Состав для подготовки металлической поверхности перед нанесением покрытия и способ подготовки металлической поверхности перед нанесением покрытия

Иллюстрации

Показать все

Изобретение относится к обработке металлических поверхностей перед нанесением покрытия. Состав для подготовки металлической поверхности содержит соединение фосфата титана и имеет рН от 3 до 12, и дополнительно содержит, по меньшей мере, одно соединение, выбранное из группы, состоящей из бензойной кислоты, салициловой кислоты, галлиевой кислоты, лигносульфоновой кислоты и дубильной кислоты, и/или, по меньшей мере, одно вещество, выбранное из группы, состоящей из диспергируемых в воде частиц смолы, глинистого соединения, мелких частиц оксида и растворимого в воде загустителя, и аминосоединение, представленное формулой (1):

где каждая из групп R1, R2 и R3 выбрана из группы, состоящей из атома водорода, линейной или разветвленной алкильной группы, имеющей от 1 до 10 атомов углерода, и линейной или разветвленной алкильной группы, имеющей от 1 до 10 атомов углерода и имеющей в основной цепи полярную группу, и R1, R2 и R3 не все являются атомом водорода. Состав хранится длительное время в виде дисперсии, в которой стабильно существует соединение фосфата титана, и проявляет хорошую стабильность при обработке металлической поверхности перед нанесением покрытия. 2 н. и 4 з.п. ф-лы, 2 табл.

Реферат

Данное изобретение относится к составу для подготовки поверхности и к способу подготовки поверхности.

Корпусы автомобилей, бытовые электроприборы и т.п. изготавливали из металлических материалов, таких как стальные листы, оцинкованные стальные листы и металлические материалы на основе алюминия. В общем, после того, как в качестве предварительной обработки применяют стадию химической конверсионной обработки, проводят такую обработку, как нанесение покрытия. При химической конверсионной обработке обычно проводят фосфатную обработку. При химической конверсионной обработке фосфатом обработку с целью подготовки поверхности обычно проводят в качестве предшествующего процесса для того, чтобы обеспечить осаждение мелких и плотных кристаллов фосфата на поверхности металлического материала.

Примеры известных составов для подготовки поверхности для применения при такой подготовительной обработке поверхности включают жидкости для обработки, содержащие соединение фосфата титана, которое называют солью Йернштедта (Jernstedt salt). Однако частицы фосфата титана являются неблагоприятными в том отношении, что можно не достигнуть достаточной их стабильности в жидкостях.

Следовательно, было трудно осуществить стабильное хранение в течение длительного периода времени концентрированной жидкости; таким образом, состав хранили в виде порошка, а рабочий раствор готовили для использования путем диспергирования в растворителе. Однако с целью упрощения этой стадии было желательно иметь агент для подготовки поверхности на основе фосфата титана, который можно было бы хранить в течение длительного времени в жидком виде. Кроме того, также было желательно получить долговременную стабильность рабочего раствора.

Кроме того, из-за такой нестабильности большое влияние могут оказывать такие ионы металлов, как ионы магния и ионы кальция из водопроводной воды, когда они загрязняют ванну для обработки и приводят к осаждению соединения фосфата титана. Соответственно, при этом необходимо впоследствии снова приготовить ванну для подготовки поверхности.

Кроме того, сами по себе функции в качестве агента для подготовки поверхности нельзя было рассматривать как удовлетворительные. Среди металлических подложек некоторые подложки при обработке легко вступают в реакцию химического превращения, в то время как другие подложки с трудом вступают в эту реакцию. Например, для стойких к химическому превращению металлических материалов, таких как металлические материалы на основе алюминия и листы из высокопрочной стали, обычно трудно провести реакцию, которая протекает при фосфатной обработке и, таким образом, предполагали, что трудно в достаточной степени сформировать пленку конверсионного покрытия. Даже если такие подложки подвергают обработке жидкостью для обработки, содержащей в качестве основного компонента обычную соль Йернштедта, трудно заставить протекать реакцию химического конверсионной обработки. Таким образом, было желательно иметь агент для подготовки поверхности, способный взаимодействовать с этими стойкими в отношении химического превращения металлическими материалами. В частности, если можно получить агент для подготовки поверхности, который можно применить для многих видов металлических подложек, то можно одновременно подвергать химической конверсионной обработке многие виды металлов, тем самым обеспечивая возможность воздействия путем химической конверсионной обработки на объект, состоящий из различных металлических элементов.

Кроме того, даже в случае подложек, на которых в совершенстве можно провести обработку солью (Йернштедта), таких как подложки на основе железа и подложки на основе цинка, можно предполагать дальнейшее улучшение поведения путем улучшения функций агента для подготовки поверхности.

Например, в Патентном документе 1 описана жидкость для обработки, содержащая соль Йернштедта, конкретную соль фосфоновой кислоты и конкретную полисахаридную смолу. Однако стабилизирующий эффект не был достаточным, даже с этой жидкостью для обработки, и, следовательно, она не имела достаточной стабильности в состоянии концентрированной жидкости. Более того, могут ухудшаться функции в отношении подготовки поверхности.

Кроме того, в Патентном документе 2 описан агент для активации металлической поверхности, содержащий фосфат титана и одно или более соединений меди, а также содержащий фосфорную кислоту и фосфоновую кислоту. Однако стабильность концентрированного раствора не рассматривали, как не рассматривали и улучшение функций с точки зрения подготовки поверхности.

Патентный документ 1: Японская нерассмотренная патентная заявка № Н5-247664.

Патентный документ 2: Японская нерассмотренная патентная заявка № Н4-254589.

Данное изобретение было разработано, принимая во внимание вышеупомянутое положение дел; причем целью данного изобретения является обеспечение состава для подготовки поверхности, в котором можно сохранять соединение фосфата титана в состоянии дисперсии в жидкости в течение длительного периода времени, и чтобы это соединение стабильно существовало в дисперсии в жидкости, а также обладало подходящей стабильностью и в рабочем растворе, и чтобы состав был способен в достаточном количестве формировать пленку конверсионного покрытия, даже в случае применения для стойких к химическому взаимодействию металлических материалов, таких как листы из высокопрочной стали.

Авторы данного изобретения провели обширные исследования с целью решения вышеупомянутых проблем. В результате этих исследований было обнаружено, что вышеупомянутые проблемы можно решить путем смешивания аминосоединения, имеющего определенное строение, ароматической органической кислоты, фенольного соединения, фенольной смолы и т.п. в составе для подготовки поверхности, имеющем определенное значение рН. Соответственно, было осуществлено данное изобретение. Более конкретно, аспекты данного изобретения заключаются в том, чтобы обеспечить следующее.

В первом аспекте данного изобретения состав для подготовки поверхности содержит соединение фосфата титана и имеет рН от 3 до 12; при этом состав для подготовки поверхности дополнительно содержит аминосоединение, представленное следующей общей формулой (1):

(1)

где каждый из R1, R2 и R3 независимо представляют собой атом водорода, линейную или разветвленную алкильную группу, имеющую от 1 до 10 атомов углерода, или линейную или разветвленную алкильную группу, имеющую от 1 до 10 атомов углерода и имеющую полярную группу в основной цепи; однако R1, R2 и R3 не все являются атомами водорода.

Во втором аспекте данного изобретения состав для подготовки поверхности по первому аспекту дополнительно содержит по меньшей мере одно вещество, выбранное из группы, состоящей из ароматической органической кислоты, фенольного соединения и фенольной смолы.

В третьем аспекте данного изобретения в составе для подготовки поверхности по первому или второму аспекту полярная группа представляет собой гидроксильную группу.

В четвертом аспекте данного изобретения состав для подготовки поверхности, содержащий соединение фосфата титана и имеющий рН от 3 до 12, дополнительно содержит по меньшей мере одно вещество, выбранное из группы, состоящей из ароматической органической кислоты, фенольного соединения и фенольной смолы.

В пятом аспекте данного изобретения состав для подготовки поверхности по любому из аспектов - с первого по четвертый, дополнительно содержит по меньшей мере одно вещество, выбранное из группы, состоящей из частиц смолы, диспергируемых в воде, глинистого соединения, мелких частиц оксида и растворимого в воде загустителя.

В шестом аспекте данного изобретения состав для подготовки поверхности по любому из аспектов - с первого по пятый, дополнительно содержит по меньшей мере одно вещество, выбранное из группы, состоящей из водорастворимой содержащей карбоксильную группу смолы, сахарида и соединения фосфоновой кислоты.

В седьмом аспекте данного изобретения состав для подготовки поверхности по любому из аспектов - с первого по шестой, дополнительно содержит по меньшей мере одно соединение, выбранное из группы, состоящей из хелатообразующего агента и поверхностно-активного вещества.

В восьмом аспекте данного изобретения состав для подготовки поверхности по любому из аспектов - с первого по седьмой, дополнительно содержит по меньшей мере один ион, выбранный из группы, состоящей из комплексного иона Zr и иона окисленного металла.

В девятом аспекте данного изобретения способ подготовки поверхности включает стадию приведения состава для подготовки поверхности по любому из аспектов - с первого по восьмой, в контакт с поверхностью металлического материала.

Поскольку состав для подготовки поверхности по данному изобретению образован, как это описано выше, он обладает превосходными свойствами в отношении стабильности дисперсии, его можно хранить в жидком состоянии в течение длительного периода времени, а также он обладает превосходной стабильностью в ванне для обработки. Кроме того, улучшен также эффект подготовки поверхности, и при применении этого состава для обработки любого из многочисленных металлических материалов можно получить подходящую пленку конверсионного покрытия. В частности, даже если его применяют для обработки алюминия или листа из высокопрочной стали, то есть материала, стойкого к химическим взаимодействиям, можно получить плотную пленку конверсионного покрытия. Следовательно, состав для подготовки поверхности по данному изобретению можно подходящим образом использовать для различных видов материалов, применяемых для автомобильных корпусов, бытовых электроприборов и т.п.

Ниже данное изобретение поясняют подробно.

Соединение фосфата титана находится в форме очень мелких частиц. Если его используют в качестве агента для подготовки поверхности перед фосфатной обработкой, предполагают, что он образует на поверхности металла большое количество плотно расположенных активных участков, тем самым действуя в качестве агента для подготовки поверхности с высокой эффективностью. Однако, как описано выше, агенты для подготовки поверхности, содержащие соединение фосфата титана, имеют большое количество недостатков.

При осуществлении данного изобретения авторы исследовали причины возникновения вышеупомянутых недостатков агента для подготовки поверхности, в котором используют соединение фосфата титана. В результате предположили, что основной причиной этих недостатков является агрегирование соединения фосфата титана. Более конкретно, соединение фосфата титана с течением времени агрегирует в растворе с увеличением диаметра частиц, что приводит к осаждению с уменьшением количества эффективного компонента, тем самым приводя к существенному снижению функциональности в качестве агента для подготовки поверхности.

Кроме того, соединение фосфата титана агрегирует не только, если оно присутствует в растворе, а также и на поверхности подложки в случае, когда оно прилипает к поверхности обрабатываемого объекта. Следовательно, число частиц, которые могли бы являться активным участком реакции, снижается по сравнению с количеством прилипших частиц, и это, как предполагают, также является причиной ухудшения поведения при химической конверсионной обработке.

Например, в случае подложки на основе алюминия, слой соединения металла образуется на поверхности при нормальных условиях. Конкретно, это слой соединения, представленного общей формулой: Аl(ОН)х. Следовательно, предполагают, что на поверхности образуется пленка покрытия из фосфата алюминия посредством фосфорных кислот, содержащихся в агенте для подготовки поверхности, если обработку проводят агентом для подготовки поверхности, содержащим соединение фосфата титана. Предполагают, что такой слой снижает активность химической реакции, протекающей при обработке фосфатом, при этом образование пленки покрытия в результате химической реакции может стать затруднительным.

Для того чтобы преодолеть указанные недостатки, предполагали повысить диспергируемость соединения фосфата титана, используя диспергирующий агент. Повышение стабильности дисперсии неорганических частиц посредством диспергирующего агента осуществляют в ряде областей техники, в частности, часто применяют соединение фосфорной кислоты, сахарид, смолу, имеющую гидрофильную функциональную группу, и т.п. Однако, даже если применяют такой компонент, улучшающее воздействие на стабильность было недостаточным, и, таким образом, вышеупомянутые недостатки нельзя было полностью устранить.

Соответственно, авторы данного изобретения исследовали различные соединения на основе вышеупомянутых соображений и обнаружили соединения, которые дают значительно лучший эффект в отношении улучшения диспергируемости соединения фосфата титана. Следовательно, было получено данное изобретение.

Первый пример реализации

Состав для подготовки поверхности по первому примеру реализации представляет собой состав для подготовки поверхности, который содержит соединение фосфата титана и имеет рН от 3 до 12, а также дополнительно содержит аминовое соединение (а), представленное следующей общей формулой (1):

(1)

где каждый из R1, R2 и R3 независимо представляет собой атом водорода, линейную или разветвленную алкильную группу, имеющую от 1 до 10 атомов углерода, или линейную или разветвленную алкильную группу, имеющую от 1 до 10 атомов углерода и имеющую в своей основной цепи полярную группу; однако не все группы R1, R2 и R3 одновременно являются атомами водорода.

В соответствии с этим составом для подготовки поверхности, стабильность соединения фосфата титана в воде чрезвычайно возрастает по сравнению с обычными случаями. Таким образом, соединение фосфата титана можно стабильно приготовить, и он может плотно прилегать к поверхности подложки.

Вышеупомянутое аминосоединение (а) имеет то преимущественное свойство, что оно повышает стабильность дисперсии соединения фосфата титана. Однако механизм, посредством которого аминосоединение (а) в качестве диспергирующего агента достигает этого преимущественного свойства, неясен; предполагают, что это является следствием его химического строения. Более конкретно, аминосоединение (а) имеет атом азота, содержащий неподеленную пару электронов, и обладает низкой молекулярной массой; следовательно, предполагают, что атом азота координируется на поверхности частиц соединения фосфата титана, тем самым повышая стабильность дисперсии. Кроме того, если аминосоединение (а) имеет в своей структуре дополнительную полярную группу, стабильность дисперсии дополнительно повышается.

Состав для подготовки поверхности по первому примеру реализации имеет то преимущество, что его можно хранить в течение долгого времени даже в виде концентрированной жидкости, поскольку соединение фосфата титана является в высокой степени стабильным. Более того, подходящей также является стабильность в условиях ванны для обработки с целью подготовки поверхности. Кроме того, он превосходно ведет себя в отношении достижения эффекта обеспечения преимущественных свойств в ходе реакции химической конверсии, и, таким образом, можно получить достаточное количество пленки конверсионного покрытия даже в том случае, когда эту пленку получают на химически стойких металлических материалах, например на листах из высокопрочной стали и т.д.

Аминосоединение (а)

Вышеупомянутое аминосоединение (а) конкретно не ограничено, за исключением того, что оно является соединением, представленным вышеупомянутой общей формулой (1). Полярная группа в этой общей формуле (1) конкретно не определена, но, например, она может представлять собой гидроксильную группу, карбоксильную группу, группу сульфоновой кислоты, аминогруппу и т.п. Среди них особенно предпочтительной является гидроксильная группа.

Конкретные примеры аминосоединения (а) включают триэтиламин, этилендиамин, диэтилдиамин, три(н-бутил)амин, н-пропиламин, триэтилентетрамин, гидразин, таурин, дигидразид адипиновой кислоты и т.п., а также аминокарбоновые кислоты, такие как нитрилтриуксусная кислота (НТА), диэтилентриаминпентауксусная кислота (ДТПА), этилендиаминтетрауксусная кислота (ЭДТА), гидроксиэтилиминодиуксусная кислота (ГИДА), дигидроксиэтилглицин (ДГЭГ) и т.п.

Кроме того, примеры особенно предпочтительно применяемых аминосоединений, имеющих гидроксильную группу, включают алифатические гидроксиаминосоединения, такие как моноэтаноламин, диэтаноламин, диметилэтаноламин, метилдиэтаноламин, триэтаноламин, триизопропаноламин и аминоэтилэтаноламин, ароматические аминосоединения, такие как модифицированные амином резольные смолы и модифицированные амином новолачные смолы и т.п. Эти аминосоединения можно использовать сами по себе или же два или более из них можно использовать в сочетании. Из этих соединений предпочтительными являются алифатические гидроксиаминосоединения, а более предпочтительными в свете хорошей адсорбционной способности по отношению к соединению фосфата титана, затрудненности вторичного агрегирования и превосходной стабильности дисперсии в жидкостях являются диэтаноламин, диметилэтаноламин и триэтаноламин.

Что касается содержания аминосоединения (а), предпочтительно при подготовке поверхности металлического материала нижний предел составляет 0,01% масс., а верхний предел составляет 1000% масс. в расчете на массу соединения фосфата титана (содержание твердого вещества). Если содержание составляет менее 0,01% масс., то степень адсорбции на соединении фосфата титана становится недостаточной, в результате чего нельзя ожидать эффекта адсорбции соединения фосфата титана на металлическом материале и, таким образом, можно не достигнуть эффекта подготовки поверхности. Содержание более 1000% масс. является неэкономичным, поскольку тем не менее невозможно достичь действия, превышающего желаемый эффект. Более предпочтительно, нижний предел составляет 0,1% масс., в то время как верхний предел составляет 100% масс.

В отношении количества добавляемого аминосоединения (а), предпочтительно, чтобы нижний предел составлял 0,1% масс., а верхний предел составлял 50% масс. в концентрированной жидкости. Если количество составляет менее 0,1% масс., то стабильность дисперсии невозможно удовлетворительно улучшить. Если количество составляет более 50% масс., то диспергируемость может ухудшиться из-за влияния избытка добавки, и, даже если диспергируемость удовлетворительна, это неэкономично. Нижний предел более предпочтительно составляет 0,5% масс., в то время как верхний предел более предпочтительно составляет 20% масс.

В отношении содержания аминосоединения (а) в ванне обработки для подготовки поверхности, предпочтительно, нижний предел составляет 1 ppm (частей на миллион), а верхний предел составляет 10000 ppm. Если содержание составляет менее 1 ppm, то степень адсорбции на соединении фосфата титана может быть недостаточной, за счет чего может происходить вторичное агрегирование. Содержание выше 10000 ppm является неэкономичным, поскольку тем не менее можно не достигнуть превышения желаемого эффекта. Более предпочтительно, нижний предел составляет 10 ppm, а верхний предел - 5000 ppm.

Второй пример реализации

Состав для подготовки поверхности по второму примеру реализации представляет собой состав для подготовки поверхности, который содержит соединение фосфата титана и имеет рН от 3 до 12 и который дополнительно содержит по меньшей мере одно соединение (b), выбранное из группы, состоящей из ароматической органической кислоты, фенольного соединения и фенольной смолы.

Соединение (b) оказывает на соединение фосфата титана стабилизирующее воздействие, подобно описанному выше аминосоединению (а). Более того, оно имеет особенно хорошие свойства в качестве агента для подготовки поверхности при химической обработке подложки на основе алюминия. Конкретно, в то время как обычные агенты для подготовки поверхности, содержащие соединение фосфата титана, не достигают достаточного эффекта при обработке подложки на основе алюминия, агент для подготовки поверхности по данному примеру реализации может образовывать подходящую пленку конверсионного покрытия.

Это может быть вызвано следующей причиной. На поверхности подложек, содержащих в основном алюминий, образуется пассивирующая пленка, включающая соединение, представленное общей формулой Аl(ОН)х, а при проведении обработки составом для подготовки поверхности, содержащим соединение фосфата титана, на поверхности образуется пленка покрытия из фосфата алюминия. Пленка покрытия из фосфата алюминия образуется посредством реакции фосфорной кислоты, входящей в соединение фосфата титана, с поверхностью подложки. Из-за того что подложка на основе алюминия имеет на своей поверхности эту пленку покрытия из фосфата алюминия, функции подготовки поверхности имеют тенденцию значительно ухудшаться. Предполагают, что слой гидроксида алюминия и слой фосфата алюминия могут препятствовать реакции.

В противоположность этому, поскольку вышеупомянутое соединение (b) представляет собой соединение, которое обладает высоким сродством к металлическому алюминию, предполагают, что применение этого соединения обеспечивает возможность стабильного прикрепления соединения фосфата титана к поверхности подложки, и таким образом функция подготовки поверхности улучшается. Кроме того, поскольку соединение (b) способно образовывать хелаты с катионными компонентами водопроводной воды, то можно поддерживать временную стабильность ванны для обработки.

Соединение (b)

Вышеупомянутая ароматическая органическая кислота не определена конкретно, но предпочтительно применяют бензойную кислоту, салициловую кислоту, галлиевую кислоту, лигносульфоновую кислоту или дубильную кислоту. Среди этих соединений предпочтительно используют галлиевую кислоту, лигносульфоновую кислоту или дубильную кислоту.

Вышеупомянутое фенольное соединение не определено конкретно, за исключением того, что это соединение, имеющее фенольную гидроксильную группу. Например, предпочтительно используют фенол, пирокатехин, пирогаллол или катехин.

Среди этих соединений предпочтительно используют, в частности, катехин.

Примеры фенольных смол включают полимеры, имеющие в качестве основной структуры ароматическую органическую кислоту и/или фенольное соединение (например, полифенольные соединения, включающие флавоноид, таннин, катехин и т.п., поливинилфенол, а также водорастворимые резольные, новолачные смолы и т.п.), лигнин и т.п.

Вышеупомянутый флавоноид не определен конкретно, а его примеры включают флавон, изофлавон, флавонол, флаванон, флаванол, антоцианидин, аурон, халькон, эпигаллокатехингаллат, галлокатехин, теафлавин, дайджин, генистин, рутин, мирицитрин и т.п.

Вышеупомянутый таннин представляет собой общее название ароматических соединений, которые имеют сложное строение и содержат много фенольных гидроксильных групп и которые широко распространены в растительном мире. Таннин может быть или гидролизованным, или конденсированным таннином. Примеры таннина включают таннин гамамелиса, таннин хурмы, таннин чая, таннин чернильных орешков, таннин дубильных орешков, таннин алычи, таннин цезальпинии дубильной, таннин цезальпинии коротколистной, таннин дуба крупночешуйчатого, таннин катехина и т.п. Таннин может также быть гидролизованным таннином, полученным путем разложения таннина, находящегося в растениях, с помощью такого процесса, как гидролиз и т.п. Кроме того, примеры таннина, который также можно использовать, включают имеющиеся в продаже продукты, такие как «Tannic acid extract А», «В tannic acid», «N tannic acid», «Industrial tannic acid», «Purified tannic acid», «Hi tannic acid», «F tannic acid», «Official tannic acid» (все эти продукты выпускает Dainippon Pharmaceutical Co., Ltd), «Tannic acid: AL» (выпускаемая Fuji Chemical Industry Co., Ltd.) и т.п. Можно одновременно использовать два или более вида таннина. Для справки, вышеупомянутый лигнин представляет собой полимерное соединение с трехмерной структурой, включающее в качестве основного звена производное фенола, к которому присоединена пропильная группа.

Что касается содержания соединения (b), то предпочтительно при подготовке поверхности металлического материала нижний предел составляет 0,01% масс., а верхний предел составляет 1000% масс. в расчете на массу соединения фосфата титана (содержание твердого вещества). Если содержание меньше 0,01% масс., то степень адсорбции на соединении фосфата титана становится недостаточной; следовательно, нельзя ожидать распыляющего эффекта в дисперсии и эффекта адсорбции соединения фосфата титана на металлическом материале и, таким образом, можно не достигнуть эффекта подготовки поверхности. Содержание выше 1000% масс. является неэкономичным, поскольку, тем не менее, можно не превысить желаемый эффект. Более предпочтительно, нижний предел составляет 0,1% масс., а верхний предел - 100% масс.

Что касается добавленного количества соединения (b), то предпочтительно в концентрированной жидкости нижний предел составляет 0,1% масс., а верхний предел составляет 50% масс. Если это количество составляет менее 0,1% масс., то дисперсия может быть неудовлетворительной. Если это количество выше 50% масс., то диспергируемость может ухудшиться из-за влияния избытка добавки, и это нежелательно в экономическом плане, даже если получена удовлетворительная дисперсия. Более предпочтительно, чтобы нижний предел составлял 0,5% масс., в то время как верхний предел - 20% масс.

Что касается содержания соединения (b), то предпочтительно в ванне для обработки с целью подготовки поверхности нижний предел составляет 1 ppm, а верхний предел составляет 10000 ppm. Если содержание ниже 1 ppm, то степень адсорбции на соединении фосфата титана может быть недостаточной, в результате чего вероятно возникновение вторичного агрегирования. Содержание выше 10000 ppm является неэкономичным, поскольку тем не менее можно не достигнуть превышения желаемого эффекта. Более предпочтительно нижний предел составляет 10 ppm, в то время как верхний предел - 5000 ppm.

Третий пример реализации

Состав для подготовки поверхности в соответствии с третьим примером реализации представляет собой состав для подготовки поверхности, который содержит соединение фосфата титана и имеет рН от 3 до 12, а также дополнительно содержит аминосоединение (а), представленное общей формулой (1), и по меньшей мере одно соединение (b), выбранное из группы, состоящей из ароматической органической кислоты, фенольного соединения и фенольной смолы.

В составе для подготовки поверхности в соответствии с третьим примером реализации аминосоединение (а) и соединение (b) применяют в сочетании, за счет чего на поверхности различных металлических материалов можно получить более плотную кристаллическую пленку конверсионного покрытия. В частности, в отношении холоднокатаных стальных листов и оцинкованных стальных листов это предпочтительно, поскольку обеспечивает возможность однородно и качественно покрывать всю поверхность металлического материала.

Соединение фосфата титана

Все составы для подготовки поверхности в соответствии с вышеприведенными первым, вторым и третьим примерами реализации содержат соединение фосфата титана. Соединение фосфата титана представляет собой центр кристаллизации для осуществления функции подготовки поверхности. Прилипание или т.п. этих частиц к поверхности металлического материала приводит к ускорению реакции химической конверсионной обработки.

Соединение фосфата титана не определено конкретно, но можно использовать фосфат титана, гидрофосфат титана и т.п. Также можно использовать любое вещество, обычно применяемое в качестве агента для подготовки поверхности, такое как так называемая соль Йернштедта. Способ получения соединения фосфата титана не определен конкретно, но, например, порошкообразные осадки соединения фосфата титана можно получить путем добавления сульфата титанила и двухосновного фосфата натрия к воде в герметичном сосуде с последующим нагреванием, фильтрованием и измельчением.

Соединение фосфата титана предпочтительно имеет средний диаметр частиц (D50) 3 мкм или менее, в результате чего можно получить плотную пленку конверсионного покрытия. Если диаметр частиц соединения фосфата титана больше, стабильность соединения фосфата титана в ванне для обработки с целью подготовки поверхности может быть недостаточной и, таким образом, соединение фосфата титана может осаждаться. Поскольку состав для подготовки поверхности, который содержит соединение фосфата титана, имеющее D50 3 мкм или менее, показывает прекрасную стабильность соединения фосфата титана в ванне для обработки с целью подготовки поверхности, то осаждение соединения фосфата титана в ванне для обработки с целью подготовки поверхности можно подавить, тем самым позволяя сформировать плотную пленку конверсионного покрытия.

Более предпочтительно, нижний предел D50 для соединения фосфата титана составляет 0,001 мкм. Если D50 меньше 0,001 мкм, то эффективность производства может быть хуже, что может привести к тому, что процесс становится менее экономичным. Предпочтительно, D50 составляет 0,01 мкм или более, а более предпочтительно - 1 мкм или менее. Если эта величина выше 1 мкм, невозможно достичь эффекта подготовки поверхности, и при этом протекание реакции при химической конверсионной обработке может быть затруднено.

D50 также определяют как 50% диаметр по объему, что дает диаметр частиц в точке 50% на интегральной кривой, которая получена на основе распределения частиц по диаметру в водной дисперсии, считая общий объем частиц равным 100%. Вышеупомянутый D50 можно измерить, например, при использовании прибора для измерения размера частиц, такого как электрофоретический фотометр на основе рассеяния света (торговое название Photal ELS-800, производитель Otsuka Electronics Co., Ltd.) или подобного оборудования. Здесь наименование «средний диаметр частиц» указывает на D50.

Что касается количества смешиваемого вышеупомянутого исходного материала в водной дисперсии, то предпочтительно нижний предел содержания соединения фосфата титана в составе для подготовки поверхности составляет, в общем, 0,5% масс., а верхний предел - 50% масс. Если это количество меньше 0,5% масс., можно не достичь в достаточной степени эффекта, который должен быть получен от этого состава для подготовки поверхности при использовании дисперсии в жидкости, поскольку содержание соединения фосфата титана будет слишком низким. И наоборот, если это количество больше 50% масс., это может привести к затвердеванию.

Поскольку вышеупомянутый состав для подготовки поверхности стабилен даже при высокой концентрации, когда содержание соединения фосфата титана в смеси составляет от 5% до 40% масс., достигают превосходного эффекта в отношении возможности хранения этого состава в течение длительного периода времени в жидком состоянии.

Предпочтительно содержание соединения фосфата титана в ванне обработки с целью подготовки поверхности составляет от 10 ppm до 10000 ppm. Если содержание меньше 10 ppm, то функции соединения фосфата титана в качестве центра кристаллизации могут быть недостаточными, при этом невозможно достичь достаточного эффекта в отношении подготовки поверхности. Содержание выше 10000 ppm является неэкономичным, поскольку не достигают дополнительного эффекта относительно желаемого. Более предпочтительно, содержание соединения фосфата титана составляет от 100 ppm до 5000 ppm.

Что касается вышеупомянутого состава для подготовки поверхности, то предпочтительно, нижний предел рН составляет 3, а верхний предел рН составляет 12. Если рН ниже 3, соединение фосфата титана может становиться легко растворимым и нестабильным, что может оказать влияние на следующую стадию. Если рН выше 12, это может привести к повышению рН рабочего раствора химической конверсии на следующей стадии и вызвать недостаточную химическую конверсию. Предпочтительно нижний предел равен 6, в то время как верхний предел предпочтительно равен 11.

Соединение (с)

Предпочтительно, чтобы состав для подготовки поверхности дополнительно содержал по меньшей мере одно соединение (с), выбранное из группы, состоящей из диспергируемых в воде частиц смолы, глинистых соединений, мелких частиц оксидов и водорастворимых загустителей.

Соединение (с) в значительной степени улучшает свойства в отношении химической конверсии при добавлении его к составу для подготовки поверхности по данному изобретению. Более того, предполагают, что оно отвечает за стабилизацию путем такого взаимодействия, как адсорбция на соединении фосфата титана, тем самым внося вклад в стабильность при хранении в виде водной дисперсии (концентрированной жидкости перед использованием для подготовки поверхности) в течение длительного периода времени, стабильность ванны для обработки с целью подготовки поверхности и стабильность в отношении действия обуславливающих жесткость воды компонентов, таких как ионы кальция, ионы магния и т.п., поступающих из водопроводной воды.

Кроме того, предполагают, что соединение фосфата титана становится более стойким к оседанию по сравнению со случаем, когда соединение (с) не используют, из-за эффекта флотации и т.п., предположительно вызываемого соединением (с), так как соединение (с) взаимодействует с соединением фосфата титана. Таким образом, путем дополнительного введения соединения (с) можно получить на поверхности различных металлических материалов более плотную пленку конверсионного покрытия. В частности, это предпочтительно в отношении холоднокатаных стальных листов и оцинкованных стальных листов в свете способности однородно и качественно покрывать всю поверхность металлического материала.

Вышеупомянутые диспергируемые в воде частицы смолы не определены конкретно, за исключением того, что это частицы смолы, которые нерастворимы в воде и не осаждаются в воде, которые должны формировать однородную дисперсию в водном растворителе. Конкретные примеры включают эмульсии частиц смолы, полученные эмульсионной полимеризацией, частицы смолы, полученные суспензионной полимеризацией, полимеризацией в неводной дисперсии и т.д., и т.п. Образующие водную дисперсию частицы смолы могут иметь, а могут и не иметь структуру с внутренними поперечными связями.

Диспергируемые в воде частицы смолы предпочтительно представляют собой смолу, имеющую гидрофильную функциональную группу, такую как карбоксильная группа, гидроксильная группа, сульфоновая группа, фосфоновая группа, группа полиалкиленоксида, аминогруппа или группа амида. В соответствии с тем, что диспергируемые в воде частицы смолы имеют гидрофильную функциональную группу, предполагают, что гидрофильная функциональная группа и способствующие растворению смолы цепи, имеющие гидрофильную функциональную группу, имеют тенденцию располагаться на поверхности частиц смолы и, таким образом, гидрофильные функциональные группы и способствующие растворению смолы цепи взаимодействуют с соединением фосфата титана, и тем самым диспергируемые в воде частицы смолы ответственны за стабилизацию соединения фосфата титана в водном растворителе. Более того, полагают, что взаимодействие между металлическим материалом и соединением фосфата титана также вызвано диспергируемыми в воде частицами смолы, чтобы обеспечить благоприятные свойства для химической конверсии. Кроме того, предполагают, что гидрофильная функциональная группа, вероятно, ориентирована к поверхности; следовательно, образуется двойной электрический слой, посредством чего обеспечивают стабилизацию частиц из-за отталкивания структур. В еще более концентрированных исходных жидкостях за стабилизацию отвечает также тиксотропный эффект, получаемый в результате того, что соединение фосф