Способ получения бумажного продукта

Иллюстрации

Показать все

Способ касается получения слоистого бумажного продукта и может быть использован в целлюлозно-бумажной промышленности. Бумажный продукт содержит, по меньшей мере, два слоя. Способ включает: (i) обеспечение водной суспензии, содержащей целлюлозные волокна; (ii) введение в суспензию микрофибриллярного полисахарида в количестве с расчетом на получение от примерно 0,05 до примерно 50% мас. по отношению к массе целлюлозных волокон; (iii) обезвоживание получаемой суспензии и формование первого слоя, имеющего плотность от примерно 150 до примерно 500 кг/м3, указанного слоистого бумажного продукта. Касается также варианта способа получения слоистого бумажного продукта, а также слоистого бумажного продукта (его вариантов) и применения слоистого бумажного продукта. Техническим результатом является улучшенная способность связывать волокна в, по меньшей мере, одном внутреннем слое бумажного продукта, улучшение стойкости к перегибам продукта, прочности на сжатие, сопротивления фитилению, изгибу, Z-прочности, показателя жесткости, прочности на сжатие при снижении плотности бумажного продукта. 6 н. и 17 з.п. ф-лы, 7 табл.

Реферат

Настоящее изобретение относится к способу получения слоистых бумажных продуктов, особенно ламинатов картона. Изобретение также относится к слоистому бумажному продукту, который может быть получен указанным способом, и к его применению.

Предпосылки создание изобретения

На настоящий момент исследования в бумагоделательной промышленности сфокусированы на снижении массы единицы продукции бумажных или картонных продуктов при сохранении их прочностных свойств. Это общее направление является очень важным как по экономическим, так и по экологическим причинам. Для того чтобы получить бумажные или картонные продукты с более низкой массой единицы продукции предпочтительно использовать волокна низкой плотности. Однако одним недостатком таких целлюлозных волокон является их плохая способность образовывать прочные связи волокно-волокно, что, в свою очередь, дает в результате недостаточные прочностные свойства.

WO 00/14333 относится к способу, в котором латекс используется в качестве связующего в объемном слое для улучшения прочностных свойств. Однако WO 00/14333 страдает от высоких количеств необходимых химических веществ, а также проблем, относящихся к применению латексного связующего. В качестве примера, если латекс вводится в сырой конец, проблемы удерживания латекса на волокнах могут вызвать проблемы нанесения, а также нарушение равновесия химии сырого конца. Проблемы применения могут также иметь место, если латекс вводится в уже формованные слои бумаги или картона при использовании существующего оборудования. Латекс также может вызвать проблемы, связанные с роспуском. Одной целью настоящего изобретения является создание способа получения бумажных или картонных слоистых продуктов низкой плотности при сохранении по существу свойств прочности и/или жесткости. Другой целью настоящего изобретения является создание бумажных или картонных слоистых продуктов низкой плотности, которые могут распускаться без проблем в традиционных гидроразбивателях. Другой целью настоящего изобретения является создание способа получения бумажного или картонного ламината с улучшенной способностью связывать волокна в, по меньшей мере, одном внутреннем слое. Другой целью настоящего изобретения является создание бумажного или картонного ламината, который имеет улучшенную морщинистость. Другой целью настоящего изобретения является создание бумажного или картонного ламината, в котором улучшается, по меньшей мере, одно свойство бумаги, включая прочность на сжатие, сопротивление фитилению по отношению к пероксиду водорода, показатель сопротивления изгибу, Z-прочность и показатель жесткости. В частности, целью настоящего изобретения является создание бумажного или картонного ламината, особенно ламината низкой плотности или ламината, содержащего, по меньшей мере, один слой картона низкой плотности, который имеет улучшенную прочность на сжатие, а также показатель сопротивления изгибу и/или сопротивления фитилению края.

Сущность изобретения

Настоящее изобретение относится к способу получения слоистого бумажного продукта, содержащему, по меньшей мере, два слоя, причем указанный способ включает:

i) обеспечение водной суспензии, содержащей целлюлозные волокна,

ii) добавление в суспензию микрофибриллярного полисахарида в количестве с расчетом на получение от примерно 0,05 до примерно 50% мас. по отношению к массе целлюлозных волокон,

iii) обезвоживание получаемой суспензии и формование первого слоя, имеющего плотность от примерно 150 до примерно 500 кг/м3, указанного слоистого бумажного продукта.

Настоящее изобретение также относится к способу получения слоистого бумажного продукта, содержащему, по меньшей мере, два слоя, причем указанный способ включает:

i) обеспечение водной суспензии, содержащей целлюлозные волокна,

ii) введение в суспензию микрофибриллярного полисахарида в количестве с расчетом на получение от примерно 0,05 до примерно 50% мас. по отношению к массе целлюлозных волокон,

iii) обезвоживание получаемой суспензии и формование, по меньшей мере, первого и второго слоя указанного ламината, поэтому, по меньшей мере, один из указанных, по меньшей мере, первого и второго слоя формуется из водной суспензии, полученной на стадии (ii), содержащей микрофибриллярный полисахарид; и соединение указанных слоев таким образом, что слоистый продукт получает плотность от примерно 150 до примерно 800 кг/м3.

Образованные бумажные или картонные слои могут быть соединены любым традиционным способом, включая способы, рассмотренные в WO 00/14333.

Формование слоя, например указанного первого слоя, включает в себя прессование образованного слоя, например, с помощью зажимов пресса, которые могут увеличить плотность слоя. Прессование может быть, таким образом, использовано для регулирования плотности получаемого слоя (слоев). Кроме того, выбор подходящей пульпы может быть важным для получения формованного слоя желаемой плотности. Согласно одному варианту осуществления, по меньшей мере, один слой может быть образован и спрессован на отдельной стадии перед ламинированием с другим слоем. После стадии прессования ламинат может быть высушен в традиционном сушильном оборудовании, таком как цилиндрическая сушилка с или без сушильной проволоки/сукна, воздушная сушилка, металлическая лента и т.д. После сушки или в процессе сушки ламинат может быть покрыт другим слоем.

Под термином «слоистый бумажный продукт» подразумеваются, по меньшей мере, два слоя бумаги и/или картона. Однако слоистый бумажный продукт может также содержать слои иного материала, отличного от бумаги и/или картона, включая пленки различных полимеров, например полиэтилена, полипропилена, сложного полиэфира, поливинилхлорида и/или поливинилиденхлорида, поливинилового спирта (PVOH), сополимера полиэтилен-виниловый спирт, сополимеров этилен-винилацетат и сложных эфиров целлюлозы, в одном или более слоев и/или металлический слой, например алюминиевая фольга, полимерные пленки с нанесенным SiOx (где 0<x<=2), поливиниловый спирт (PVOH), смешанный с диоксидом кремния, как дополнительно рассмотрено в US 2006/135676, или металлизированная полимерная пленка, которая может действовать как барьер для газов, и которая может иметь низкую или не иметь проницаемость к воде, водяному пару, углекислому газу и кислороду. Примеры подходящих кислородных барьеров включают в себя сополимер этилен-виниловый спирт (EVOH), поливинилиденхлорид (ПВДХ), ПАН (полиакрилонитрил), алюминием металлизированные пленки, например полипропилена или полиэтилентерефталата, пленки с нанесенным SiOx (где 0<x<=2), полимеры, компаундированные с неорганическим пластинчатым минералом, такие как полимеры, компаундированные с глиной.

Термин «полисахарид» включает в себя (без ограничения) целлюлозу, гемицеллюлозу, хитин, хитозан, гаргам, пектин, альгинат, агар, ксантан, крахмал, амилозу, амилопектин, альтернан, геллан, мутан, декстран, пуллулан, фруктан, гам бобов робинии, каррагенан, гликоген, гликозаминогликаны, муреин, бактериальные капсульные полисахариды и их производные. Полисахарид может использоваться, как он есть, или прядение может использоваться для создания или улучшения волокнистой структуры.

Микрофибриллярная целлюлоза может быть наиболее часто выбираемым микрофибриллярным полисахаридом и поэтому описана в настоящем описании более подробно. Источники целлюлозы для получения микрофибриллярной целлюлозы включают в себя следующее: (а) древесные волокна, например, получаемые из твердой древесины и мягкой древесины, такие как химическая пульпа, механическая пульпа, термическая пульпа, химическая-термомеханическая пульпа, регенерированные волокна, (b) волокна семян, такие как семена хлопка; (с) волокно из шелухи семян, такие как волокна из шелухи соевых бобов, шелухи гороха, шелухи зерна; (d) лубяные волокна, такие как волокна изо льна, конопли, джута, рами, кенафа, (е) волокна листьев, такие как из листьев манильской конопли, сизаля; (f) волокна стеблей или соломы, такие как волокна из багассы, кукурузы, пшеницы; (g) волокна травы, такие как волокна из бамбука; (h) целлюлозные волокна из водорослей, таких как волокна велония; (i) бактерии или грибки; и (j) парехимные клетки, такие как клетки из растений и фруктов, и, в частности, сахарной свеклы и цитрусовых фруктов, таких как лимоны, лаймы, апельсины, грейпфруты. Могут также использоваться микрокристаллические формы указанных целлюлозных материалов. Источники целлюлозы включают в себя (1) очищенную, необязательно беленую, древесную целлюлозу, получаемую сульфитным, крафт- (сульфатным) или предгидролизным крафт-способами, и (2) очищенные хлопковые очесы. Источник целлюлозы не ограничивается, и может быть использован любой источник, включая синтетическую целлюлозу или аналоги целлюлозы. Согласно одному варианту микрофибриллярный полисахарид, такой как микрофибриллярная целлюлоза, получается из твердой древесины и/или мягкой древесины.

Для целей настоящего изобретения микрофибриллы полисахарида относятся к подструктурам небольшого диаметра с высоким отношением длина-к-диаметру, которые являются сравнимыми по размерам с микрофибриллами целлюлозы, существующими в природе. Хотя настоящее описание относится к микрофибриллам и микрофибриллированию, указанные термины здесь также включают в себя (нано)фибриллы с нанометрическими размерами (целлюлозные или другие).

Согласно одному варианту микрофибриллярный полисахарид, например микрофибриллярная целлюлоза, модифицируется, например, с помощью прививки, сшивки, химического окисления, например, при использовании пероксида водорода, реакции Фентона и/или Tempo; физической модификации, такой как адсорбция, например химическая адсорбция; и ферментативной модификации. Для модификации микрофибриллярной целлюлозы могут также использоваться комбинированные технологии.

Целлюлоза может быть найдена в природе в нескольких иерархических уровнях организации и ориентации. Целлюлозные волокна содержат слоистую вторичную структуру стенки, в которой размещаются макрофибриллы. Макрофибриллы содержат множественные микрофибриллы, которые, кроме того, содержат целлюлозные молекулы, расположенные в кристаллической и аморфной областях. Целлюлозные микрофибриллы имеют диаметр в интервале от примерно 5 до примерно 10 нм для различных частей растения, и они наиболее часто имеют диаметр в интервале от примерно 25 до примерно 35 нм. Микрофибриллы присутствуют в пучках, которые идут параллельно в матрице аморфных гемицеллюлоз (особенно, ксилоглюканов), пектиновых полисахаридов, лигнинов и гидроксипролинобогащенных гликопротеинов (включая экстенсин). Микрофибриллы разделены промежутками приблизительно 3-4 нм, которые заняты матричными соединениями, перечисленными выше. Конкретное размещение и положение матричных материалов, и как они взаимодействуют с целлюлозными микрофибриллами, еще полностью не известно.

Согласно одному варианту полисахарид очищается или расслаивается в такой степени, что конечная удельная площадь поверхности (определенная адсорбцией N2 при 177 K в соответствии с методом БЭТ с использованием прибора Micromeritics ASAP 2010) формованного микрофибриллярного полисахарида составляет от примерно 1 до примерно 100, например от примерно 1,5 до примерно 15 или от примерно 3 до примерно 10 м2/г. Вязкость получаемой водной суспензии микрофибриллярного полисахарида может составлять от примерно 200 до примерно 4000 или от примерно 500 до примерно 3000, или от примерно 800 до примерно 2500 мПас. Стабильность, которая определяется степенью седиментации суспензии, может составлять от примерно 60 до 100%, например от примерно 80 до примерно 100%, где 100% указывает на отсутствие седиментации в течение периода, по меньшей мере, 6 месяцев.

Согласно одному варианту микрофибриллярный полисахарид имеет арифметическую длину волокна от примерно 0,05 до примерно 0,5, например от примерно 0,1 до примерно 0,4 или от примерно 0,15 до примерно 0,3 мм. Согласно одному варианту микрофибриллярный полисахарид вводят в целлюлозную суспензию в количестве с расчетом на получение от примерно 0,5 до примерно 30, например от примерно 1 до примерно 15, так как от примерно 1 до примерно 10 или от примерно 2 до 10% мас. по отношению к массе целлюлозных волокон.

Нерасслоившиеся древесные волокна, например целлюлозные волокна, отличаются от микрофибриллярных волокон тем, что длина волокна древесных волокон обычно находится в интервале от примерно 0,7 до примерно 3 мм. Удельная площадь поверхности целлюлозных волокон обычно составляет от примерно 0,5 до примерно 1,5 м2/г. Расслаивание может быть выполнено в различных устройствах, подходящих для расслаивания волокон полисахаридов. Необходимое условие для переработки волокон состоит в том, что устройство является способным или регулируется таким образом, что фибриллы высвобождаются из стенок волокон. Это может быть осуществлено при истирании волокон друг о друга, стенки или другие части устройства, в котором имеет место расслаивание. Согласно одному варианту расслаивание выполняется с помощью прокачивания насосом, смешения, нагрева, выброса пара, цикла опрессовывания-распрессовывания, ударного измельчения, ультразвука, микроволнового излучения, помола и их комбинаций. В любой из механических операций, рассмотренных в данном описании, важно, чтобы энергии подводилось достаточно для получения микрофибриллярного полисахарида, как определено в данном описании.

Согласно одному варианту водная суспензия, в которую вводится микрофибриллярный полисахарид, содержит целлюлозные волокна из химической пульпы, такой как сульфатная и сульфитная пульпа, органозольная пульпа; регенерированные волокна; и/или механическая пульпа, включающая, например, очищенную механическую пульпу (RMP), опрессованную механическую пульпу (PRMP), предварительно обработанную щелочно-пероксидную очищенную химическую механическую пульпу (P-RC APMP), термомеханическую пульпу (ТМР), термомеханическую химическую пульпу (ТМСР), высокотемпературную ТМР (НТ-ТМР), RTS-TMP, щелочно-пероксидную механическую пульпу (АРМР), щелочно-пероксидную термомеханическую пульпу (АРТМР), термопульпу, измельченную древесную пульпу (GW), абразивоизмельченную древесную пульпу (SGW), опрессованную измельченную древесную пульпу (PGW), суперопрессованную измельченную древесную пульпу (PGW-S), термоизмельченную древесную пульпу (TGW), термоабразивоизмельченную древесную пульпу (TSGW), хемимеханическую пульпу (СМР), очищенную хемимеханическую пульпу (CRMP), хемитермомеханическую пульпу (СТМР), высокотемпературную СТМР (НТ-СТМР), сульфитмодифицированную термомеханическую пульпу (SMTMP), вторичную СТМР (CTMPR), измельченную древесную СТМР (G-CTMP), полухимическую пульпу (SC), нейтральную сульфитную полухимическую пульпу (NSSC), сульфитную пульпу высокого выхода (HYS), биомеханическую пульпу (BRMP), пульпу, получаемую ОРСО-способом, способом взрывного превращения в пульпу, Bi-Vis-способом, способом сульфонирования с разбавлением водой (DWS), способом сульфонирования длинных волокон (SLF), способом химической обработки длинных волокон (CTLF), CMP-способом длинных волокон (LFCMP) и их модификациями и комбинациями. Пульпа может быть беленой и небеленой пульпой.

Целлюлозные волокна могут быть получены из частиц твердой древесины, мягкой древесины и/или недревесины. Примеры твердой древесины и мягкой древесины включают в себя березу, бук, осину, такую как Европейская осина, ольху, эвкалипт, клен, акацию, смешанную тропическую твердую древесину, сосну, такую как сосна ладанная, пихту, гемлок, лиственницу, ель, такую как черная ель или Норвежская ель, и их смеси. Недревесный растительный исходный материал может быть получен, например, из соломы зерновых культур, соломы канареечника канарского, тростника, льна, конопли, кенафа, джута, рами, семян волокон, сизаля, абака, волокна кокосовой пальмы, бамбука, багассы или их комбинаций.

Согласно одному варианту целлюлозные волокна водной суспензии получают из частиц твердой древесины и/или мягкой древесины.

Согласно одному варианту водная суспензия, в которую вводится микрофибриллярный полисахарид, содержит целлюлозные волокна в количестве от примерно 0,01 до примерно 50, например от примерно 0,1 до примерно 25 или от примерно 0,1 до примерно 10, или от примерно 1 до примерно 10% мас.

Согласно одному варианту получаемый слоистый бумажный продукт представляет собой картон, бумагу или комбинацию слоев картона и бумаги.

Согласно одному варианту, по меньшей мере, один второй слой размещается и соединяется с указанным первым слоем, например прямо или непрямо поверх по существу всей поверхности, обращенной друг к другу. Согласно одному варианту ламинат может содержать, например, по меньшей мере, три или четыре слоя. Формование слоев может осуществляться по любой традиционной технологии.

Согласно одному варианту два слоя, каждый из которых имеет плотность от примерно 400 до примерно 1000 кг/м3, например от примерно 510 до примерно 700 кг/м3, соединяются с указанным первым слоем на любой его стороне с образованием наружных слоев указанного слоистого бумажного продукта.

Согласно одному варианту первый слой получают из механической пульпы, а наружные слои получают из химической пульпы.

Согласно одному варианту первый слой, обычно составляющий внутренний слой ламината, имеет плотность от примерно 150 до примерно 500 кг/м3, такую как от примерно 200 до примерно 450 кг/м3, например от примерно 220 до примерно 450 кг/м3, такую как от примерно 250 до примерно 400 кг/м3.

Согласно одному варианту, по меньшей мере, один наружный слой получают из химической пульпы, полученной в соответствии с любым из способов, рассмотренных в настоящем описании, или другими традиционными способами получения химической пульпы. Пульпа может быть беленой и небеленой.

Согласно одному варианту слоистый бумажный продукт, например картон, такой как картон для упаковки жидкости, может содержать, по меньшей мере, три слоя, поэтому продукт получают при соединении прямо или непрямо внутреннего слоя, формованного из водной суспензии, содержащей микрофибриллярный полисахарид, и других слоев, соединяемых с соответствующими сторонами указанного внутреннего слоя, причем другие слои получают из водной суспензии с или без микрофибриллярного полисахарида.

Другие слои, например барьерные слои, могут быть формованы и соединены с наружными слоями, как определено. Любой из слоев может быть также покрыт для улучшения, например, сопротивления фитилению края и способности ламината к нанесению печати. Согласно одному варианту любой покрытый или непокрытый слой может быть, в свою очередь, покрыт слоем пластика, или полимера. Такое покрытие может дополнительно снизить проницаемость жидкости и улучшить термосвариваемость продукта.

Согласно одному варианту, по меньшей мере, один слой имеет плотность от примерно 400 до примерно 1000 кг/м3, например от примерно 500 до примерно 1000 кг/м3, например от примерно 510 до примерно 1000 кг/м3, такую как от примерно 510 до примерно 700 кг/м3, такую как от примерно 590 до примерно 670 кг/м3.

Согласно одному варианту первый слой получают из механической и/или химической пульпы, полученной из древесной или недревесной пульпы в соответствии с любым из способов, рассмотренных в настоящем описании, или другими традиционными способами получения пульпы. Согласно одному варианту первый слой получают из, по меньшей мере, примерно 40% мас., например, по меньшей мере, примерно 50% мас., например, по меньшей мере, примерно 60% мас. или, по меньшей мере, 75% мас. механической пульпы по отношению к общей массе пульпы. Пульпа может быть беленой и небеленой.

Согласно одному варианту плотность ламината находится в интервале от примерно 150 до примерно 800 кг/м3, такая как от примерно 150 до примерно 700 кг/м3 или от примерно 200 до примерно 640 кг/м3, или от примерно 250 до примерно 600 кг/м3, такая как от примерно 300 до примерно 580 кг/м3 или от примерно 400 до примерно 500 кг/м3.

Согласно одному варианту ламинат получают таким образом, что масса единицы ламината получается в интервале от примерно 80 до примерно 1500 г/м2, например от примерно 150 до примерно 1000 г/м2 или от примерно 200 до примерно 700 г/м2.

Согласно одному варианту водная суспензия также содержит минеральные наполнители традиционных типов, такие как, например, каолин, глина, диоксид титана, гипс, тальк и как природные, так и синтетические карбонаты кальция, такие как, например, мел, измельченный мрамор, измельченный карбонат кальция и осажденный карбонат кальция. Водная суспензия может также содержать добавки бумажного производства традиционных типов, такие как дренажные и удерживающие химические вещества, упрочняющие агенты во влажном и сухом состоянии, проклеивающие вещества, такие как вещества на основе канифоли, димеры кетена, мультимеры кетена, алкенилянтарные ангидриды и т.д.

Согласно одному варианту упрочняющие агенты во влажном и сухом состоянии могут быть введены в количестве от примерно 0,5 до примерно 30 кг/т пульпы. Согласно одному варианту проклеивающее вещество (вещества) может быть введено в количестве от примерно 0,5 до примерно 10, таком как от примерно 0,5 до примерно 4 кг/т пульпы. Другие бумажные химические вещества могут быть введены в водную суспензию обычным образом и в обычных количествах.

Согласно одному варианту изобретение применяется на бумагоделательных машинах, производящих древесиносодержащие бумагу или картон и/или бумагу или картон на основе регенерированных волокон, различные типы книжной и газетной бумаги, и/или на машинах, производящих печатную и писчую бумагу, не содержащие древесину.

Настоящее изобретение также относится к слоистому бумажному продукту, получаемому рассмотренным в данном описании способом. Изобретение, кроме того, относится к слоистому бумажному продукту, имеющему улучшенные свойства с точки зрения, по меньшей мере, одного из следующих параметров: сопротивление фитилению края для пероксида водорода, прочность на сжатие, измеренная согласно краткому тесту на сжатие (SCT), показатель сопротивления изгибу, показатель жесткости и Z-прочность. Слоистый бумажный продукт может содержать любое число слоев, как рассмотрено в вариантах раздела способа, и может обладать любым из свойств, включая плотность, массу единицы продукции и т.д., как получено в разделе способа здесь выше.

В частности, настоящее изобретение относится к слоистому бумажному продукту, содержащему, по меньшей мере, два слоя, причем указанный слоистый бумажный продукт имеет:

а) плотность ламината в интервале от примерно 150 до примерно 800 кг/м3,

b) значение теста на фитиление края (EWT) для пероксида водорода ниже 6 кг/м2,

с) показатель кратковременного теста на сжатие (SCT) от 20 до 50 Нм/г.

Настоящее изобретение относится к слоистому бумажному продукту, содержащему, по меньшей мере, два слоя, причем указанный слоистый бумажный продукт имеет:

а) плотность ламината в интервале от примерно 150 до примерно 800 кг/м3,

b) показатель сопротивления изгибу в интервале от 20 до примерно 120 Нм6/кг3,

с) показатель кратковременного теста на сжатие (SCT) от 20 до 50 Нм/г.

Согласно одному варианту, по меньшей мере, один из слоев ламината содержит микрофибриллярный полисахарид в количестве от примерно 0,05 до примерно 50% мас., таком как от примерно 0,5 до примерно 30, или от примерно 1 до примерно 15, таком как от примерно 1 до примерно 10, или от примерно 2 до примерно 10% мас. по отношению к массе целлюлозных волокон.

Однако также несколько слоев ламината могут содержать определенные количества при условии, что общее количество микрофибриллярного полисахарида в слоистом бумажном продукте не превышает 50% мас. по отношению к массе целлюлозных волокон в слоистом бумажном продукте.

Согласно одному варианту значение теста на фитиление края (EWT) для пероксида водорода составляет ниже 6 кг/м2, такое как ниже 5 или 4,5, или ниже 4 кг/м2. Согласно одному варианту значение теста на фитиление края (EWT) для пероксида водорода составляет ниже 2,5 или 2,2 кг/м2, такое как ниже 2, например ниже 1,5 или 1 кг/м2. Согласно одному варианту значение EWT (пероксид водорода) составляет, по меньшей мере, 0,1 кг/м2, например, по меньшей мере, 0,2 кг/м2.

Согласно одному варианту слоистый бумажный продукт имеет показатель сопротивления изгибу в интервале от примерно 10 до примерно 120 Нм6/кг3, например от примерно 14 до примерно 40, например от примерно 17 до примерно 40, такой как от примерно 20 до примерно 40 или от примерно 20 до примерно 25, например от 21 до 24 Нм6/кг3.

Согласно одному варианту Z-прочность ламината находится в интервале от примерно 150 до примерно 500 кПа, например от примерно 175 до примерно 450, такая как от примерно 185 до примерно 400 или от примерно 190 до примерно 350 или от примерно 200 до примерно 320 кПа.

Согласно одному варианту показатель жесткости ламината составляет от примерно 5 до примерно 20 кНм/г, например от примерно 5 до примерно 15 кНм/г или от примерно 5 до примерно 10 кНм/г.

Согласно одному варианту показатель прочности ламината составляет от примерно 20 до примерно 100 Нм/г, такой как от примерно 30 до примерно 70 Нм/г или от примерно 40 до примерно 60 Нм/г.

Согласно одному варианту прочность на сжатие ламината согласно показателю кратковременного теста на сжатие (SCT) находится в интервале от примерно 20 до примерно 50 Нм/г, таком как от примерно 20 до примерно 40, например от примерно 20 до примерно 30 или от примерно 20,4 до примерно 25 Нм/г.

Согласно одному варианту Scott-связь находится в интервале от примерно 50 до примерно 500 Дж/м2, например от примерно 100 до примерно 250, таком как от примерно 130 до примерно 220 Дж/м2.

Слоистый бумажный продукт может содержать другие слои, включая пластиковые, или полимерные, слои, нанесенные на бумажный или картонный слой, и/или барьерные слои, как рассмотрено в данном описании.

В частности, настоящее изобретение относится к применению слоистых бумажных продуктов для использования в качестве упаковочного картона, в частности для использования в качестве контейнеров для хранения водной, жирной и/или сухой пищи (согласно определению в FDA 176.170 и 176.180). Такие пищевые продукты могут включать себя рис, хлеб (сухая пища), а также молоко, сок, горячие жидкости и т.д. (жидкости). Слоистый бумажный продукт может также использоваться, например, для упаковки сигарет, инструментов (запасных частей), фармацевтических веществ, мыла и т.д. Другие примеры применений включают в себя производство бумажной продукции, включая многослойную бумагу и/или картон, оберточный и упаковочный материал для товаров, таких как промышленные товары, или как промежуточный продукт для изготовления таких конечных продуктов или других слоистых бумажных продуктов. Упаковка должна защищать содержимое от окружающих условий, включая удары в процессе обращения, транспортировки и хранения, от сжатия при складировании и экстремальных температур и влаги.

Очевидно, что описанное таким образом изобретение может варьироваться многими путями. Последующие примеры дополнительно показывают, как описанное изобретение может быть осуществлено без ограничения его объема.

Все части и процентное содержание относятся к частям и процентам по массе, если не установлено иное. Все количества микрофибриллярного полисахарида и микрофибриллярной целлюлозы даются в % мас. по отношению к массе целлюлозных волокон.

Следующие стандартные методы используют для определения свойств ламинатов, как определено в данном описании, включая следующие примеры:

Параметр Стандартный метод Оборудование
Масса единицы продукции ISO 536:1995
Плотность бумаги, толщина ISO 534:1998
Прочностные свойства (жесткость, разрывная прочность) ISO 1924-2 Alwetron TH1(L&W)
Z-прочность SCAN-P-80:98 Прибор для определения прочности L&W ZD
Показатель сопротивления изгибу на 15° ISO 2493:1992
Сопротивление геометрическому изгибу ISO 2493:1992
Scott-связь Tappi T 833 pm-94 Прибор для определения внутренней Scott-связи
SCT (кратковременный тест на сжатие) ISO 9895:1998 Прибор L&W STFI для определения прочности на сжатие

Относительную стойкость к образованию морщин получают при сравнении сопротивления изгибу, измеренному в MD (машинное направление) и в CD (поперечное направление) согласно ISO 2493:1992 до и после образования морщин.

Для того чтобы определить сопротивление фитилению края слоистого бумажного продукта, используют метод теста на фитиление края, который осуществляют согласно следующей методике:

Оборудование

Водяная баня, металлические коробки, сетка, липкая лента 3М, аппликатор для нанесения ленты.

Химические вещества

35% пероксид водорода, хранившийся при максимальной температуре +8°C.

Экспериментальная часть

1. Образцы бумаги кондиционируют при 23°C и 50% относительной влажности в течение, по меньшей мере, 2 ч.

2. Определяют толщину образцов согласно ISO 534:1988.

3. На образцы с использованием аппликатора наносят липкую ленту и режут на 25×75 мм в ряд с 5 образец/точка.

4. Образцы взвешивают.

5. 5 образцов помещают в металлическую коробку, содержащую 35% пероксид водорода.

Металлическую коробку перед этим помещали в водяную баню при +70°C (±1,0°C). Специально сконструированную сетку помещают в коробку для того, чтобы содержать образцы на дне коробки. Образцы должны находиться на 10 см ниже поверхности пероксида водорода. После того, как образцы помещают в коробку, закрывают крышку и запускают таймер.

6. Через 15 мин (±15 с) образцы вынимают из коробки и образцы промокают с использованием промокательной бумаги.

7. Образцы взвешивают.

Расчеты и записи

w1 - вес до (мг)

w2 - вес после (мг)

t - средняя толщина (мкм) для 5 измерений

О - окружность = 0,2 м

n - число образцов = 5

Показатель фитиления края

Воспроизводимость

Точные результаты могут быть получены методом при особенно высоких уровнях гидрофобности, включая значения теста на фитиление края ниже 2,0 кг/м2. Ниже этого предела двойные образцы не должны различаться более чем на ±10% для листов, полученных в лаборатории, и ± 5% для листов, полученных на машине.

Пример 1

А) Получают бумажный продукт, в котором верхний и тыльный слой имеют такой же состав, как промышленный картон с массой единицы продукции 60 г/м2, из волокон крафт-пульпы из смеси 60% твердой древесины (SR 26) и 40% мягкой древесины (SR 23) c использованием динамической установки формования листов (Formette Dynamic, поставляемая фирмой Fibertech AB, Швеция). Бумажные листы формуют на динамической установке формования листов при подаче насосом исходного сырья (консистенция пульпы: 0,5%, проводимость: 1500 мкм/См, рН 7) из смесительного ящика через перемещающееся сопло во вращающемся барабане на пленку воды поверх проволоки, отводе воды из исходного сырья с формованием листа, прессовании и сушке листа. Количества химических веществ, введенных в суспензию (по отношению к массе пульпы), и время введения (в секундах) перед подачей насосом и формованием листа являются следующими:

Время обезвоживания составляет 75 с. Бумажные листы прессуют при 3 бар (300 кПа) в валковом прессе и затем сушат закрепленными в плоской сушилке при 105°C в течение 8 мин.

В) Верхний и тыльный слои картона с массой единицы продукции 56 г/м2 и 53 г/м2, соответственно, получают как в А), но с введением микрофибриллярной целлюлозы в различных количествах, причем они имеют следующие характеристики: арифметическая длина волокна: 0,25 мм (прибор Kajaani FS-100 Fiber Size Analyzer), удельная площадь поверхности: 5 м2/г (метод БЭТ с использованием прибора Micromeritics ASAP 2010); вязкость: 1098 мПас (вискозиметр Брукфилда RV3, 12 об/мин); стабильность: 100% (степень седиментации 0,5% целлюлозной суспензии); значение удерживания воды (WRV): 5,39 (г/г) (SCAN: -С 62:00).

Верхний и тыльный слои картона, полученные в соответствии с А) и В), анализируют на их массу единицы продукции, разрывную прочность и жесткость. Из таблицы 1 можно видеть, что разрывная прочность картонов, полученных из исходного сырья, в которое введено 3-10% микрофибриллярной целлюлозы, является примерно такой же или выше разрывной прочности картонов, полученных из исходного сырья без введения микрофибриллярной целлюлозы, даже хотя масса единицы продукции составляет 53 и 56 г/м2, т.е. ниже, чем у первого (60 г/м2). Подобное наблюдение может быть сделано в отношении жесткости (см. таблицу 1).

Таблица 1
Масса единицы продукции (г/м2) Микрофибриллярная целлюлоза (%) Разрывная прочность (кН/м) Жесткость (кН/м)
60 0 4,63 350
56 0 4,11 323
56 3 4,51 338
56 6 4,89 388
56 10 5,02 426
53 0 3,91 298
53 3 4,33 331
53 6 4,56 354
53 10 4,79 368

Пример 2

А) Бумажный продукт, в котором внутренний слой имеет такой же состав, как промышленный картон, с массой единицы продукции 130 г/м2, получают из смеси СТМР-пульпы (CSF 400), пульпы отходов и крафт-пульпы из мягкой древесины (SR 23) с волокнами с различными соотношениями (А1-А4, см. таблицу 2) с использованием динамической установки формования листа (Formette Dynamic, поставляемой фирмой Fibertech AB, Швеция). Бумажные листы формуют, как в примере 1. Количества химических веществ, введенных в суспензию (по отношению к массе пульпы, включая пульпу отходов), и время введения (в секундах) до подачи насосом и формования листа являются такими, как в примере 1, но с 0,35% AKD. Листы обезвоживают, прессуют и сушат, как в примере 1, но с 11 мин сушки в плоской сушилке.

Таблица 2
Образец СТМР (%) Пульпа отходов (%) Крафт-пульпа из мягкой древесины (%)
А1 60 20 20
А2 65 20 15
А3 70 20 10
А4 75 20 5

В) Внутренний слой картона, имеющий массу единицы продукции 130 г/м2, получают, как в разделе А), но из смеси пульпы, состоящей из 75% СТМР-пульпы, 20% пульпы отходов и 5% крафт-пульпы из мягкой древесины, в которую вводят микрофибриллярную целлюлозу в количествах от 2 до 8% (В1-В4).

С) Внутренний слой картона, имеющий массу единицы продукции 130 г/м2, получают, как в разделе А), но из смеси пульпы, состоящей из 75% НТ-СТМР-пульпы (CSF 700), 20% пульпы отходов и 5% крафт-пульпы из мягкой древесины, в которую вводят микрофибриллярную целлюлозу в количествах от 2 до 8% (C1-C4).

Внутренние слои картонов, полученные в соответствии с разделами А-С, анализируют на их показатель прочности и Z-прочность. Из таблицы 3 видно, что плотность внутреннего слоя картона может быть снижена при по существу сохранении показателя прочности и Z-прочности слоя варианта А при введении микрофибриллярной целлюлозы в комбинации с увеличенным количеством СТМР, особенно НТ-СТМР, с формованием внутреннего слоя.

Таблица 3
Образец Микрофибриллярная целлюлоза (%) Плотность (кг/м3) Показатель прочности (Нм/г) Z-прочность (кПа)
А1 0 339 40,9 256
А2 0 335 38,3 248
А3 0 318 35,1 209
А4 0 275 29,6 144
В1 2 279 31,8 188
В2 4 287 32,9 214
В3 5 301 37,7 254
В4 8 337 44,2 311
С1 2 268 32,0 180
С2 4 282 35,0 222
С3 6 291 37,4 250
С4 8 310 41,9 282

Пример 3

А) Бумажный продукт получают с таким же составом, как промышленный картон, с массой единицы продукции 250 г/м2 с использованием динамической установки формо