Способы и устройства для повышения производительности и обеспечения возможности быстрого декодирования передач с несколькими кодовыми блоками

Иллюстрации

Показать все

Изобретение относится к передаче данных в системе связи. Технический результат - повышение помехозащищенности. Для этого способ включает в себя разделение элементов ресурсов из нескольких кодовых блоков на разные группы и декодирование кодированных разрядов элементов ресурсов в каждой группе без ожидания полного приема транспортного блока для начала декодирования. Способ включает в себя разделение кодированных разрядов из нескольких кодовых блоков на разные группы и декодирование кодовых блоков, содержащих кодированные разряды, в каждой группе. Первый CRC присоединяется к транспортному блоку, а второй CRC присоединяется, по меньшей мере, к одному кодовому блоку из транспортного блока. Способ конфигурации усовершенствованного перемежителя канала, включающего преобразование из кодированных разрядов разных кодовых блоков в символы модуляции и преобразование из символов модуляции во временные, частотные и пространственные ресурсы, чтобы гарантировать, что каждый кодовый блок получает приблизительно одинаковый уровень защиты. 13 н. и 35 з.п. ф-лы, 34 ил., 5 табл.

Реферат

УРОВЕНЬ ТЕХНИКИ

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам и устройствам для передачи данных в системе связи, более конкретно к способам и устройствам для повышения производительности передачи с несколькими кодовыми блоками и предоставления возможности быстрого декодирования передач с несколькими кодовыми блоками в системе связи.

Уровень техники

Мультиплексирование с ортогональным частотным разделением (OFDM) является технологией для мультиплексирования данных в частотной области. Символы модуляции переносятся на поднесущих частоты, и поднесущие перекрываются друг с другом в частотной области. Тем не менее, ортогональность поддерживается на частоте дискретизации в предположении, что передатчик и приемник обладают безупречной синхронизацией частоты. В случае ухода частоты из-за несовершенной синхронизации частоты или из-за высокой подвижности ортогональность поднесущих на частотах дискретизации нарушается, приводя к помехам между несущими (ICI).

Часть с циклическим префиксом (CP) в принятом сигнале часто искажается предыдущим символом мультиплексирования с ортогональным частотным разделением (OFDM) в многолучевом замирании. Когда часть с циклическим префиксом (CP) достаточно длинная, принятый символ мультиплексирования с ортогональным частотным разделением (OFDM) без части с циклическим префиксом (CP) должен содержать только свой сигнал, свернутый каналом с многолучевым замиранием. Основное преимущество мультиплексирования с ортогональным частотным разделением (OFDM) над другими схемами передачи в том, что мультиплексирование с ортогональным частотным разделением (OFDM) демонстрирует надежность для компенсации многолучевого замирания.

Коллективный доступ с разделением по частоте с одной несущей (SC-FDMA), который использует модуляцию с одной несущей и коррекцию в частотной области, является методикой, которая обладает аналогичной производительностью и сложностью с таковыми у системы доступа с мультиплексированием с ортогональным частотным разделением (OFDMA). Коллективный доступ с разделением по частоте с одной несущей (SC-FDMA) выбирается в качестве схемы коллективного доступа восходящей линии связи в системе долгосрочного развития (LTE) Проекта партнерства третьего поколения (3GPP). LTE 3GPP является проектом в Проекте партнерства третьего поколения для совершенствования стандарта мобильных телефонов в Универсальной системе мобильных телекоммуникаций, чтобы справляться с будущими требованиями.

Гибридный автоматический запрос на повторение (HARQ) широко используется в системах связи для борьбы с ошибками декодирования и повышения надежности. N-канальный синхронный гибридный автоматический запрос на повторение (HARQ) часто используется в системах беспроводной связи из-за простоты N-канального синхронного гибридного автоматического запроса на повторение (HARQ). Синхронный гибридный автоматический запрос на повторение (HARQ) принят в качестве схемы HARQ для восходящей линии связи в системе долгосрочного развития (LTE) в 3GPP. На нисходящей линии связи в системах LTE в качестве схемы HARQ принят асинхронный адаптивный HARQ из-за его гибкости и дополнительных преимуществ по производительности над синхронным HARQ.

Системы связи с нескольким антеннами, которые часто называются системами со множеством входов и множеством выходов (MIMO), широко используются в беспроводной связи для повышения производительности систем связи. В системе MIMO передатчик имеет несколько антенн, допускающих передачу независимых сигналов, и приемник оборудован несколькими приемными антеннами. Многие схемы MIMO часто используются в продвинутой беспроводной системе.

Когда канал является подходящим, например когда скорость мобильной связи низкая, можно использовать замкнутую схему со множеством входов и множеством выходов (MIMO) для повышения производительности системы. В замкнутых системах MIMO приемники сообщают по обратной связи передатчику условие в канале и/или предпочтительные схемы обработки передачи MIMO. Передатчик использует эту информацию обратной связи вместе с другими соображениями, например приоритетом планирования, доступностью данных и ресурсов, чтобы совместно оптимизировать схему передачи. Популярная замкнутая схема MIMO называется предварительным кодированием MIMO. С помощью предварительного кодирования потоки передаваемых данных предварительно умножаются на матрицу предварительного кодирования перед передачей к нескольким передающим антеннам.

Другая перспектива системы со множеством входов и множеством выходов (MIMO) в том, кодируются ли несколько потоков данных для передачи раздельно или вместе. Все уровни для передачи данных кодируются вместе в системе MIMO с единым кодовым словом (SCW), хотя все уровни могут кодироваться раздельно в системе MIMO с несколькими кодовыми словами (MCW). Как MIMO с одним пользователем (SU-MIMO), так и MIMO с несколькими пользователями (MU-MIMO) приняты в нисходящей линии связи системы долгосрочного развития (LTE). MU-MIMO также принята в восходящей линии связи системы долгосрочного развития (LTE), принятие SU-MIMO для восходящей линии связи системы долгосрочного развития (LTE), однако, все еще обсуждается.

В системе долгосрочного развития (LTE), когда транспортный блок большой, транспортный блок сегментируется на несколько кодовых блоков, чтобы могли формироваться несколько кодированных пакетов. Это разбиение транспортного блока обеспечивает такие преимущества, как предоставление возможности реализации параллельной обработки или конвейера и гибкий компромисс между потреблением энергии и сложностью аппаратных средств.

Разные схемы модуляции, например квадратурная фазовая манипуляция (QPSK), двухпозиционная фазовая манипуляция (BPSK), восьмипозиционная фазовая манипуляция (8-PSK), 16-позиционная квадратурная амплитудная модуляция (16-QAM) или 64-позиционная квадратурная амплитудная модуляция (64-QAM), могут использоваться для адаптивной модуляции и для увеличения спектральной эффективности модуляции. В случае модуляции 16-QAM четверки разрядов, b0b1b2b3, преобразуются в комплекснозначные символы модуляции x=I+jQ. Разные позиции модуляции, однако, имеют разные уровни защиты.

Когда передаются несколько кодовых блоков, производительность передачи диктуется кодовым блоком, который обладает наихудшей производительностью. Перемежитель канала, включающий преобразование из кодированных разрядов разных кодовых блоков в символы модуляции и преобразование из символов модуляции во временные, частотные и пространственные ресурсы, нужно тщательно проектировать, чтобы гарантировать, что каждый кодовый блок получает приблизительно одинаковый уровень защиты. Когда передаются несколько кодовых блоков, полезно разрешить приемнику начать декодирование некоторых кодовых блоков, пока приемник еще демодулирует символы модуляции для других кодовых блоков. В системе долгосрочного развития (LTE) это представляет проблему из-за плохого влияния на производительность оценки канала, если нет достаточного количества опорных сигналов во время демодуляции и декодирования.

Чтобы поддерживать хорошую производительность оценки канала, часто используется интерполяция опорных сигналов в выбранных элементах ресурсов, расположенных вокруг элемента ресурсов, который нужно оценить, чтобы получить оценку канала для элемента ресурсов с повышенной производительностью. Однако это означает, что демодуляция символа модуляции в элементе ресурсов, который нужно оценить, должна ждать, пока принимаются все элементы ресурсов, выбранные для оценки элемента ресурсов. Другими словами, если возникает необходимость в демодуляции элемента ресурсов, который нужно оценить, перед приемом символа мультиплексирования с ортогональным частотным разделением (OFDM), который содержит некоторые или все выбранные элементы ресурсов для оценки элемента ресурсов, производительность оценки канала для элементов ресурсов может сильно страдать.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задача настоящего изобретения - создание усовершенствованных способов и устройств передачи сигналов с несколькими кодовыми блоками.

Другая задача настоящего изобретения - создание усовершенствованной конфигурации перемежителей канала и усовершенствованных беспроводных приемников.

Другая задача настоящего изобретения - создание способов и устройств, дающих возможность быстрого декодирования нескольких кодовых блоков, наряду с поддержанием хорошей производительности оценки канала.

Другая задача настоящего изобретения - создание усовершенствованного способа и усовершенствованного устройства для передачи данных путем задействования быстрого декодирования передач сигналов, переносящих несколько кодовых блоков.

В одном варианте осуществления настоящего изобретения создается усовершенствованная конфигурация перемежителя канала и приемника, и принимается во внимание отдельный способ кодирования нескольких кодовых блоков, чтобы повысить производительность. Конфигурация перемежителя канала, включающего в себя преобразование из кодированных разрядов разных кодовых блоков в символы модуляции и преобразование из символов модуляции во временные, частотные и пространственные ресурсы, гарантирует, что каждый кодовый блок получает приблизительно одинаковый уровень защиты. На стороне приемника, когда некоторые кодовые блоки принимаются правильно, а некоторые нет, сигнал успешно декодированных кодовых блоков может быть восстановлен и аннулирован из принятого сигнала. После аннулирования приемник может попытаться повторно декодировать другие кодовые блоки. Взаимное влияние других кодовых блоков, которые еще не декодированы успешно, может по этой причине значительно снижаться, и вероятность того, что приемник сможет декодировать другие кодовые блоки, может соответственно значительно увеличиться.

В одном варианте осуществления изобретения перед передачей к каждому кодовому блоку добавляется CRC, чтобы обеспечить обнаружение ошибок для каждого кодового блока. После присоединения CRC транспортного блока, скремблирования разрядов и сегментации кодового блока CRC кодового блока присоединяется по меньшей мере к одному из кодовых блоков и передается сигнал. Отметим, что если имеется только один кодовый блок в транспортном блоке, то CRC кодового блока может быть ненужным. Служебная нагрузка от CRC может быть дополнительно уменьшена путем присоединения только одного CRC кодового блока для нескольких кодовых блоков перед передачей.

В настоящем изобретении предоставляется некоторое количество этапов для применения в усовершенствованной конфигурации перемежителя канала.

Этап 1

Во-первых, для каждого кодового блока символы S, P 1, P 2 предполагают соответственно систематические разряды, разряды четности от кодера 1 в турбокодере и разряды четности от кодера 2 в турбокодере. В одном варианте осуществления настоящего изобретения кодированные разряды после второго согласования скорости переставляются на основе кодовых блоков. Переставленные разряды могут использоваться для заполнения частотно-временных ресурсов и позиций модуляции в символах модуляции.

Этап 2

Во-вторых, эти разряды сначала заполняют пространство по измерению индекса частоты (то есть поднесущей). Затем они заполняют пространство по измерению индекса времени (то есть символа OFDM). Наконец они заполняют пространство по измерению индекса позиции модуляции. Другое упорядочение измерений, безусловно, возможно и охватывается настоящим изобретением.

Этап 3

В-третьих, для каждого индекса позиции модуляции и каждого символа мультиплексирования с ортогональным частотным разделением (OFDM) информационные разряды перемежаются по измерению частоты. Например, может использоваться перемежитель с обращенным порядком разрядов (BRO) или перемежитель с сокращенным обращенным порядком разрядов. Либо любой другой перемежитель может использоваться для этой цели. Иногда может использоваться один или несколько упрощенных шаблонов перетасовки. Например, могут использоваться циклические сдвиги или заданные шаблоны перемежения/перестановки/перетасовки/ обмена. Эти шаблоны могут меняться или не меняться для каждого символа OFDM и/или каждого индекса позиции модуляции. Иногда количество элементов ресурсов, доступное в каждом символе OFDM, может отличаться из-за разной степени исключения или использования другими каналами в этих символах OFDM. В этом случае перемежитель с разными размерами может использоваться на разных символах OFDM.

Этап 4

В-четвертых, для каждого индекса позиции модуляции и каждой поднесущей информационные разряды перемежаются по измерению времени. Например, может использоваться перемежитель с обращенным порядком разрядов (BRO) или перемежитель с сокращенным обращенным порядком разрядов. Либо любой другой перемежитель может использоваться для этой цели. Иногда может использоваться один или несколько упрощенных шаблонов перестановки. Например, могут использоваться циклические сдвиги или заданные шаблоны перемежения/перестановки/перетасовки/ обмена. Эти шаблоны могут меняться или не меняться для каждой позиции модуляции и/или индекса поднесущей. Иногда количество элементов ресурсов, доступное по каждому индексу поднесущей, может отличаться из-за разной степени исключения или использования другими каналами на этой поднесущей. В этом случае перемежитель с разными размерами может использоваться на разных поднесущих.

Этап 5

В-пятых, для каждой поднесущей и каждого символа OFDM информационные разряды перемежаются по измерению индекса позиции модуляции. Например, может использоваться перемежитель с обращенным порядком разрядов (BRO) или перемежитель с сокращенным обращенным порядком разрядов. Либо любой другой перемежитель может использоваться для этой цели. Иногда может использоваться один или несколько упрощенных шаблонов перестановки. Например, могут использоваться циклические сдвиги или заданные шаблоны перемежения/перестановки/перетасовки/ обмена. Эти шаблоны могут меняться или не меняться для каждой поднесущей и/или каждого символа OFDM. Предпочтительные шаблоны будут объясняться позже в настоящем изобретении.

Другой предпочтительный вариант осуществления конфигурации перемежителя канала состоит по меньшей мере из одного из пяти вышеизложенных этапов.

Вышеупомянутые варианты осуществления конфигурации перемежителя канала могут беспрепятственно распространяться на случай передач MIMO. Предположим, что несколько уровней выделяются кодовому слову MIMO. Этот сценарий может применяться к системам долгосрочного развития (LTE), например, когда передача SU-MIMO имеет ранг выше 1. В этом случае в конфигурацию перемежителя канала добавляется пространственное измерение. Пространство для кодированных разрядов может быть описано в виде четырехмерного пространства во времени, частоте, пространстве и позициях модуляции.

В другом варианте осуществления изобретения вышеупомянутые варианты осуществления распространяются на передачи MIMO с разными пространственными измерениями на разных элементах ресурсов.

В системе MIMO ранг (количество пространственных измерений или уровней) может отличаться на разных элементах частотных ресурсов. Вышеупомянутые варианты осуществления также могут распространяться на передачи с разным порядком модуляции на разных ресурсах. Например, если два блока ресурсов обладают очень разным CQI, передатчик может использовать разные порядки модуляции на этих двух блоках ресурсов. В этом случае по-прежнему применяется задача исполнения в максимальном расширении кодированных разрядов в каждом кодовом блоке по времени, частоте, пространству и позициям модуляции. Специальная обработка должна быть реализована для обработки случая разных пространственных измерений или разных порядков модуляции на разных частотно-временных ресурсах. Например, аналогично схеме элементов ресурсов может быть построена схема для включения пространственного измерения и измерения позиций модуляции. Уровни или позиции модуляции, которые не являются доступными, будут пропускаться.

В другом варианте осуществления изобретения задается приоритет систематических разрядов в преобразовании кодированных разрядов и символов модуляции, образованных этими кодированными разрядам, в элементы ресурсов и пространственные измерения.

Установление приоритетов систематического разряда также может быть реализовано путем задания нескольких областей по измерению позиций модуляции.

В другом варианте осуществления изобретения кодированные разряды каждого кодового блока распределяются как можно равномернее на разных позициях модуляции. Существуют различные пути достижения этой цели. Один подход состоит в перечислении всех шаблонов перестановки у позиций модуляции.

Может выбираться подмножество шаблонов перестановки. Например, один задающий шаблон перестановки вместе с его циклически сдвинутыми версиями может использоваться в качестве одного подмножества шаблонов.

Конечно, выбор подмножества шаблонов перестановки может быть различным и зависит от других проектных параметров. Например, не все циклические сдвиги необходимы в выбранном подмножестве. Могут выбираться циклические сдвиги из нескольких задающих шаблонов перестановки.

Разные предпочтительные задающие шаблоны перестановки и их циклические сдвиги могут быть получены путем считывания позиций по окружности, начиная с любой позиции и двигаясь либо по часовой стрелке, либо против часовой стрелки. Таким образом, достигается максимальное разделение позиций модуляции с одинаковым уровнем защиты. Этот способ также применим к другим порядкам модуляции. Хотя предпочтительны задающие шаблоны перестановки, которые формируются таким образом, и их циклические сдвиги, это изобретение, конечно, охватывает применение перемежения, перестановки, перетасовки, обмена, перестановки позиций модуляции на элементах ресурсов и/или по повторным передачам с любым шаблоном или в любом виде.

В другом варианте осуществления этого изобретения предлагается итеративная операция для приема нескольких кодовых блоков, которые мультиплексируются вместе внутри символов модуляции. С помощью вышеупомянутой конфигурации перемежителя канала кодированные разряды разных кодовых блоков мультиплексируются в один символ модуляции.

В операции декодирования также возможна параллельная обработка. После операции декодирования одни кодовые блоки могут успешно декодироваться, тогда как некоторые другие - нет. В этом случае кодовые блоки в тех декодированных кодовых блоках восстанавливаются. Вследствие того что кодированные разряды в этих блоках мультиплексируются в те же символы модуляции вместе с кодированными разрядами тех кодовых блоков, которые являются неуспешными, информация из этих кодированных разрядов используется для помощи в обнаружении кодированных блоков, которые все еще являются неуспешными.

В другом варианте осуществления настоящего изобретения уменьшенное созвездие может повысить производительность обнаружения у передачи.

В другом варианте осуществления настоящего изобретения итеративная операция может выполняться без правильного декодирования и повторного кодирования некоторых кодовых блоков. Вместо этого надежность кодированных и информационных разрядов может использоваться для прохождения через итерации, чтобы повысить производительность обнаружения. Одно представление надежности называется внешней информацией, которая является новой правдоподобной информацией о каждом разряде, который передается между несколькими блоками обработки в итерационном цикле.

В другом варианте осуществления изобретения несколько символов OFDM в субкадре разделяются на некоторое количество групп с границей между, по меньшей мере, двумя группами, расположенной в символах OFDM опорного сигнала (RS) или в тех символах OFDM непосредственно до или непосредственно после символов OFDM опорного сигнала. Каждая группа содержит элементы ресурсов, которые будут переносить кодированные разряды по меньшей мере из одного кодового блока. Элементы ресурсов в каждой группе являются смежными или близкими друг к другу во временной области. Поэтому приемник может начинать декодирование по меньшей мере одного кодового блока после приема всех элементов ресурсов в каждой группе. В разных ситуациях может использоваться разная конфигурация групп, например, но не только, разные UE [пользовательское оборудование], разные субкадры, разное качество обслуживания и т.д. без отклонения от сущности этого изобретения.

В другом варианте осуществления этого изобретения группы задаются на основе кодовых блоков вместо элементов ресурсов. Каждая группа содержит кодированные разряды по меньшей мере одного кодового блока и может содержать несколько кодовых блоков.

С помощью группы, заданной в вышеупомянутых вариантах осуществления на основе либо элементов ресурсов, либо кодовых блоков, остальные операции перемежения в канале могут задаваться в рамках каждой группы.

Вышеупомянутые варианты осуществления конфигурации перемежителя канала могут распространяться на случай передач MIMO. Когда передача SU-MIMO имеет ранг передачи выше 1, кодовому слову MIMO выделяются несколько уровней. В этом случае пространственное измерение может добавляться к определению одной группы. Поэтому может быть несколько уровней или потоков в рамках каждой группы, и может быть несколько групп в каждом уровне MIMO или потоке MIMO. В передаче MIMO с несколькими кодовыми словами уровни или потоки могут содержать несколько кодовых слов (CW) MIMO, каждое из которых переносит несколько кодовых блоков и 24-разрядный контроль циклическим избыточным кодом (CRC). Демодуляция поздних групп проводится параллельно декодированию ранних групп. С помощью CRC помехи от одного кодового слова на другое кодовое слово аннулируются путем последовательного подавления помех.

В другом варианте осуществления этого изобретения контроль циклическим избыточным кодом (CRC) может добавляться к одному или нескольким кодовым блокам в кодовом слове в рамках одной группы. При этом демодуляция поздних групп в одном кодовом слове, декодирование ранних групп в этом кодовом слове, последовательное подавление помех, демодуляция поздних групп в другом кодовом слове и декодирование ранних групп в другом кодовом слове могут обрабатываться параллельно тем или иным образом.

В другом варианте осуществления этого изобретения контроль циклическим избыточным кодом (CRC) может добавляться к группам нескольких кодовых слов MIMO в отдельности. В этом варианте осуществления может задействоваться параллельная обработка даже для итеративного приемника.

Несколько вариаций и конструкций приемника могут быть получены без отклонения от принципа этого изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Более полное понимание изобретения и многих его сопутствующих преимуществ будут полностью очевидны за счет более полного понимания на основании нижеследующего подробного описания при рассмотрении его в сочетании с сопровождающими чертежами, на которых одинаковые обозначения ссылок указывают одинаковые или аналогичные компоненты, где:

Фиг.1 - иллюстрация цепи приемопередатчика с мультиплексированием с ортогональным частотным разделением (OFDM), имеющей цепь передатчика и цепь приемника;

Фиг.2 - двухкоординатная иллюстрация ортогональности теории мультиплексирования с ортогональным частотным разделением (OFDM);

Фиг.3а - иллюстрация символа мультиплексирования с ортогональным частотным разделением (OFDM) во временной области на передатчике;

Фиг.3b - иллюстрация символа мультиплексирования с ортогональным частотным разделением (OFDM) во временной области на приемнике;

Фиг.4 - пример цепи приемопередатчика для коллективного доступа с разделением по частоте с одной несущей (SC-FDMA);

Фиг.5 - иллюстрация работы Гибридного автоматического запроса на повторение (HARQ);

Фиг.6 - пример четырехканального синхронного Гибридного автоматического запроса на повторение (HARQ);

Фиг.7 - иллюстрация системы со множеством входов и множеством выходов (MIMO);

Фиг.8 - иллюстрация процесса предварительного кодирования со множеством входов и множеством выходов (MIMO), который использован в замкнутой системе MIMO;

Фиг.9 - блок-схема алгоритма цепи кодирования для высокоскоростного совместно используемого канала данных (HS-DSCH) в высокоскоростном пакетном доступе по нисходящей линии связи (HSDPA);

Фиг.10 - иллюстрация функциональности HARQ HS-DSCH в высокоскоростном пакетном доступе по нисходящей линии связи (HSDPA);

Фиг.11 - двухмерная координата, которая представляет одну иллюстрацию диаграммы созвездия 16-QAM.

Фиг.12 - двухмерная координата, которая представляет одну иллюстрацию диаграммы созвездия 64-QAM.

Фиг.13 - пример присоединения CRC кодового блока, подходящий для применения на практике принципов одного варианта осуществления настоящего изобретения;

Фиг.14 иллюстрирует перемежитель канала для систем мультиплексирования с ортогональным частотным разделением (OFDM), подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.15 иллюстрирует схему элементов ресурсов для передачи данных, подходящую для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.16 - перестановка кодированных разрядов с помощью кодовых блоков после согласования скорости, подходящая для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.17(А) - элементы ресурсов, представленные в одном измерении, подходящие для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.17(B) - пространство индекса времени (индекса символа OFDM) - индекса частоты (индекса поднесущей) для размещения кодированных разрядов данных, подходящее для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.18 - реализация согласования скорости и объединения разрядов на основе кодового блока, подходящая для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.19 - пример расширения кодированных разрядов кодового блока во временных, частотных и пространственных областях, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.20 - пример записи кодированных разрядов в ресурсы с разными уровнями и разными порядками модуляции, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.21 иллюстрирует перемежитель канала с разным порядком модуляции на ресурсах, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.22 - пример расширенных кодированных разрядов на ресурсах с разными пространственными измерениями, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.23 - общий способ получения предпочтительного шаблона перестановки для 64-QAM, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.24 иллюстрирует итеративный приемник для декодирования нескольких кодовых блоков, мультиплексированных в одинаковых символах модуляции, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.25 - пример уменьшенного созвездия, которое повышает производительность обнаружения у передачи, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.26 иллюстрирует альтернативный итеративный приемник для декодирования нескольких кодовых блоков, мультиплексированных в одинаковых символах модуляции, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения;

Фиг.27 - структура субкадра нисходящей линии связи в системе долгосрочного развития (LTE) по Проекту Партнерства 3-го Поколения (3GPP);

Фиг.28(А) - другой пример конфигурации группирования нескольких символов OFDM в субкадр, подходящий для применения на практике принципов одного варианта осуществления настоящего изобретения;

Фиг.28(B) - блок-схема алгоритма, иллюстрирующая способ передачи сигналов данных путем разделения элементов ресурсов, имеющих кодированные разряды, подходящий для применения на практике принципов одного варианта осуществления настоящего изобретения.

Фиг.28(C) - блок-схема алгоритма, иллюстрирующая способ приема и декодирования на приемнике сгруппированных элементов ресурсов, имеющих кодированные разряды.

Фиг.29 - другой пример конфигурации группирования нескольких символов OFDM в субкадр, подходящий для применения на практике принципов одного варианта осуществления настоящего изобретения;

Фиг.30 - другой пример конфигурации группирования нескольких символов OFDM в субкадр, подходящий для применения на практике принципов одного варианта осуществления настоящего изобретения;

Фиг.31 - примеры параллельной обработки для последовательного подавления помех с помощью или без помощи группового контроля циклическим избыточным кодом (CRC), подходящие для применения на практике принципов настоящего изобретения; и

Фиг.32 - пример конфигурации группирования кодового блока, подходящий для применения на практике принципов другого варианта осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В подробном описании настоящего изобретения будут часто использоваться нижеследующие термины и приведено определение каждого термина.

Подпакет - часть кодированного пакета, и является подмножеством всех кодированных разрядов.

Информационные разряды - поток информационных разрядов, которые кодируются для формирования кодированных разрядов.

Чередование относится к подмножеству временных интервалов передачи или субкадрам.

Синхронный гибридный автоматический запрос на повторение (S-HARQ) является методикой, применяемой текущим стандартом высокоскоростных пакетных данных (HRPD), которая устанавливает набор из четырех чередующихся каналов передачи с временным разделением, используемых для одновременной передачи четырех разных наборов данных. Эти чередующиеся каналы передачи иногда называются «чередованиями HARQ».

Временной интервал передачи - выделенное заданное количество последовательных тактов. Некоторое количество этих временных интервалов передачи образуют кадр передачи.

Пространственно-временное кодирование (STC) является способом, применяемым для повышения надежности передачи данных в системах беспроводной связи, использующих несколько передающих антенн. STC опираются на передачу приемнику нескольких избыточных копий потока данных, чтобы по меньшей мере некоторые из копий потока данных могли сохраниться в физическом канале между передачей и приемом в хорошем состоянии, чтобы сделать возможным надежное декодирование.

Способ разнесения передачи является способом, в котором один информационный разряд передается по разным независимым каналам.

Способ разнесения приема является способом, в котором один информационный разряд принимается по разным независимым каналам.

Индикатор качества канала (CQI) - измерение качества связи у беспроводных каналов. CQI (индикатор качества канала) может быть значением (или значениями), представляющими меру качества канала для заданного канала.

Параметр версии избыточности указывает, какая версия избыточности данных отправляется.

Перемежитель канала отправляет данные, перемеженные по разным каналам, чтобы глубокое замирание или конфликт на некоторых каналах не уничтожили передачу.

Блок ресурсов является блоком элементов временных и частотных ресурсов, которые переносят сигналы, которые нужно передать с помощью передатчика и принять с помощью приемника.

Способы и устройства для обеспечения быстрого декодирования передач с несколькими кодовыми блоками, созданные в соответствии с настоящим изобретением, будут описаны подробно со ссылкой на сопровождающие чертежи. Одинаковые номера ссылочных позиций обозначают одинаковые элементы по всему описанию изобретения.

Также ниже приведены некоторые сокращения, часто используемые в этом изобретении, вместе с их расшифровками.

SC-FDMA: Коллективный доступ с разделением по частоте с одной несущей

CP: циклический префикс

FFT: Быстрое преобразование Фурье

OFDM: Мультиплексирование с ортогональным частотным разделением

ICI: Помехи между несущими

3GPP: Проект партнерства третьего поколения

LTE: Система долгосрочного развития

HARQ: Гибридный автоматический запрос на повторение

MIMO: (Система) со множеством входов и множеством выходов

QPSK: Квадратурная фазовая манипуляция

16-QAM: 16-позиционная квадратурная амплитудная модуляция

64-QAM: 64-позиционная квадратурная амплитудная модуляция

IFFT: Обратное быстрое преобразование Фурье

CW: кодовое слово

Кодовый блок: блок информационных разрядов или блок кодированных разрядов, сформированный путем кодирования блока информационных разрядов

Фиг.1 показывает цепь приемопередатчика с мультиплексированием с ортогональным частотным разделением (OFDM), имеющую цепь передатчика и цепь приемника.

Мультиплексирование с ортогональным частотным разделением (OFDM) является технологией для мультиплексирования данных в частотной области. Символы модуляции переносятся на поднесущих частоты. Образец цепи приемопередатчика с мультиплексированием с ортогональным частотным разделением (OFDM) показан на фиг.1. В цепи 100 передатчика управляющие сигналы или сигналы данных модулируются модулятором 101 и модулированные сигналы преобразуются из последовательной в параллельную форму с помощью последовательно-параллельного преобразователя 112. Модуль 114 обратного быстрого преобразования Фурье (IFFT) используется для переноса модулированного сигнала или данных из частотной области во временную область, и модулированные сигналы, перенесенные во временную область, преобразуются из параллельной в последовательную форму с помощью параллельно-последовательного преобразователя 116. Циклический префикс (CP) или нулевой префикс (ZP) добавляется к каждому символу OFDM на этапе 118 вставки CP, чтобы избежать или смягчить влияние многолучевого замирания в канале 122 с многолучевым замиранием. Сигналы с этапа 118 вставки циклического префикса (CP) передаются входному модулю 120 обработки в передатчике, например передающим антеннам (не показаны на фиг.1). В цепи 140 приемника предполагая, что достигается безупречная временная и частотная синхронизация, сигналы, принятые входным модулем 124 обработки в приемнике, например приемными антеннами (не показаны на фиг.1), обрабатываются на этапе 126 удаления циклического префикса (CP), который удаляет циклический префикс (CP) из принятого сигнала. Сигнал, обработанный этапом 126 удаления циклического префикса (CP), дополнительно преобразуется из последовательной в параллельную форму с помощью последовательно-параллельного преобразователя 128. Модуль 130 быстрого преобразования Фурье (FFT) переносит принятые сигналы из временной области в частотную область для дополнительных обработок, например параллельно-последовательного преобразования с помощью параллельно-последовательного преобразователя 132 и демодулирования демодулятором 134. Поэтому сигналы, переданные цепью 100 передатчика, принимаются цепью 140 приемника.

Фиг.2 иллюстрирует ортогональность теории мультиплексирования с ортогональным частотным разделением (OFDM).

Благодаря тому что каждый символ OFDM имеет конечную длительность во временной области, поднесущие перекрываются друг с другом в частотной области. Например, как показано на фиг.2, поднесущая 10, поднесущая 11 и поднесущая 12 перекрываются друг с другом в частотной области. Поднесущая 10, поднесущая 11 и поднесущая 12 об