Универсальная высокоэффективная навигационная система

Иллюстрации

Показать все

Изобретение относится к навигации, а именно к спутниковым способам навигации, и может быть использовано для определения положения объекта. Технический результат заключается в повышении эффективности и обеспечении навигации с высоким уровнем интеграции и защищенности. Для этого навигация осуществляется с помощью сигналов спутников на низкой околоземной орбите (LEO), с использованием также сигналов от двух источников дальномерных сигналов для определения калибровочной информации, связанной с ними, при этом положение вычисляется при помощи навигационного сигнала, первого и второго дальномерных сигналов и калибровочной информации. Также возможно обеспечение множества каналов передачи на множестве временных интервалов передачи с использованием псевдослучайных помех (PRN) и объединением каналов связи и навигационных каналов в сигнал LEO. Способ также включает в себя широковещательную передачу сигнала LEO от спутника LEO, представлена также восходящая линия передачи данных спутника на низкой околоземной орбите (LEO). Представлены также различные подходы к локализованной постановке преднамеренных помех для навигационных сигналов. 2 н. и 12 з.п. ф-лы, 34 ил., 4 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится в целом к навигации и, более конкретно, к спутниковым способам навигации.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Эффективность навигационной системы можно определить по распределению ошибок в навигационных измерениях (например, точность), выполняемых системой. Эффективность системы может также зависеть от ее способности своевременно выдавать предупреждения пользователям, когда ее не следует использовать (например, достоверность). Эффективность можно также измерять промежутком времени, который требуется навигационной системе для первого определения местоположения после холодного запуска (например, время до первого определения местоположения). Кроме того, эффективность системы может зависеть от отрезка времени или определенных обстоятельств, при которых заданные параметры эффективности находятся в заданных пределах (например, доступность).

К сожалению, навигационные сигналы связи, подаваемые различными существующими навигационными системами, зачастую не обеспечивают удовлетворительной эффективности системы. В частности, мощность сигнала, полоса пропускания и геометрические факторы для таких навигационных сигналов в целом недостаточны для удовлетворения потребностей многих сценариев использования, на которые существует спрос.

Существующие подходы к навигации, основанные, например, на сигналах Глобальной системы определения местоположения (GPS), часто дают недостаточную мощность сигнала или обладают недостаточной геометрией для легкого проникновения в здания или в пространство между городскими домами. Такие сигналы могут также подвергаться воздействию преднамеренных помех во враждебных окружающих средах и могут помешать их использованию в чрезвычайных ситуациях. Другие подходы к навигации, основанные, например, на сотовом телефоне или телевизионных сигналах, обычно испытывают недостаток в вертикальной навигационной информации.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с одним вариантом выполнения изобретения способ осуществления навигации включает в себя прием сигнала с низкой околоземной орбиты (LEO) от спутника LEO; декодирование навигационного сигнала из сигнала LEO; прием первого и второго дальномерных сигналов соответственно от первого и второго источников дальномерных сигналов; определение калибровочной информации, связанной с первыми и вторыми источниками дальномерных сигналов; и вычисление положения при помощи навигационного сигнала, первого и второго дальномерных сигналов и калибровочной информации.

В соответствии с другим вариантом выполнения изобретения навигационное устройство включает в себя антенну, выполненную с возможностью принимать сигнал LEO от спутника LEO и принимать первый и второй дальномерные сигналы соответственно от первого и второго источников дальномерных сигналов; процессор приемника, выполненный с возможностью преобразования с понижением частоты сигнала LEO для дальнейшей обработки; и навигационный процессор, выполненный с возможностью декодирования навигационного сигнала из сигнала LEO и выполненный с возможностью вычисления положения навигационного устройства при помощи навигационного сигнала, первого и второго дальномерных сигналов и калибровочной информации, связанной с первым и вторым источниками дальномерных сигналов.

В соответствии с еще одним вариантом выполнения изобретения навигационное устройство включает в себя средство приема сигнала LEO от спутника LEO; средство декодирования навигационного сигнала из сигнала LEO; средство приема первого и второго дальномерных сигналов соответственно от первого и второго источников дальномерных сигналов; средство определения калибровочной информации, связанной с первым и вторым источниками дальномерных сигналов; и средство вычисления положения при помощи навигационного сигнала, первого и второго дальномерных сигналов и калибровочной информации.

В соответствии с еще одним вариантом выполнения изобретения способ подачи сигнала LEO от спутника LEO включает в себя обеспечение множества каналов передачи на множестве временных интервалов передачи, причем каналы передачи включают в себя набор каналов связи и набор навигационных каналов; выработку первого дальномерного перекрывающего сигнала на основе псевдослучайных помех (PRN), соответствующего навигационному сигналу; применение первого дальномерного перекрывающего сигнала на основе PRN к первому набору навигационных каналов; объединение каналов связи и навигационных каналов в сигнал LEO; и широкополосную передачу сигнала LEO от спутника LEO.

В соответствии с еще одним вариантом выполнения изобретения спутник LEO содержит антенну, выполненную с возможностью передачи сигнала LEO от спутника LEO; и процессор, выполненный с возможностью обеспечения множества каналов передачи на множество временных интервалов передачи, причем каналы передачи включают в себя набор каналов связи и набор навигационных каналов, выработки первого дальномерного перекрывающего сигнала на основе PRN, соответствующего навигационному сигналу, применения первого дальномерного перекрывающего сигнала на основе PRN к первому набору навигационных каналов и объединения каналов связи и навигационных каналов в сигнал LEO.

В соответствии с еще одним вариантом выполнения изобретения спутник LEO содержит средство обеспечения множества каналов передачи на множестве временных интервалов передачи, причем каналы передачи включают в себя набор каналов связи и набор навигационных каналов; средство выработки первого дальномерного перекрывающего сигнала на основе PRN, соответствующего навигационному сигналу; средство применения первого дальномерного перекрывающего сигнала на основе PRN к первому набору навигационных каналов; средство объединения каналов связи и навигационных каналов в сигнал LEO; и средство передачи сигнала LEO от спутника LEO.

В соответствии с еще одним вариантом выполнения изобретения способ предоставления данных по восходящего каналу связи на спутник LEO включает в себя определение информации о положении при помощи использования сигнала LEO, принятого от спутника LEO, причем первый дальномерный сигнал принимают от первого источника дальномерного сигнала, а второй дальномерный сигнал принимают от второго источника дальномерного сигнала; определение параметра опережения при помощи привязки к локальным часам и привязки к часам спутника LEO; подготовку сигнала передачи данных по восходящей линии связи, включающего в себя данные для передачи по восходящей линии связи, которые подлежат передаче на спутник LEO; синхронизацию сигнала передачи данных по восходящей линии связи со спутником LEO при помощи параметра опережения; и передачу сигнала передачи данных по восходящей линии связи на спутник LEO.

В соответствии с еще одним вариантом выполнения изобретения устройство передачи данных по восходящей линии связи включает в себя антенну, выполненную с возможностью приема сигнала LEO от спутника LEO, приема первого и второго дальномерных сигналов соответственно от первого и второго источников дальномерных сигналов и широковещательной передачи сигнала передачи данных по восходящей линии связи на спутник LEO; и процессор, выполненный с возможностью определения информации о положении при помощи сигнала LEO, первого дальномерного сигнала и второго дальномерного сигнала, определения параметра опережения при помощи привязки к локальным часам и привязки к часам спутника LEO, подготовки сигнала передачи данных по восходящей линии связи, включающего в себя данные для передачи по восходящей линии связи, которые подлежат передаче на спутник LEO, и синхронизации сигнала передачи данных по восходящей линии связи со спутником LEO при помощи параметра опережения.

В соответствии с еще одним вариантом выполнения изобретения устройство передачи данных по восходящей включает в себя средство определения информации положения при помощи сигнала LEO, принятого от спутника LEO, первого дальномерного сигнала, принятого от первого источника зондирующего сигнала, и второго дальномерного сигнала, принятого от второго источника дальномерного сигнала; средство определения параметра опережения при помощи привязки к локальным часам и привязки к часам спутника LEO; средство подготовки сигнала передачи данных по восходящей линии связи, который подлежит передаче на спутник LEO; средство синхронизации сигнала передачи данных по восходящей линии связи со спутником LEO при помощи параметра опережения; и средство широковещательной передачи сигнала передачи данных по восходящей линии связи на спутник LEO.

В соответствии с еще одни вариантом выполнения изобретения навигационный сигнал содержит по меньшей мере часть сигнала LEO, подаваемого спутником LEO, способ создания локализованной преднамеренной помехи для навигационного сигнала включает в себя фильтрацию источника шума во множество частотных диапазонов для получения множества фильтрованных шумовых сигналов в этих частотных диапазонах, причем навигационный сигнал распределен по множеству каналов сигнала LEO, при этом каналы распределены по частотным диапазонам и множеству временных интервалов; создание последовательности PRN, соответствующей последовательности модуляции, используемой спутником LEO для распределения навигационного сигнала по каналам; модуляцию фильтрованных шумовых сигналов при помощи последовательности PRN для получения множества модулированных шумовых сигналов; и широковещательную передачу модулированных шумовых сигналов по зоне действий для обеспечения множества всплесков преднамеренной помехи, соответствующих навигационному сигналу, причем всплески преднамеренной помехи выполнены с возможностью по существу маскировать навигационный сигнал в зоне действий.

В соответствии с другим вариантом выполнения изобретения навигационный сигнал содержит по меньшей мере часть сигнала LEO, выдаваемого спутником LEO, устройство для преднамеренной помехи, выполненное с возможностью создания локализованной преднамеренной помехи для навигационного сигнала, включает в себя источник шума, выполненный с возможностью обеспечения шумового сигнала; множество фильтров, выполненных с возможностью фильтрации шумового сигнала во множество частотных диапазонов для создания множества фильтрованных шумовых сигналов в этих частотных диапазонах, причем навигационный сигнал распределен по множеству каналов сигнала LEO, при этом каналы распределены по частотным диапазонам и по множеству временных интервалов; генератор последовательности PRN, выполненный с возможностью обеспечения последовательности модуляции, используемой спутником LEO для распределения навигационного сигнала по каналам; множество генераторов колебаний, выполненных с возможностью модуляции фильтрованных шумовых сигналов при помощи последовательности PRN для обеспечения множества модулированных шумовых сигналов; и антенну, выполненную с возможностью широковещательной передачи модулированных шумовых сигналов по зоне действий для обеспечения множества всплесков преднамеренной помехи, соответствующих навигационному сигналу, причем всплески преднамеренной помехи выполнены с возможностью по существу маскировать навигационный сигнал в зоне действий.

В соответствии с еще одним вариантом выполнения изобретения навигационный сигнал содержит по меньшей мере часть сигнала LEO, подаваемого спутником LEO, устройство преднамеренной помехи, выполненное с возможностью создания локализованной помехи для навигационного сигнала, включает в себя средство фильтрации источника шума во множество частотных диапазонов для обеспечения множества фильтрованных шумовых сигналов в этих частотных диапазонах, причем навигационный сигнал распределен по множеству каналов сигнала LEO, при этом каналы распределены по частотным диапазонам и по множеству временных интервалов; средство создания последовательности PRN, соответствующей последовательности модуляции, используемой спутником LEO, для распределения навигационного сигнала по каналам; средство модуляции фильтрованных шумовых сигналов при помощи созданных последовательностей PRN для обеспечения множества модулированных шумовых сигналов; и средство широковещательной передачи модулированных шумовых сигналов по зоне действий для обеспечения множества всплесков преднамеренной помехи, соответствующих навигационному сигналу, причем всплески преднамеренной помехи выполнены с возможностью по существу маскировать навигационный сигнал в зоне действий.

Объем изобретения определяется формулой изобретения, которая включена в настоящий раздел посредством ссылки. Более полное понимание вариантов выполнения настоящего изобретения, а также раскрытие других его преимуществ будет предоставлено специалистам в данной области техники в виде нижеприведенного подробного описания одного или нескольких вариантов выполнения. При этом даются ссылки на прилагаемые листы чертежей, перед чем приводится их краткое описание.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 содержит общий вид комплексной высокоэффективной системы навигации и связи в соответствии с вариантом выполнения изобретения.

Фиг.2 также содержит общий вид системы на Фиг.1 в соответствии с вариантом выполнения изобретения.

Фиг.3 иллюстрирует общую схему работы системы на Фиг.1 в соответствии с вариантом выполнения изобретения.

Фиг.4 иллюстрирует подход к реализации сигналов с низкой околоземной орбиты в соответствии с вариантом выполнения изобретения.

Фиг.5 иллюстрирует автокорреляционную функцию, связанную с сигналами с низкой околоземной орбиты, в соответствии с вариантом выполнения изобретения.

Фиг.6 иллюстрирует процесс декодирования военной навигационной компоненты сигнала с низкой околоземной орбиты в соответствии с вариантом выполнения изобретения.

Фиг.7 иллюстрирует блок-схему коррелятора навигационного устройства в соответствии с вариантом выполнения изобретения.

Фиг.8 иллюстрирует процесс декодирования коммерческой навигационной компоненты сигнала с низкой околоземной орбиты в соответствии с вариантом выполнения изобретения.

Фиг.9 иллюстрирует альтернативный процесс декодирования коммерческой навигационной компоненты сигнала с низкой околоземной орбиты в соответствии с вариантом выполнения изобретения.

Фиг.10 иллюстрирует процесс декодирования гражданской навигационной компоненты сигнала с низкой околоземной орбиты в соответствии с вариантом выполнения изобретения.

Фиг.11 иллюстрирует сравнение между навигационными компонентами сигнала с низкой околоземной орбиты и кодов GPS в соответствии с вариантом выполнения изобретения.

Фиг.12 иллюстрирует блок-схему устройства для преднамеренных помех, которое можно применять для создания локализованных преднамеренных помех для навигационных сигналов, в соответствии с вариантом выполнения изобретения.

Фиг.13 содержит представление в частотной и временной области работы устройства для преднамеренных помех на Фиг.12 в соответствии с вариантом выполнения изобретения.

Фиг.14 иллюстрирует процесс создания псевдослучайных помех в соответствии с вариантом выполнения изобретения.

Фиг.15 иллюстрирует процесс построения равномерно распределенных целых чисел диапазона модулей из совокупности выбора канала в соответствии с вариантом выполнения изобретения.

Фиг.16 иллюстрирует процесс преобразования пула выбора канала в список случайных неперекрывающихся каналов в соответствии с вариантом выполнения изобретения.

Фиг.17 иллюстрирует схему скачкообразного изменения частоты, вырабатываемую процессом на Фиг.16, в соответствии с вариантом выполнения изобретения.

Фиг.18 иллюстрирует блок-схему процессора приемника, выполненного с возможностью приема и дискретизации навигационных сигналов для преобразования с понижением частоты в соответствии с вариантом выполнения изобретения.

Фиг.19 иллюстрирует блок-схему навигационного процессора, выполненного с возможностью выполнения обработки дальномерного сигнала, в соответствии с вариантом выполнения изобретения.

Фиг.20 иллюстрирует определение различных параметров состояния, используемых навигационным процессором на Фиг.19, в соответствии с вариантом выполнения изобретения.

Фиг.21 иллюстрирует блок-схему модуля слежения, выполненного с возможностью осуществления слежения за сигналом, в соответствии с вариантом выполнения изобретения.

Фиг.22-29 иллюстрируют различные примеры применения навигационной системы для выполнения навигации в различной окружающей среде в соответствии с различными вариантами выполнения изобретения.

Фиг.30 иллюстрирует универсальную структуру кадра восходящей линии связи спутника на низкой околоземной орбите в соответствии с вариантом выполнения изобретения.

Фиг.31 иллюстрирует наземную инфраструктуру для синхронизации восходящей линии связи передачи данных для спутника на низкой околоземной орбите в соответствии с вариантом выполнения изобретения.

Фиг.32 иллюстрирует реализацию сигнала для передачи данных низкого уровня по восходящей линии связи в соответствии с вариантом выполнения изобретения.

Фиг.33 иллюстрирует блок-схему передатчика для поддержки восходящей линии связи передачи данных для спутника на низкой околоземной орбите в соответствии с вариантом выполнения изобретения.

Фиг.34 иллюстрирует блок-схему различных компонентов восходящей линии связи передачи данных для спутника на низкой околоземной орбите в соответствии с вариантом выполнения изобретения.

Для понимания вариантов выполнения настоящего изобретения и их преимуществ лучше всего обратиться к нижеследующему подробному описанию. Следует понимать, что подобные номера позиций используются для указания подобных элементов, приведенных на одном или нескольких чертежах.

ПОДРОБНОЕ ОПИСАНИЕ

В соответствии с различными вариантами выполнения можно применять систему, использующую спутники на низкой околоземной орбите (LEO) для реализации различных навигационных сигналов с целью обеспечения навигации с высоким уровнем интеграции. В систему могут быть встроены пассивные дальномерные сигналы от спутников LEO и других не-LEO передатчиков.

Опорная сеть наблюдательных станций может оценить отклонение часов, структуру сигнала и местоположение передатчика либо эфемериду различных платформ, с которых передаются пассивные дальномерные сигналы. Эта полученная в результате оценки информация (называемая также калибровочной информацией) может передаваться различным навигационным устройствам по линии передачи данных для связи со спутниками LEO или по другим линиям передачи данных.

Для осуществления высокоточной навигации навигационные устройства могут быть выполнены с возможностью смешивать информацию широковещательной передачи и несколько различных типов сигналов. Широковещательный сигнал LEO может быть реализован в виде военных, коммерческих и гражданских навигационных сигналов для обеспечения разделения потребителей по различным навигационным сигналам и для обеспечения распределения расходов на инфраструктуру. Может быть также предложена комплексная широкополосная восходящая линия связи с низкой вероятностью перехвата и обнаружения (LPI/D).

Если теперь обратиться к чертежам, изображения на которых приведены исключительно с целью иллюстрации вариантов выполнения настоящего изобретения, а не с целью его ограничения, то на Фиг.1 приведен общий вид комплексной высокоэффективной системы 100 навигации и связи (называемой также системой iGPS) в соответствии с вариантом выполнения изобретения. Система 100 может включать в себя навигационное устройство 102 (называемое также пользовательским оборудованием, пользовательским устройством и (или) пользовательским навигационным устройством), реализованное при помощи соответствующих аппаратных и (или) программных средств для приема и декодирования сигналов от различных космических и наземных источников дальномерных сигналов для осуществления навигации. Такие сигналы могут включать, например, спутниковые широковещательные сигналы от GPS, LEO (например, Indium или Globalstar), широкозонной усиливающей системы (WAAS), европейской геостационарной дополнительной навигационной системы (EGNOS), многофункциональной спутниковой усиливающей системы (MSAS), системы Galileo, квазизенитной спутниковой системы (QZSS), и (или) спутников мобильных спутниковых предприятий (MSV). Такие сигналы могут также включать в себя наземные широковещательные сигналы от опор сотовой связи, телевизионных опор, WiFi, WiMAX, узлов национальной интеграции инфраструктуры транспортных средств (VII) и от других соответствующих источников.

В примере, приведенном на Фиг.1, навигационное устройство 102 может быть выполнено с возможностью приема сигналов глобальной системы 106 определения местоположения (GPS) (например, защищенных и (или) незащищенных сигналов GPS) от обычных навигационных спутников. Кроме того, навигационное устройство 102 может также принимать сигналы 104 от различных спутников 108 на низкой околоземной орбите (LEO). В связи с этим каждый из сигналов 104 LEO (называемые также сигналами iGPS) может представлять собой составной сигнал, включающий в себя сигнал 104А связи, военный навигационный сигнал 104В, коммерческий навигационный сигнал 104С и гражданский навигационный сигнал 104D. Такая реализация позволяет спутникам 108 LEO одновременно обслуживать военных, коммерческих и гражданских пользователей и позволяет таким пользователям распределять расходы на эксплуатацию системы 100.

В одном примере спутники 108 LEO могут представлять собой спутники существующей системы связи (например, Iridium или Globalstar), которые были модифицированы и (или) видоизменены для поддержки системы 100, описанной в настоящем документе. Как также показано на Фиг.1, спутники 108 LEO могут быть выполнены с возможностью поддержки сигналов 110 межспутниковых линий связи между различными спутниками 108 LEO.

При помощи сигналов 106 GPS и (или) сигналов 104 LEO навигационное устройство 102 может с высокой точностью вычислить свое положение (и, соответственно, положение связанного с ним пользователя). Вычисленные данные о положении, определенные таким образом (и другие данные, которые могут потребоваться), можно затем передать по восходящей линии связи на спутники 108 LEO при помощи описанной в настоящем документе восходящей линии передачи данных с расширенным спектром.

Кроме того, навигационное устройство 102 может быть выполнено с возможностью приема и выполнения навигации при помощи широковещательных сигналов от других спутниковых и наземных источников дальномерных сигналов, что может потребоваться в определенных вариантах выполнения. Кроме того, навигационное устройство 102 может быть снабжено инерциальным измерительным блоком (IMU), например устройством с микроэлектромеханической системой (MEMS), для обеспечения описанной в настоящем документе защиты от преднамеренных помех.

Навигационное устройство 102 может быть реализовано в любой требуемой конфигурации, которая может соответствовать определенным областям применения. Например, в различных вариантах выполнения навигационное устройство 102 может быть реализовано в виде переносного навигационного устройства, навигационного устройства на транспортном средстве, навигационного устройства на летательном аппарате или устройства иного типа.

На Фиг.2 приведен еще один общий вид системы 100 в соответствии с вариантом выполнения изобретения. В частности, на Фиг.2 приведены спутники 108 LEO и спутники 202 GPS на орбите вокруг Земли. Кроме того, на Фиг.2 дополнительно приведены различные аспекты инфраструктурных подсистем системы 100. Например, система 100 может включить в себя опорную сеть 204, выполненную с возможностью приема сигналов 104 LEO или других дальномерных сигналов, наземную инфраструктуру 206 GPS и наземную инфраструктуру 208 LEO. Должно быть понятно, что в различных вариантах выполнения системы 100 могут иметь и другие космические и (или) наземные компоненты.

На Фиг.3 приведена общая схема работы системы 100 в соответствии с вариантом выполнения изобретения. Должно быть понятно, что хотя на Фиг.3 приведено множество подсистем, не все такие подсистемы обязательно должны содержаться во всех вариантах выполнения системы 100.

Как показано на Фиг.3, спутники 108 LEO движутся с высокой угловой скоростью относительно навигационных устройств 102 и различных приведенных на чертеже наземных подсистем. Это быстрое угловое движение может способствовать разрешению наземными подсистемами неоднозначностей, связанных с цикличностью. Кроме того, сигналы 104 LEO могут быть реализованы с более высокой мощностью по сравнению с обычными навигационными сигналами 106. Кроме того, сигналы 104 LEO могут также обеспечить проникновение сквозь препятствия или здания.

Сигналы 104 LEO могут включать в себя линию связи для дальномерных и информационных сигналов к различным наземным терминалам. Как показано на Фиг.3, такие терминалы могут включать в себя географически распределенную опорную сеть 204 и навигационные устройства 102 (показанное в данном примере в виде сотового телефона, устройства MEMS и автомобиля).

Показаны также различные спутники, в том числе спутники 202 GPS, спутники 306 системы "Галилео", спутники 302 WAAS, и спутники 304 QZSS/MSV, каждый из которых может быть выполнен с возможностью широковещательной передачи дальномерных и информационных сигналов по нисходящей линии связи к опорной сети 204 и навигационным устройствам 102 в соответствии с различными вариантами выполнения.

Следует иметь в виду, что для большей ясности некоторые дальномерные сигналы на Фиг.3 не показаны. Например, в одном варианте выполнения все изображенные спутники могут быть выполнены с возможностью широковещательной передачи ко всем навигационным устройствам 102 и к опорной сети 204.

Как также показано на Фиг.3, опорной сетью 204 и навигационными устройствами 102 могут контролироваться различные дальномерные сигналы 318 от множества источников 310 дальномерных сигналов. Опорная сеть 204 может быть выполнена с возможностью определения характеристик каждого источника 310 дальномерных сигналов для предоставления калибровочной информации, связанной с каждым источником дальномерных сигналов. Такая информация может передаваться на спутник 108 LEO по соответствующей восходящей линии 320 передачи данных, закодированная спутником 108 LEO в один или несколько военных, коммерческих или навигационных сигналов 104B/104C/104D сигнала 104 LEO, и передаваться способом широковещательной передачи на навигационные устройства 102 в качестве составной части сигнала 104 LEO. После этого навигационные устройства 102 могут использовать калибровочную информацию для обработки дальномерных сигналов 318 с целью выполнения навигации в сочетании с дальномерными измерениями, выполненными при помощи сигналов 104 LEO.

В целом различные передатчики могут передавать временные (и, следовательно, дальномерные) характеристики. В этой связи для универсального источника дальномерных сигналов связанный с ним дальномерный сигнал может быть принят опорной сетью 204 и навигационными устройствами 102. Опорная сеть 204 может определить калибровочную информацию, связанную с дальномерным сигналом, и телеметрировать такую калибровочную информацию навигационным устройствам 102 по информационной восходящей линии связи со спутниками 108 LEO и (или) по наземным линиям связи.

Например, на Фиг.3 приведены сигналы 106 GPS, принимаемые одним из источников 310 дальномерных сигналов, реализованных в виде узла WiFi. Если возможность измерять временные характеристики (что эквивалентно дальномерным характеристиками, если умножить на скорость света) заданных атрибутов сигнала WiFi реализована в приемнике GPS, то этот приемник может одновременно измерять время приема сигналов WiFi и GPS. Можно вычислить разность между этими величинами, осуществить привязку ко времени и передать опорной сети 204 для обеспечения калибровочной информации, связанной с узлом WiFi. В ответ на прием сигнала 106 GPS и иного типа дальномерных сигналов 318 можно посредством опорной сети 204 определить дополнительную калибровочную информацию. В каждом случае опорная сеть 204 может телеметрировать в режиме реального времени калибровочную информацию, связанную с узлом WiFi, навигационным устройствам 102 через спутник 104 LEO по восходящей линии 320 связи и при помощи сигнала 104 LEO (например, по космическим линиям связи). Калибровочную информацию можно также предоставить навигационным устройствам 102 по наземным линиям связи. При этом каждый источник 310 дальномерных сигналов необязательно должен быть в пределах видимости всех узлов опорной сети 204, если имеется сеть 316 (например, Интернет) между различными наземными узлами.

Как сказано выше, спутники 108 LEO могут быть реализованы в виде спутников связи (например, спутников системы Indium или Globalstar), которые подверглись модификации и (или) видоизменению, как описано в настоящем документе, для поддержки навигационных характеристик системы 100. Приведенные ниже таблицы 1 и 2 содержат различные характеристики спутников связи Indium и спутников связи Globalstar, которые можно использовать в качестве спутников 108 LEO в соответствии с различными вариантами осуществления:

Таблица 1
На основе архитектуры сотовых телефонов GSM
И FDMA, и TDMA
Разделение каналов 41,667 кГц
Полоса частот на нисходящей линии связи 10,5 МГц
40% квадратурная фазовая модуляция по закону корня приподнятого косинуса при 25000 о/с
Кадр 90 мс
Временные интервалы: (1) нисходящий симплекс, (4) 8,28 мс восходящий дуплекс; (4) 8,28 мс нисходящий дуплекс
Таблица 2
На основе архитектуры сотовых телефонов CDMA IS-95
И FDMA, и CDMA
Разделение каналов 1,25 МГц
Полоса частот на нисходящей линии связи 16,5 МГц
Ретранслятор типа "прямая дыра"

В одном примере, в котором для реализации спутников 108 LEO используются спутники связи системы Indium, полетные компьютеры спутников связи Indium можно перепрограммировать при помощи соответствующего программного обеспечения для облегчения обработки навигационных сигналов. В другом примере реализации спутников 108 LEO используются спутники связи системы Globastar, спутниковая архитектура типа "прямая дыра" позволяет модернизировать наземное оборудование для обеспечения множества новых форматов сигнала.

В вариантах выполнения, в которых спутники 108 LEO реализованы при помощи спутников связи, спутники связи могут быть выполнены с возможностью поддержки сигналов связи, а также навигационных сигналов. В этом смысле такие навигационные сигналы могут быть реализованы для учета различных факторов, таких как подавление многолучевого распространения, точность определения дальности, взаимная корреляция, устойчивость к преднамеренным и случайным помехам и безопасность, включая избирательный доступ, меры противодействия радиолокационным ловушкам и низкую вероятность перехвата.

На Фиг.4 приведен подход к реализации сигналов 104 LEO в соответствии с вариантом выполнения изобретения. В частности, блоки 410, 420 и 430 на Фиг.4 иллюстрируют структуру сигналов, переданных и принятых спутниками 108 LEO, для обеспечения поддержки сигналам связи и навигационным сигналам, причем спутники 108 LEO реализованы при помощи существующих спутников связи системы Indium. В блоках 410, 420 и 430 частота отложена по горизонтальной оси, время течет в направлении вглубь страницы, а спектральная плотность мощности отложена по вертикальной оси.

В одном варианте выполнения спутник 108 LEO может быть выполнен с возможностью поддержки множества каналов, реализованных в виде множества интервалов 402 передачи и множества интервалов 404 приема, формируемых по типу множественного доступа с временным разделением каналов (TDMA) на кадре шириной 90 мс и затем формируемых по типу множественного доступа с частотным разделением каналов (FDMA) на полосе частот шириной 10 МГц. При этом следует понимать, что каждый канал может соответствовать определенному интервалу передачи или приема в кадре, представленном в определенном частотном диапазоне. Например, в одном варианте выполнения спутник 108 LEO может быть реализован для поддержки передачи приблизительно 960 каналов с 240 частотными диапазонами, обеспечивающими 4 временных интервала на кадр (например, 240 диапазонов частот × 4 временных интервала = 960 каналов).

Как показано в блоке 410, некоторые из интервалов 402 передачи и интервалов 404 приема могут относиться к существующим системами связи (например, на Фиг.4 это показано в виде телефонных вызовов 440). Используемые интервалы 402 передачи могут соответствовать данным, предоставляемым посредством сигнала 104А связи сигнала 104 LEO, переданного спутником 108 LEO.

Следует иметь в виду, что в варианте выполнения, показанном в блоке 410, множество интервалов 402 передачи остаются неиспользуемыми. В соответствии с различными вариантами выполнения изобретения неиспользуемая пропускная способность неиспользуемых интервалов 402 передачи может быть использована для поддержки навигационных сигналов в соответствии с тем, как описано в настоящем документе.

Как показано в блоке 420, в каждый из оставшихся неиспользованных интервалов 402 передачи может быть введен дальномерный перекрывающий сигнал 422 псевдослучайных помех (PRN). Дальномерным перекрывающим сигналом 422 можно управлять при низкой средней мощности на поканальной основе, но при этом совокупный дальномерный перекрывающий сигнал 422 обладает высокой мощностью для преодоления преднамеренных помех. Напротив, в блоке 430 показан дальномерный перекрывающий сигнал 422, реализованный при помощи узкого луча максимальной мощности, создаваемого спутником 108 LEO.

В одном варианте выполнения дальномерный перекрывающий сигнал 422 может быть реализован при помощи комбинации скачкообразного изменения частоты и прямой последовательности PRN. Для компонента скачкообразного изменения частоты может быть выбрано подмножество частот на псевдослучайной основе для каждого всплеска. Затем в каждом всплеске выбираются также на псевдослучайной основе биты данных.

В одном варианте выполнения телефонным вызовам 440 может быть предоставлен приоритет в интервале 402 передачи над дальномерным перекрывающим сигналом, при этом на дальномерный перекрывающий сигнал 422 почти не влияют редкие пропущенные или искаженные всплески. В другом варианте выполнения дальномерному перекрывающему сигналу 422 может быть предоставлен приоритет в интервале 402 над телефонными вызовами 440, при этом на телефонные вызовы 440 точно также почти не влияют редкие пропущенные или искаженные всплески.

В одном варианте выполнения дальномерный перекрывающий сигнал 422 может быть реализован с максимально широкой полосой пропускания, которую только допускают правила выделения диапазона частот. В этом случае могут использоваться все доступные каналы, и могут использоваться различные способы множественного доступа с частотным, временным или кодовым разделением каналов (CDMA) для создания сигнала нисходящей линии связи, который выглядит подобно плоскому белому шуму, если пользователь не знает код. Такая равномерность дает сигнал, который хорошо подходит для обеспечения точности, устойчивости к преднамеренным помехам и подавлению многолучевого распространения. Взаимная корреляция может быть сведена к минимуму при помощи соответствующего алгоритма шифрования, возможность реализации которого обеспечивает быстрая обработка цифрового сигнала в навигационном устройстве 102.

В одном варианте выполнения сигнал 104 LEO может быть реализован в виде комплексного сигнала s(t) от времени t, как показано в следующем уравнении:

В вышеуказанном уравнении А - амплитуда сигнала, n - индекс символа, р - значение псевдослучайного шума прямой последовательности, которая может быть ±1, h - импульсна