном варианте реализации система отображения со сканирующими лучами включает в себя световой модуль для направления и развертки по меньшей мере одного луча возбуждения, имеющего оптические импульсы, несущие визуальную информацию, и по меньшей один следящий луч, длина волны которого отлична от длины волны луча возбуждения; экран, позиционированный для приема сканирующего луча возбуждения и следящего луча, и содержащий светоизлучающий слой из параллельных светоизлучающих полос, которые поглощают свет луча возбуждения для излучения видимого света для создания изображений, которые несет сканирующий луч возбуждения, причем экран сконфигурирован для отражения света следящего луча в направлении светового модуля для создания светового сигнала следящей обратной связи; и модуль оптического следящего датчика, позиционированный для приема светового сигнала следящей обратной связи и создания сигнала следящей обратной связи, указывающего позиционирование следящего луча на экране. Световой модуль реагирует на позиционирование следящего луча на экране, используя сигнал следящей обратной связи для настройки синхронизации оптических импульсов, переносимых сканирующим лучом возбуждения, с целью управления пространственным согласованием пространственных положений оптических импульсов в луче возбуждения на экране.

Например, экран в вышеописанной системе может включать в себя метки следящей обратной связи, которые имеют грани, обращенные к световому источнику возбуждения, которые зеркально отражают свет следящего луча, а также области вне меток следящей обратной связи, которые диффузно отражают свет следящего луча. В данном примере система включает в себя линзу Френеля, расположенную между экраном и световым модулем, для направления сканирующего следящего луча и луча возбуждения таким образом, чтобы они были фактически перпендикулярны экрану. Линза Френеля имеет оптическую ось симметрично по центру линзы Френеля, которая параллельна оптической оси светового модуля и смещена относительно нее, чтобы направлять свет следящего луча, который зеркально отражается меткой следящей обратной связи, на оптический следящий датчик, когда свет следящего луча, который диффузно отражается экраном вне метки следящей обратной связи, распространяется линзой Френеля по площади, превышающей оптический следящий датчик, для направления части диффузно отраженного света следящего луча на оптический следящий датчик.

В другом варианте реализации способ управления системой отображения со сканирующими лучами включает в себя: развертку одного или более лучей возбуждения, модулированных оптическими импульсами для переноса изображений на экран, для возбуждения параллельных светоизлучающих полос, излучающих видимый свет, который формирует изображение; развертку по экрану следящего луча на оптической длине волны, отличной от оптической длины волны одного или более лучей возбуждения; обнаружение света следящего луча от экрана для получения следящего сигнала (сервосигнала), указывающего позиционирование следящего луча на экране; и, в соответствии с позиционированием следящего луча на экране, управление одним или более сканирующими лучами возбуждения для управления пространственным согласованием пространственных положений оптических импульсов в каждом луче возбуждения на экране.

В другом варианте реализации система отображения со сканирующими лучами включает в себя источник света возбуждения для формирования по меньшей мере одного луча возбуждения, имеющего оптические импульсы, несущие визуальную информацию; источник следящего света для создания по меньшей мере одного следящего луча на длине волны следящего луча, являющейся невидимой; модуль развертки луча для приема луча возбуждения и следящего луча и развертки луча возбуждения и следящего луча; и светоизлучающий экран, позиционированный для приема сканирующего луча возбуждения и следящего луча. Экран включает в себя светоизлучающую область, которая содержит: (1) параллельные светоизлучающие полосы, которые поглощают свет луча возбуждения для излучения видимого света, создавая изображения, которые несет сканирующий луч возбуждения; и (2) разделители полос, параллельные светоизлучающим полосам, которые пространственно перемежаются с ними, причем каждый разделитель полос расположен между двумя соседними полосами. Каждый разделитель полос является оптически отражающим. Оптический следящий датчик позиционирован для приема света следящего луча, разворачивающегося по экрану, включая свет, отраженный разделителями полос, и создания контрольного сигнала, указывающего позиционирование следящего луча на экране. Данная система включает в себя блок управления, способный, в соответствии с позиционированием следящего луча на экране, осуществить настройку синхронизации оптических импульсов, которые несет сканирующий луч возбуждения, в ответ на контрольный сигнал на основе взаимосвязи между следящим лучом и лучом возбуждения, для управления пространственным согласованием пространственных положений оптических импульсов в луче возбуждения на экране.

Согласно еще одному варианту реализации система отображения со сканирующими лучами включает в себя светоизлучающий экран, содержащий светоизлучающую область, которая содержит: (1) параллельные светоизлучающие полосы, которые поглощают свет возбуждения для излучения видимого света, и (2) оптически отражающие разделители полос, параллельные светоизлучающим полосам и пространственно перемежающиеся с ними, причем каждый разделитель полос расположен между двумя соседними полосами. Предусмотрены лазеры возбуждения для создания лазерных лучей возбуждения и по меньшей мере один источник следящего света, зафиксированный в положении относительно лазеров возбуждения для создания по меньшей мере одного следящего луча на длине волны следящего луча, являющейся невидимой. Система также включает в себя модуль развертки луча для приема лазерных лучей возбуждения и следящего луча и развертки лазерных лучей возбуждения и следящего луча; по меньшей мере один первый оптический следящий датчик (серводатчик), расположенный для приема света лазерного луча возбуждения, отраженного от экрана, для создания первого контрольного сигнала, указывающего позиционирование следящего луча на экране; по меньшей мере один второй оптический следящий датчик(серводатчик), расположенный для приема света лазерного луча возбуждения, отраженного от экрана, для создания второго контрольного сигнала, указывающего позиционирование каждого лазерного луча возбуждения на экране; блок управления, способный в соответствии с первым и вторым контрольными сигналами осуществить настройку синхронизации оптических импульсов, которые несет каждый лазерный луч возбуждения, на основе взаимосвязи между следящим лучом и каждым лазерным лучом возбуждения, для управления пространственным согласованием пространственных положений оптических импульсов в луче возбуждения на экране.

Согласно следующему варианту изобретения способ управления системой отображе6ния со сканирующими лучами включает в себя развертку по меньшей мере одного луча возбуждения, модулированного оптическими импульсами, на экране с параллельными светоизлучающими полосами, где направление развертки луча перпендикулярно светоизлучающим полосам, для возбуждения флуоресцентных полос для излучения ими видимого света, который формирует изображения. Экран содержит разделители полос, параллельные светоизлучающим полосам и пространственно перемежающиеся с ними, причем каждый разделитель полос находится между двумя соседними полосами и каждый разделитель полос является оптически отражающим. Данный способ также включает в себя развертку следящего луча, являющегося невидимым, вместе с лучом возбуждения на экране; обнаружение света сканирующего следящего луча от экрана, включая свет, созданный разделителями полос, для получения контрольного сигнала, указывающего позиционирование следящего луча на экране; и, в соответствии с позиционированием следящего луча на экране, настройку синхронизации оптических импульсов, которые несет сканирующий луч возбуждения, на основе взаимосвязи между следящим лучом и лучом возбуждения для управления пространственным согласованием пространственных положений оптических импульсов в луче возбуждения на экране.

Эти и другие примеры и варианты реализации детально описаны в подробном описании, на чертежах и в формуле изобретения.

Краткое описание чертежей

Фиг.1 - пример системы отображения с лазерным сканированием, имеющей светоизлучающий экран, выполненный из светоизлучающих материалов, возбуждаемых лазером (например, люминофоры), излучающие свет разных цветов при возбуждении сканирующим лазерным лучом, который несет информацию изображения, подлежащую отображению;

Фиг.2А-2В - одна из примерных экранных структур с параллельными светоизлучающими полосами и структура цветных пикселей на экране по Фиг.1;

Фиг.3 - примерная реализация лазерной системы отображения по Фиг.1, с множеством лазеров, направляющих множество лазерных лучей на экран, где конфигурация сканирования предусматривает выполнение развертки лучей до их прохождения через линзу.

Фиг.4 - примерная реализация системы отображения на основе лазерной системы отображения по Фиг.1, где конфигурация сканирования предусматривает выполнение развертки после прохождения лучей через линзу.

На Фиг.5 показан пример одновременного сканирования последовательных строк развертки множеством лазерных лучей возбуждения и невидимым следящим лучом;

Фиг.5А - карта положений луча на экране, созданная лазерной матрицей из тридцати шести лазеров возбуждения и одним инфракрасным следящим лазером, когда вертикальный гальванический сканер и горизонтальный полигональный сканер находятся в соответствующих нулевых положениях;

Фиг.6 - пример системы отображения со сканированием, где используется управление со следящей обратной связью на основе сканирующего следящего луча;

Фиг.7 - пример следящего детектора для обнаружения светового сигнала следящей обратной связи по Фиг.6;

Фиг.8 и 9 - два примера экрана для следящего управления на основе сканирующего следящего луча;

Фиг.10 - оптическая мощность следящего луча, имеющего оптические сигналы, соответствующие разделителям полос на экране;

Фиг.11 - пример экрана, имеющего периферийные зоны опорных меток, которые включают в себя следящие опорные метки, создающие световой сигнал обратной связи для реализации различных функций следящего управления;

Фиг.12 - опорная метка начала строки в периферийной зоне опорных меток для обеспечения точки отсчета начала активной флуоресцентной области на экране;

Фиг.13 и 14 - оптическая мощность следящего светового сигнала, имеющего оптические сигналы, соответствующие разделителям полос, опорной метки начала строки и опорной метки конца строки на экране;

Фиг.15, 16 и 17 - примеры использования тактовых сигналов дискретизации для измерения положения разделителей полос на экране с использованием светового сигнала следящей обратной связи от луча возбуждения или следящего луча;

Фиг.18А - пример опорной метки вертикального положения луча для экрана по Фиг.11;

Фиг.18В и 18С - схема управления со следящей обратной связью и ее функционирование при использовании опорной метки вертикального положения луча на Фиг.18А для управления вертикальным положением луча на экране;

Фиг.19 - пример экрана по Фиг.11 с опорной меткой начала строки и опорными метками вертикального положения луча;

Фиг.20 - процесс следящего управления на основе следящего луча, который разворачивается вместе с лучом возбуждения;

Фиг.21, 22 и 23 - примеры конструкций экранов, имеющих ИК-метки следящей обратной связи, которые не влияют на величину пропускания лучей возбуждения, обладая способностью диффузного или зеркального отражения по меньшей мере следящих лучей;

Фиг.24 - пример конструкции экрана, имеющей предусмотренные на экране зеркально отражающие инфракрасные метки для обратной связи и диффузно отражающие области вне инфракрасных меток для обратной связи;

Фиг.25 - пример системы на основе конструкции по Фиг.24;

Фиг.26 - пример системы, в которой объединены инфракрасная следящая обратная связь и следящая обратная связь в видимом свете;

Фиг.27, 28, 29 и 30 - иллюстрация аспектов системы по Фиг.26;

Фиг.31 - реализация системы по Фиг.26.

Подробное описание изобретения

В примерах систем отображения со сканирующими лучами, предложенных в этой заявке, используются экраны со светоизлучающими материалами или флуоресцентными материалами для излучения света при оптическом возбуждении для создания изображений, в том числе лазерные системы видеоотображения. Можно использовать различные примеры конструкций экрана со светоизлучающими или флуоресцентными материалами. Например, в одном варианте реализации на экране могут формироваться три люминофора разных цветов, которые можно оптически возбуждать лазерным лучом для создания света соответственно красного, зеленого и синего цветов, подходящих для формирования цветных изображений, в виде пиксельных точек или чередующихся красных, зленных и синих люминофорных параллельных полос.

Люминофорные материалы являются флуоресцентными материалами одного типа. Различные описанные системы, устройства и функции в примерах, где в качестве флуоресцентных материалов используют люминофоры, применимы для дисплеев с экранами, выполненными из других оптически возбуждаемых светоизлучающих флуоресцентных материалов, не относящихся к люминофорам. Например, материалы на основе квантовых точек при соответствующем оптическом возбуждении излучают свет, и поэтому их можно использовать в качестве флуоресцентных материалов для систем в устройств в данной заявке. В частности, в качестве материалов на основе квантовых точек для излучения света могут быть изготовлены полупроводниковые структуры, например, среди прочих, CdSe и PbS, в виде частиц с диаметром порядка радиуса возбуждения Бора. Для получения света разных цветов можно использовать различные материалы на основе квантовых точек с различными структурами запрещенных энергетических зон для излучения разных цветов при одинаковом световом потоке возбуждения. Некоторые квантовые точки имеют размеры от 2 до 10 нанометров и включают в себя десятки атомов, например, от 10 до 50 атомов. Квантовые точки могут быть диспергированы и перемешаны в различных материалах для формирования жидких растворов, порошков, желеобразных матричных материалов и твердых тел (например, твердые растворы). Пленки на основе квантовых точек или пленочные полосы можно сформировать на подложке в качестве экрана для системы или устройства в данной заявке. Например, в одном варианте реализации можно предусмотреть три разных материала на основе квантовых точек, которые можно приспособить для оптического возбуждения сканирующим лазерным лучом как оптическим насосом для создания красного, зеленого и синего света, подходящего для формирования цветных изображений. Указанные квантовые точки можно сформировать на экране в виде пиксельных точек, расположенных на параллельных строках (например, повторяющиеся последовательно строка красных пиксельных точек, строка зеленых пиксельных точек и строка синих пиксельных точек).

В описанных здесь примерах систем отображения со сканирующими лучами для возбуждения цветовых светоизлучающих материалов, напыленных на экран, для создания цветных изображений используют по меньшей мере один сканирующий лазерный луч. Сканирующий лазерный луч модулируют для переноса изображений в красном, зеленом и синем цветах или в других видимых цветах и обеспечивают управление таким образом, чтобы лазерный луч возбуждал светоизлучающие материалы красного, зеленого и синего с изображениями в красном, зеленом и синем цветах соответственно. Таким образом, сканирующий лазерный луч несет изображения, но сам непосредственно не создает видимый свет, воспринимаемей зрителем. Вместо этого светоизлучающие флуоресцентные материалы на экране поглощают энергию сканирующего лазерного луча и излучают видимый свет в красном, зеленом и синем или других цветах для создания реальных цветных изображений, видимых зрителю.

Лазерное возбуждение флуоресцентных материалов с использованием одного или нескольких лазерных лучей с энергией, достаточной для того, чтобы вызвать излучение света или люминесценцию флуоресцентных материалов, является одним из различных видов оптического возбуждения. В других вариантах реализации оптическое возбуждение можно создать не лазерным источником света, энергии которого достаточно для возбуждения флуоресцентных материалов, использованных в экране. Примеры не лазерных источников возбуждающего света включают в себя различные светоизлучающие диоды (LED), лампы и другие источники света, которые создают свет на длине волны или в спектральной полосе, для возбуждения флуоресцентного материала, который преобразует свет высокой энергии в свет низкой энергии в видимом диапазоне. Оптический луч возбуждения, который возбуждает флуоресцентный материал на экране, может иметь частоту или спектральную область с более высокими частотами, чем частота видимого света, излучаемого флуоресцентным материалом. Соответственно, оптический луч возбуждения может находиться в фиолетовом спектральном диапазоне и ультрафиолетовом (UV) спектральном диапазоне, например, с длиной волны менее 420 нм. В описанных ниже примерах фиолетовый или ультрафиолетовый лазерный луч используется как пример возбуждающего света для люминофорного материала или другого флуоресцентного материала, причем это может быть свет с другой длиной волны.

На Фиг.1 показан пример системы отображения на основе лазера, где используется экран с цветными люминофорными полосами. В альтернативном варианте для задания на экране пикселей изображения можно также использовать светоизлучающие области, разбитые на цветные пиксели. Система включает в себя лазерный модуль 110 для создания и проецирования на экран 101 по меньшей мере одного сканирующего лазерного луча 120. Экран 101 имеет параллельные цветные люминофорные полосы в вертикальном направлении, причем две соседние люминофорные полосы выполнены из разных люминофорных материалов, излучающих свет в разном цвете. В представленном примере красный люминофор поглощает лазерный свет для излучения красного света, зеленый люминофор поглощает лазерный свет для излучения зеленого света, а синий люминофор поглощает лазерный свет для излечения синего света. Три соседних цветных люминофорных полосы имеют три разных цвета. На Фиг.1 показана пространственная цветовая последовательность полос в виде «красный, зеленый и синий». Также можно использовать другие цветовые последовательности. Лазерный луч 120 имеет длину волны в полосе оптического поглощения цветных люминофоров, причем обычно это длина волны короче, чем длины волн видимого синего, зеленого и красного цветов для цветных изображений. Например, цветные люминофоры могут поглощать ультрафиолетовый свет в спектральном диапазоне ниже 410 нм для создания желаемого красного, зеленого и синего цвета. Лазерный модуль 110 может включать в себя один или несколько лазеров, таких как ультрафиолетовые диодные лазеры для создания луча 120, механизм сканирования лучом для развертки луча 120 по горизонтали и вертикали для единовременного воспроизведения одного кадра изображения на экране 101, и механизм модуляции сигнала для модуляции луча 120 для переноса информации для каналов изображения красного, зеленого и синего цветов. Указанные системы отображения можно сконфигурировать в виде систем с задним сканированием, где зритель и лазерный модуль 110 находятся с противоположных сторон экрана 101. В альтернативном варианте указанные системы отображения могут быть сконфигурированы в виде систем с передним сканированием, где зритель и лазерный модуль 110 находятся по одну сторону экрана 101.

Примеры вариантов реализации различных функций, модулей и компонент в системе отображения со сканирующим лазером по Фиг.1 описаны в патентной заявке США №10/578038 "Display Systems and Devices Having Screens With Optical Fluorescent Materials", поданной 2 мая 2006 года (патентная заявка США No.______), патентной заявке PCT № PCT/US2007/004004 "Servo-Assisted Scanning Beam Display Systems Using Fluorescent Screens", поданной 15 февраля, 2007 года (патентная публикация № WO 2007/095329), патентной заявке PCT № PCT/US2007/068286 "Phosphor Compositions For Scanning Beam Displays", поданной 4 мая 2007 года (PCT публикация № WO 2007/131195), патентной заявке PCT № PCT/US2007/68989 "Multilayered Fluorescent Screens for Scanning Beam Display Systems", поданной 15 мая 2007 года (PCT публикация № WO 2007/134329), и патентной заявке PCT № PCT/US2006/041584 "Optical Designs for Scanning Beam Display Systems Using Fluorescent Screens", поданной 25 октября 2006 года (PCT публикация № WO 2007/050662). Содержание патентных заявок, на которые здесь сделаны ссылки, целиком включено сюда в качестве ссылки как часть описания этой заявки.

На Фиг.2А показана примерная конструкция экрана 101 по Фиг.1. Экран 101 может включать в себя заднюю подложку 201, являющуюся прозрачной для сканирующего лазерного луча 120 и обращенную к лазерному модулю 110 для приема сканирующего лазерного луча 120. В конфигурации с задним сканированием вторая, передняя подложка 202 зафиксирована относительно задней подложки 201 и обращена к зрителю. Между подложками 201 и 202 расположен слой 203 цветных люминофорных полос, включающий в себя люминофорные полосы. Цветные люминофорные полосы для излучения красного, зеленого и синего цветов представлены символами «R», «G» и «B» соответственно. Передняя подложка 202 прозрачна для красного, зеленого и синего цветов, излучаемых люминофорными полосами. Подложки 201 и 202 могут быть выполнены из различных материалов, включая стеклянные или пластмассовые платы. Задняя подложка 201 может представлять собой тонкопленочный слой, сконфигурированный для возвращения энергии видимого света в направлении зрителя. Каждый цветной пиксель включает в себя участки из трех соседних цветных люминофорных полос в горизонтальном направлении, а его вертикальный размер определяется раствором лазерного луча 120 в вертикальном направлении. Фактически, каждый цветной пиксель включает в себя три субпикселя трех разных цветов (например, красный, зеленый и синий). Лазерный модуль 110 единовременно сканирует одну горизонтальную строку слева направо и сверху вниз по всему экрану 101. Для обеспечения правильного согласования лазерного луча 120 и каждой позиции пикселя на экране 101 можно предусмотреть контроль и управление относительным положением лазерного модуля 110 и экрана 101. В одном варианте реализации управление лазерным модулем 110 может быть организовано так, чтобы фиксировать его правильное положение относительно экрана 101, с тем чтобы алгоритм управления разверткой луча 120 обеспечивал необходимое согласование лазерного луча 120 и положения каждого пикселя на экране 101.

На Фиг.2А сканирующий лазерный луч 120 направляется на зеленую люминофорную полосу в пикселе для создания для него зеленого света. На Фиг.2В, кроме того, показано действие экрана 101, если смотреть в направлении В-В, перпендикулярном поверхности экрана 101. Поскольку каждая цветная полоса имеет вытянутую форму, поперечное сечение луча 120 может иметь удлиненную форму в направлении полосы, чтобы обеспечить максимальное значение коэффициента заполнения луча в каждой цветной полосе для каждого пикселя. Этого можно достичь, используя в лазерном модуле 110 оптический элемент, задающий форму луча. Лазерным источником, используемым для создания сканирующего лазерного луча, который возбуждает люминофорный материал на экране, может быть одномодовый лазер или многомодовый лазер. Лазер также может быть одномодовым в направлении, перпендикулярном продольному направлению люминофорных полос, чтобы обеспечить ограниченный раствор луча, меньший ширины каждой люминофорной полосы. В продольном направлении люминофорных полос этот лазерный луч может иметь множество мод для распространения по большей площади, чем луч, распространяющийся в поперечном направлении люминофорной полосы. Использование лазерного луча с одной модой в одном направлении для обеспечения небольшого следа луча на экране и множества мод в перпендикулярном направлении для обеспечения большего следа на экране позволяет подстраивать форму луча к удлиненному цветному субпикселю на экране и обеспечить достаточную мощность в лазерном луче посредством множества мод, что гарантирует достаточную яркость экрана.

Обратимся теперь к фиг 3, где показан примерный вариант реализации лазерного модуля 110 по Фиг.1. Для создания множества лазерных лучей 312 для одновременного сканирования экрана 101 с целью обеспечения повышенной яркости отображения используют лазерную матрицу 310 с множеством лазеров. Для управления и модулирования лазеров в лазерной матрице 310 предусмотрен контроллер 320 модуляции сигнала, который обеспечивает модуляцию лазерных лучей 312 для переноса изображения, подлежащего отображению на экране 101. Контроллер 320 модуляции сигнала может включать в себя процессор цифровых изображений, который создает сигналы цифровых изображений для трех разных цветовых каналов, и схемы лазерного возбудителя, которые создают сигналы управления лазерами, несущие сигналы цифровых изображений. Затем сигналы управления лазерами используют для модулирования лазеров, например, токи для лазерных диодов в лазерной матрице 310.

Развертку луча можно обеспечить путем использования сканирующего зеркала 340, такого как гальванометрическое зеркало, для вертикального сканирования и многогранного полигонального сканера 350 для горизонтального сканирования. Для проецирования сканирующих лучей от полигонального сканера 350 на экран 101 можно использовать линзу 360 развертки. Линза 360 развертки предназначена для передачи изображения от каждого лазера в лазерной матрице 310 на экран 101. Каждая из различных отражающих граней полигонального сканера 350 одновременно сканирует N горизонтальных строк, где N - количество лазеров. В приведенном примере лазерные лучи сначала направляют на гальванометрическое зеркало 340, а затем от гальванометрического зеркала 340 на полигональный сканер 350. Затем выходные сканирующие лучи 120 проецируют на экран 101. На оптической траектории лазерных лучей 312 расположен модуль 330 передающей оптики для модификации пространственных характеристик лазерных лучей 312 и создания плотно пакетированного пучка лучей 332 для развертки гальванометрическим зеркалом 340 и полигональным сканером 350 в качестве сканирующих лучей 120, проецируемых на экран 101, для возбуждения люминофоров и создания изображений путем излучения люминофорами света разных цветов. Между сканерами 340 и 350 установлен модуль 370 передающей оптики для передачи изображения на отражающей поверхности отражателя в вертикальном сканере 340 на соответствующую отражающую грань полигонального сканера 350, чтобы предотвратить уход луча через тонкую грань полигонального сканера 350 в вертикальном направлении.

Лазерные лучи 120 пространственно разворачиваются по экрану 101, попадая на различные цветные пиксели в разные моменты времени. Соответственно, каждый модулированный луч 120 в различные моменты времени несет сигнал изображения для красного, зеленого и синего цветов для каждого пикселя и для разных пикселей в различные моменты времени. Таким образом, контроллер 320 модуляции сигнала обеспечивает кодирование лучей 120 с помощью визуальной информации для различных пикселей в различные моменты времени. Таким образом, развертка луча отображает сигналы изображения, закодированные во временной области в лучах 120, на пространственные пиксели на экране 101. Например, каждый из модулированных лазерных лучей 120 может иметь временной интервал цветного пикселя, разделенный ровно на три последовательных временных сегмента для трех цветных субпикселей для трех разных цветовых каналов. Для создания требуемых шкал серого в каждом цвете, правильной комбинации цветов в каждом пикселе и желаемой яркости изображения при модуляции лучей 120 можно использовать способы импульсной модуляции.

В одном варианте реализации множество лучей 120 направляют на экран 101 по разным соседним вертикальным позициям, причем два соседних луча отделены друг от друга на экране 101 одной горизонтальной строкой экрана 101 в вертикальном направлении. Для данного положения гальванометрического зеркала 340 и данном положении полигонального сканера 350 лучи 120 могут расходиться друг относительно друга в вертикальном направлении на экране 101 и могут находиться в разных местах на экране 101 в горизонтальном направлении. Лучи 120 могут покрывать только один участок экрана 101.

В одном варианте реализации при положении гальванометрического зеркала 340 под углом вращение полигонального сканера 350 вызывает развертку лучей 120 от N лазеров в лазерной матрице 310 по одному сегменту, состоящему из N соседних горизонтальных строк на экране 101. Гальванометрическое зеркало 340 линейно отклоняется для изменения его угла наклона с заданной скоростью в вертикальном направлении сверху вниз во время сканирования полигональным сканером, пока не будет отсканирован весь экран 101 для создания полного экранного отображения. Когда будет пройден весь диапазон гальванометрического вертикального углового сканирования, гальванометрическая система возвращается обратно в верхнее положение, и цикл повторяется синхронно с частотой обновления отображения.

В другом варианте реализации для данного положения гальванометрического зеркала 340 и данного положения полигонального сканера 350 лучи 120 могут быть несогласованными друг относительно друга в вертикальном направлении на экране 101 и могут находиться в разных положениях на экране 101 в горизонтальном направлении. Лучи 120 могут покрывать только один участок экрана 101. В фиксированном угловом положении гальванометрического зеркала 340 вращение полигонального сканера 350 вызывает сканирование лучами 120 от N лазеров в лазерной матрице 310 одного экранного сегмента из N соседних горизонтальных строк на экране 101. В конце каждого горизонтального прохода по одному экранному сегменту гальванометрическое зеркало 340 устанавливают в другое фиксированное угловое положение, так что вертикальные положения всех N лучей 120 подстраиваются для сканирования следующего соседнего экранного сегмента из N горизонтальных строк. Этот процесс итеративно повторяется, пока не будет отсканирован весь экран 101 для создания полного экранного отображения.

В вышеуказанном примере системы отображения со сканирующими лучами, показанном на Фиг.3, линза 360 развертки расположена после устройств 340 и 350 развертки луча, фокусируя один или несколько сканирующих лучей 120 возбуждения на экран 101. В такой оптической конфигурации системы сканирования предусматривается выполнение развертки лучей до их прохождения через линзу. В указанно конструкции сканирующий луч, направленный на линзу 360 развертки, разворачивается в двух ортогональных направлениях. Таким образом, линза 360 развертки предназначена для фокусировки сканирующего луча на экран 101 по двум ортогональным направлениям. Для достижения правильной фокусировки в обоих ортогональных направлениях линза 360 развертки может быть составной, причем часто ее выполняют в виде множества элементов. В одном варианте реализации линза 360 развертки может, например, представлять собой двумерную линзу f-theta, которая предназначена для обеспечения линейной зависимости между положением фокальной точки на экране и входным углом развертки (theta) при развертке входного луча относительно каждой из двух ортогональных осей, перпендикулярных оптической оси линзы развертки. Двумерная линза 360 развертки, такая как линза (f-theta), в описанной конфигурации (где развертка лучей выполняется до их прохождения через линзу) может привести к оптическим искажениям по двум ортогональным направлениям сканирования, что вызывает искривление луча на экране 101. Конструкция линзы 360 развертки может содержать множество элементов для уменьшения искривлений и может оказаться весьма затратной при изготовлении.

Чтобы избежать вышеупомянутых проблем с искажениями, связанных с двумерной линзой развертки в системе, где развертка лучей выполняется до их прохождения через линзу, можно реализовать систему отображения, в которой развертка лучей выполняется после их прохождения через линзу, где двумерная линза 360 развертки заменена на более простую и дешевую одномерную линзу развертки. В Патентной заявке США №11/742014 «POST-OBJECTIVE SCANNING BEAM SYSTEMS», поданной 30 апреля 2007 года описаны примеры систем, где развертка лучей выполняется после их прохождения через линзу, подходящие для использования с люминофорными экранами, описанными в этой заявке, причем содержание патентной заявки США №11/742014 включено сюда в качестве ссылки как часть описания данной заявки.

На Фиг.4 показан примерный вариант реализации системы отображения на основе конструкции системы по Фиг.1, где развертка лучей выполняется после их прохождения через линзу. Для создания множества лазерных лучей 312 для одновременного сканирования экрана 101 с целью достижения повышенной яркости отображения используют лазерную матриц