Буровое долото для роторного бурения и способ изготовления бурового долота с корпусом из композита из связующего материала с другими частицами

Иллюстрации

Показать все

Изобретение относится к порошковой металлургии, в частности к способу изготовления буровых долот для роторного бурения. Формируют составные элементы из "неспеченного" порошка, при этом по меньшей мере одному из составных элементов придают форму, пригодную для изготовления одной области корпуса долота. Собирают составные элементы с образованием единой детали и спекают до достижения заданной конечной плотности для формирования корпуса долота. К корпусу долота прикрепляют расширение, к которому прикрепляют хвостовик, приспособленный для прикрепления к колонне бурильных труб. Буровые долота содержат единую деталь, по существу изготовленную из составного связующего материала с другими частицами и имеющую первую область, конструкция которой позволяет закреплять на ней резцы, и хвостовик, присоединенный к корпусу долота. Способ обеспечивает получение бурильного долота, корпус которого имеет высокую прочность и трещиностойкость, из композиционного материала без использования литейной технологии. 2 н. и 25 з.п. ф-лы, 7 ил.

Реферат

Притязание на приоритет

По настоящей заявке испрашивается приоритет по патентной заявке США 11/272439, поданной 10 ноября 2005 г., которая в свою очередь имеет отношение к заявке 11/271153, поданной также 10 ноября 2005 г. на имя James A.Oxford, Jimmy W.Eason, Redd H.Stevens и Nicholas J.Lyons и имеющей название “Буровые долота для роторного бурения и способы изготовления буровых долот для роторного бурения”, переуступленной правопреемнику данной заявки на патент.

Область техники

Настоящее изобретение в основном относится к буровым долотам для роторного бурения и к способам изготовления таких буровых долот. Говоря более конкретно, настоящее изобретение в основном относится к буровым долотам для роторного бурения, которые содержат корпус долота, по существу изготовленный из композита (составного материала) на основе связующего материала (матрицы), содержащего частицы другого материала, а также к способам изготовления таких буровых долот.

Предпосылки создания изобретения

Буровые долота для роторного бурения обычно используются для пробуривания стволов скважин или буровых скважин в земельных пластах (толще подземных пород). Существуют два основных типа конфигураций буровых долот для роторного бурения. Одна из таких конфигураций представляет собой коническое шарошечное долото, которое обычно содержит три конических шарошки, установленные на опорных ножках, которые отходят от корпуса долота. Конструкция каждой такой конической шарошки позволяет ей вращаться или проворачиваться на соответствующей опорной ножке. Обычно на внешних сторонах каждой конической шарошки присутствуют режущие зубья, служащие для прорезания скальных пород и других земельных пластов. Режущие зубья часто покрыты абразивным сверхтвердым (“твердосплавным”) материалом. Такие материалы обычно содержат частицы карбида вольфрама, рассеянные внутри связующего материала (матрицы) из металлического сплава. Альтернативным образом на внешних поверхностях каждой из конических шарошек присутствуют отверстия, в которых закрепляются твердосплавные вставки для образования подобных режущих элементов. Коническое шарошечное долото может быть помещено внутрь ствола скважины таким образом, что конические шарошки будут примыкать пласту, через который необходимо осуществить пробуривание. По мере вращения бурового долота конические шарошки проворачиваются по поверхности пласта, а режущие зубья дробят нижерасположенный пласт (породу).

Вторая конфигурация бурового долота для роторного бурения представляет собой буровое долото с запрессованными резцами (часто называемое долотом лопастного типа вида “рыбий хвост”), которое обычно имеет множество режущих элементов, прикрепленных к торцевым областям корпуса долота. Обычно режущие элементы бурового долота с запрессованными резцами имеют либо дискообразную форму, либо по существу цилиндрическую форму. Твердый суперабразивный материал, такой как взаимно скрепленные частицы поликристаллического алмаза, может присутствовать на по существу округлой торцевой поверхности каждого режущего элемента, чтобы создать режущую поверхность. Подобные режущие элементы обычно называются режущими элементами, армированными поликристаллическими синтетическими алмазами (АПСА). Обычно такие режущие элементы изготавливаются отдельно от корпуса долота и закрепляются внутри карманов (углублений), сформированных во внешней поверхности корпуса долота. В качестве связующего материала, который может быть использован для закрепления режущих элементов на корпусе долота, может применяться адгезив (склеивающее вещество) или, что является более типичным, твердый припой. Буровое долото с запрессованными резцами может быть помещено в ствол скважины таким образом, что режущие элементы будут примыкать к пласту, через который необходимо осуществить пробуривание. По мере вращения бурового долота данные режущие элементы осуществляют скалывание и срезают прочь поверхность нижерасположенного пласта.

Корпус долота для роторного бурения обычно крепится к закаленной стальной шейке долота, имеющей резьбовую соединительная часть, изготовленную согласно стандарту Американского нефтяного института (АНИ), которая служит для присоединения бурового долота к колонне бурильных труб. Колонна бурильных труб содержит трубчатую колонну и муфтовый конец сегментов оборудования, которые служат для отделения бурового долота от остального бурильного оборудования на поверхности. Оборудование, такое как ротор буровой установки или верхний силовой привод, может использоваться для вращения колонны бурильных труб и указанного бурового долота внутри ствола скважины. Альтернативным образом указанная шейка бурового долота может напрямую быть подсоединена к ведущему валу забойного двигателя, который далее может быть использован для вращения бурового долота.

Корпус бурового долота для роторного бурения может быть изготовлен из стали. Альтернативным образом корпус бурового долота может быть изготовлен из композитного материала “матрица - частицы” (называемый также далее “композит из (на основе) связующего материала с другими частицами”). Такие материалы включают твердые частицы, беспорядочно распределенные по всему матричному материалу (также часто называющемуся “связующим” материалом). Корпуса подобных долот обычно изготавливаются посредством внедрения короночного кольца долота в материал из твердых частиц карбида, таких как частицы карбида вольфрама, и пропитывания материала из твердых частиц карбида связующим материалом, таким как медный сплав. Буровые долота, имеющие корпус, изготовленный из такого связующего материала, содержащего частицы из другого материала, могут иметь лучшие характеристики с точки зрения противодействия эрозии и износу, но при этом обладать меньшей прочностью и трещиностойкостью (прочностью сопротивления хрупкому излому) по сравнению с буровыми долотами, имеющими стальные корпуса.

Традиционное буровое долото 10 для роторного бурения, которое имеет корпус долота, содержащий связующий материал с частицами из другого материала, изображено на фиг.1. Как здесь показано, данное буровое долото 10 содержит корпус 12 долота, который закреплен на хвостовике 20. Корпус 12 долота содержит буровую коронку 14 и короночное кольцо 16 долота, встроенное в данную буровую коронку 14. Эта буровая коронка 14 содержит связующий материал с частицами иного материала, такими как, к примеру, частицы карбида вольфрама, внедренные в связующий материал из медного сплава. Корпус 12 долота крепится к хвостовику 20 при помощи резьбового соединения 22 и сварного шва 24, который проходит вокруг бурового долота 10 по его внешней поверхности вдоль места соединения корпуса 12 долота и стальной шейки 20 долота. Стальная шейка 20 имеет резьбовую соединительную часть 28 (изготовленную согласно стандарту АНИ), служащую для присоединения бурового долота 10 к бурильной колонне (не показана).

Корпус 12 долота имеет лопасти или лезвия 30, которые отделены друг от друга при помощи отверстий 32 в долоте для выноса бурового шлама. Внутренние проходы 42 для жидкости (бурового раствора) отходят от торцевой поверхности 18 корпуса 12 долота до продольного канала 40 долота, который проходит через стальную шейку 20 долота и, частично, через корпус 12 долота. Вкладыши промывочной насадки долота (не показаны) могут располагаться на торцевой поверхности 18 корпуса 12 долота внутри внутренних проходов 42 для жидкости.

Множество АПСА резцов 34 располагаются на торцевой (лицевой) поверхности 18 корпуса 12 долота. АПСА резцы 34 могут располагаться вдоль лезвий 30 внутри карманов (углублений) 36, которые находятся на торцевой поверхности 18 корпуса 12 долота и могут сзади поддерживаться при помощи подпорок 38, которые могут представлять собой интегральную часть буровой коронки 14 корпуса 12 долота.

Короночное кольцо 16, изображенное на фиг.1, обычно является цилиндрической трубкой. Альтернативным образом короночное кольцо 16 может иметь достаточно сложную конфигурацию и может содержать внешние выступы, соответствующие лезвиям 30 или иным элементам конструкции, выступающим от торцевой поверхности 18 корпуса 12 долота.

Во время операций пробуривания долото 10 помещается внизу ствола скважины и проворачивается, в то время как буровой раствор закачивается к торцевой поверхности 18 корпуса 12 долота через продольный канал 40 долота и внутренние канавки 42 для прохода жидкости. По мере того как АПСА резцы 34 скалывают и срезают прочь нижележащий земляной пласт, буровой шлам и обломочный материал смешиваются и перемешиваются с буровым раствором, который проходит через отверстия 32 в долоте для выноса бурового шлама и через затрубное пространство между стенкой буровой скважины и колонной бурильных труб к поверхности данного земельного пласта.

Традиционно корпуса буровых долот, которые содержат композит из связующего материала с другими частицами, как это было объяснено ранее на примере корпуса 12 бурового долота, изготавливались при помощи пропитывания твердых частиц расплавленным связующим материалом в графитовых литейных формах. Полости таких графитовых литейных форм традиционно обрабатывались при помощи станка с пятью степенями подвижности (пятикординатного станка). Далее при помощи ручного инструмента в полости графитовой литейной формы изготавливались тонкие конструктивные элементы. При этом могла потребоваться дополнительная глиняная набойка для того, чтобы добиться желаемой конфигурации некоторых конструктивных элементов корпуса долота. Где это было необходимо, могли применяться заранее изготовленные элементы или убирающиеся впоследствии вкладыши (которые могли представлять собой керамические компоненты, графитовые компоненты или песчаные набивные компоненты, покрытые резиной), которые могли помещаться внутрь литейной формы и использоваться для определения границ внутренних канавок 42, карманов 36 для режущих элементов, отверстий 32 в долоте для выноса бурового шлама, а также иных внешних конструктивных элементов корпуса 12 долота. Полость графитовой литейной формы заполнялась материалом из твердых частиц карбида (такого как карбид вольфрама, карбид титана, карбид тантала и пр.). После этого заранее изготовленное короночное кольцо 16 могло помещаться внутрь литейной формы в подходящем для этого месте и в необходимом положении. Внутри литейной формы короночное кольцо 16 обычно по меньшей мере частично было погружено в материал из твердых частиц карбида.

Литейная форма далее могла быть подвергнута вибрации, или же частицы могли быть упакованы каким-либо иным образом, чтобы уменьшить расстояние между прилегающими частицами зернистого карбидного материала. Связующий материал, такой как сплав на основе меди, мог быть расплавлен, а зернистый карбидный материал мог быть пропитан расплавленным связующим материалом. Далее литейная форма и корпус 12 долота могли подвергаться охлаждению для затвердения связующего материала. Короночное кольцо 16 прикреплялось к составному связующему материалу с частицами иного материала, который формировал буровую коронку 14 при охлаждении корпуса 12 долота и затвердевании связующего материала. После охлаждения корпуса 12 долота он вынимался из литейной формы, а все вкладыши вынимались из корпуса 12 долота. При этом для выемки корпуса 12 долота обычно требовалось разрушить графитовую литейную форму.

Как было объяснено ранее, обычно требуется разрушить графитовую литейную форму для выемки корпуса 12 долота. После того, как корпус 12 долота будет вынут из литейной формы, он может быть закреплен на хвостовике 20. Поскольку составной связующий материал, содержащий частицы, который применялся для изготовления буровой коронки 14, является относительно твердым и нелегко поддается машинной обработке, используется короночное кольцо 16 для прикрепления корпуса долота к шейке долота. На наружной поверхности короночного кольца 16 может быть нарезана резьба для образования резьбового соединения 22 между корпусом 12 долота и хвостовиком 20. Хвостовик 20 может быть накручен на корпус 12 долота, после чего вдоль места соединения корпуса 12 долота и хвостовика 20 может быть выполнен сварной шов 2424.

После отливки корпуса 12 долота к торцевой поверхности 18 корпуса 12 долота могут крепиться АПСА резцы 34, что осуществляется при помощи, к примеру, пайки твердым припоем, механического закрепления или адгезионного закрепления. Альтернативным образом АПСА резцы 34 могут помещаться внутрь литейной формы и крепиться к торцевой поверхности 18 корпуса 12 долота во время процесса пропитка металлом или термообработки корпуса долота, если при этом задействуются термостойкие синтетические алмазы или натуральные алмазы.

Литейные формы, используемые для отливки корпусов долот, малопригодны для машинной обработки по причине их размера, формы и состава материала, который используется для их изготовления. Помимо этого, часто требуются ручные операции с использованием ручных инструментов для изготовления литейной формы и для изготовления определенных конструктивных элементов корпуса долота после его выемки из литейной формы, что еще более усложняет процесс повторного воспроизводства корпусов долот. Эти факты, вместе с тем фактом, что лишь один корпус долота может быть изготовлен при использовании единичной литейной формы, усложняет процесс повторного воспроизводства большого числа корпусов долот с постоянными параметрами. В результате этого в размещении резцов внутри или на торцевой поверхности корпусов долот могут встречаться различия. Ввиду таких различий форма, прочность и, в конечном счете, рабочие характеристики во время бурения могут варьироваться от долота к долоту, что затрудняет возможность установления средней продолжительности работы конкретного бурового долота. В результате этого буровые долота на колонне бурильных труб обычно заменяются чаще, чем это было бы желательно, чтобы предотвратить его неожиданные поломки, что приводит к дополнительным затратам.

Как должно быть понятно из предшествующего описания, процесс изготовления корпуса долота, включающего композит из связующего материала с другими частицами, является весьма дорогостоящим, сложным многостадийным трудоемким процессом, требующим отдельного изготовления промежуточного продукта (литейной формы) до того, как конечный продукт (корпус долота) может быть отлит. Более того, заготовки, литейные формы и иные использующиеся заготовки должны быть сконструированы и изготовлены индивидуальным способом. В то время как корпуса долот, которые содержат композит из связующего материала с другими частицами, могут иметь значительные преимущества по сравнению с известными корпусами долот из стали с точки зрения сопротивления абразивному износу и эрозии, более низкая прочность и трещиностойкость (прочность сопротивления хрупкому излому) препятствуют их применению в ряде случаев.

Таким образом, имеется необходимость в способе изготовления корпуса долота, который бы содержал композит из связующего материала с другими частицами, но который бы исключил необходимость использования литейной формы и обеспечивал корпусу долота большую прочность и трещиностойкость (прочность сопротивления хрупкому излому), а само долото могло бы легко крепиться к хвостовику или иному компоненту колонны бурильных труб.

Помимо этого известные способы изготовления корпуса долота, включающего композит из связующего материала с другими частицами, требуют, чтобы связующий материал был бы нагрет до температуры, уровень которой превышает уровень температуры его плавления. Некоторые материалы, которые обладают хорошими физическими свойствами, чтобы быть использованными в качестве связующего материала, не подходят для такого применения по причине губительной взаимосвязи между инородными частицами и связующим материалом, которая может возникнуть при пропитывании таких частиц определенным расплавленным связующим материалом. В результате этого лишь ограниченное количество сплавов являются пригодными для использования в качестве связующего материала. Таким образом, имеется необходимость в способе изготовления, подходящем для производства корпуса долота, включающего композит из связующего материала с другими частицами, который не требует пропитывания твердых частиц расплавленным связующим материалом.

Раскрытие изобретения

Согласно одной своей особенности настоящее изобретение включает способ изготовления корпуса для бурового долота. Для этого используется множество составных элементов из “неспеченного” (так называемого “зеленого”) порошка, которые собираются вместе для изготовления единой “неспеченной” (“зеленой”) детали. По меньшей мере одному составному элементу из этого “неспеченного порошка” придается форма, позволяющая использовать его для изготовления области корпуса долота. Такая “неспеченная” единая деталь по меньшей мере частично спекается.

Согласно другой своей особенности настоящее изобретение включает другой вариант осуществления способа изготовления корпуса бурового долота. В этом случае используется множество составных элементов из “неспеченного порошка”, которые по меньшей мере частично спекаются для образования множества "частично спеченных" (так называемых “коричневых”) составных элементов. По меньшей мере одному составному элементу из “неспеченного порошка” придается форма, позволяющая использовать его для изготовления области буровой коронки корпуса долота. “Частично спеченные” составные элементы собираются в единую конструкцию для образования единой “частично спеченной” детали, которая спекается до достижения ею конечной плотности.

Согласно еще одному варианту способа изготовления корпуса бурового долота используется множество составных элементов из “неспеченного порошка”, которые спекаются до достижения ими желаемого конечного уровня плотности, чтобы добиться образования множества полностью спеченных составных элементов. По меньшей мере одному составному элементу из “неспеченного порошка” придается форма, позволяющая использовать его для изготовления области буровой коронки корпуса долота. Полностью спеченные составные элементы собираются в единую конструкцию для образования единой детали, которая спекается для сцепления полностью спеченных составных элементов.

Согласно другому варианту осуществления способа изготовления корпуса бурового долота для роторного бурения он включает изготовление корпуса долота в основном из композита на основе связующего материала с другими частицами, изготовления хвостовика, конструкция которого предназначена для подсоединения его к колонне бурильных труб, а также для присоединения хвостовика к корпусу долота. Корпус долота изготавливается посредством прессования смеси порошка с образованием “неспеченного” корпуса долота, а также посредством по меньшей мере частичного спекания “неспеченного” корпуса долота. Подобная смесь порошка содержит множество твердых частиц и множество частиц, представляющих собой связующий материал. Такие твердые частицы могут выбираться из группы, состоящей из алмаза, карбида бора, нитрида бора, алюминиевого нитрида и карбидов или боридов из группы, состоящей из W, Ti, Mo, Nb, V, Hf, Za и Сr. Связующий материал может выбираться из группы, состоящей из сплавов на кобальтовой основе, сплавов на основе железа, сплавов на основе никеля, сплавов на основе кобальта и никеля, сплавов на основе железа и никеля, сплавов на основе железа и кобальта, сплавов на основе алюминия, сплавов на основе меди, сплавов на магниевой основе и сплавов на основе титана.

Согласно еще одной своей особенности настоящее изобретение включает способ изготовления корпуса долота для бурового долота для роторного бурения, который включает изготовление корпуса долота в основном из композита на основе связующего материала с другими частицами, который содержит множество твердых частиц, рассеянных внутри связующего материала, изготовление хвостовика, конструкция которого предназначена для подсоединения его к колонне бурильных труб, а также присоединения хвостовика к корпусу долота. Корпус долота изготавливается посредством изготовления первого “частично спеченного” составного элемента, изготовления по меньшей мере одного дополнительного “частично спеченного” составного элемента, соединения первого “частично спеченного” составного элемента с указанным по меньшей мере одним дополнительным “частично спеченным” составным элементом с образованием “частично спеченного” корпуса долота, а также спекания “частично спеченного” корпуса долота до достижения им желаемой конечной плотности. Первый "частично спеченный" составной элемент изготавливается посредством использования первой смеси из порошка, прессования первой смеси из порошка для изготовления первого “неспеченного” составного элемента, а также посредством частичного спекания первого “неспеченного” составного элемента. По меньшей мере один дополнительный “частично спеченный” составной элемент изготавливается посредством использования по меньшей мере одной дополнительной смеси из порошка, которая отличается от первой смеси из порошка, прессования по меньшей мере одной дополнительной смеси из порошка для изготовления по меньшей мере одного дополнительного “неспеченного” составного элемента, а также посредством частичного спекания данного по меньшей мере одного дополнительного “неспеченного” составного элемента.

Согласно еще одной своей особенности настоящее изобретение включает способ изготовления корпуса долота для роторного бурения, который включает изготовление смеси порошка, прессование этой смеси по существу изостатическим давлением для изготовления “неспеченного” корпуса, по существу состоящего из композита из связующего материала с другими частицами, а также спекания “неспеченного” корпуса с получением корпуса долота, по существу состоящего из композита из связующего материала с другими частицами, имеющего желаемый уровень конечной плотности. Подобная смесь порошка содержит множество твердых частиц и множество частиц, представляющих собой связующий материал и цементирующий материал. Твердые частицы могут выбираться из группы, состоящей из алмаза, карбида бора, нитрида бора, алюминиевого нитрида и карбидов или боридов из группы, состоящей из W, Ti, Mo, Nb, V, Hf, Za и Сr. Связующий материал может выбираться из группы, состоящей из сплавов на кобальтовой основе, сплавов на основе железа, сплавов на основе никеля, сплавов на основе кобальта и никеля, сплавов на основе железа и никеля, сплавов на основе железа и кобальта, сплавов на основе алюминия, сплавов на основе меди, сплавов на магниевой основе и сплавов на основе титана.

В настоящем изобретении также прелагается буровое долото для роторного бурения, которое содержит единую деталь, по существу изготовленную из композита на основе связующего материала с другими частицами. Эта единая деталь включает первую область, конструкция которой позволяет размещать в ней множество резцов для прорезания толщи пород, а также по меньшей мере одну дополнительную область, конструкция которой позволяет прикреплять буровое долото к колонне бурильных труб. Эта по меньшей мере одна дополнительная область содержит ввертываемую резьбовую соединительную часть.

В случае одного из вариантов выполнения буровое долото для роторного бурения имеет корпус, по существу изготовленный из композита на основе связующего материала с другими частицами, а также хвостовик, напрямую присоединенный к корпусу долота. Этот хвостовик имеет часть с резьбой, конструкция которой позволяет присоединять хвостовик к колонне бурильных труб. Связующий материал корпуса долота, включает множество твердых частиц, беспорядочно распределенных в связующем материале. Такие твердые частицы могут выбираться из группы, состоящей из алмаза, карбида бора, нитрида бора, алюминиевого нитрида и карбидов или боридов из группы, состоящей из W, Ti, Mo, Nb, V, Hf, Za и Сr. Связующий материал может выбираться из группы, состоящей из сплавов на кобальтовой основе, сплавов на основе железа, сплавов на основе никеля, сплавов на основе кобальта и никеля, сплавов на основе железа и никеля, сплавов на основе железа и кобальта, сплавов на основе алюминия, сплавов на основе меди, сплавов на магниевой основе и сплавов на основе титана.

Краткое описание чертежей

Характерные признаки, преимущества и альтернативные особенности настоящего изобретения станут понятными специалистам в данной области техники из последующего детального описания в комбинации с сопроводительными чертежами, на которых:

фиг.1 представляет собой частичный боковой вид в поперечном разрезе традиционного бурового долота для роторного бурения, имеющего корпус, содержащий композит из связующего материала с другими частицами;

фиг.2 представляет собой частичный боковой вид в поперечном разрезе предлагаемого в настоящем изобретении бурового долота для роторного бурения, которое имеет корпус, содержащий композит из связующего материала с другими частицами;

фиг.3А-3Д иллюстрируют способ изготовления корпуса бурового долота для роторного бурения, изображенного на фиг.2;

фиг.4 представляет собой частичный боковой вид в поперечном разрезе еще одного варианта предлагаемого в настоящем изобретении бурового долота для роторного бурения, которое имеет корпус, содержащий композит из связующего материала с другими частицами;

фиг.5А-5Л иллюстрируют способ изготовления бурового долота для роторного бурения, изображенного на фиг.4;

фиг.6А-6Д иллюстрируют еще один способ изготовления бурового долота для роторного бурения, изображенного на фиг.4; а

фиг.7 представляет собой частичный боковой вид в поперечном разрезе еще одного варианта предлагаемого в настоящем изобретении бурового долота для роторного бурения, которое имеет корпус, содержащий композит из связующего материала с другими частицами.

Предпочтительные варианты осуществления изобретения

Чертежи, преведенные в данном документе, не означают реальные изображения какого-либо материала, устройства, системы или способа, а лишь представляют собой принципиальные схематичные представления, которые приводятся с целью описать настоящее изобретение. Дополнительно к этому общие элементы данных чертежей могут сохранять одни и те же номерные обозначения.

Термин “неспеченный”, используемый в данном документе, означает неспеченный (несплавленный) порошок (так называемый “зеленый порошок”).

Термин “неспеченный (“зеленый”) корпус долота”, используемый в данном документе, означает неспеченную деталь, состоящую из множества связанных друг с другом при помощи связующего материала дискретных частиц, такая деталь имеет размер и форму, позволяющие изготовить корпус долота, пригодный для использования в конструкции бурового долота, изготавливаемого из этой детали при помощи последующего производственного процесса, включающего в качестве неограничивающего примера машинную обработку и уплотнение.

Термин “частично спеченный”, используемый в данном документе, означает частично спеченный (сплавленный) порошок (так называемый “коричневый порошок”).

Термин “частично спеченный (“коричневый”) корпус долота”, используемый в данном документе, означает частично спеченную деталь, состоящую из множества частиц, по меньшей мере часть из которых была сближена, чтобы добиться по меньшей мере частичного сцепления между прилегающими частицами, такая деталь имеет размер и форму, позволяющие изготовить корпус долота, пригодный для использования в конструкции бурового долота, изготавливаемого из этой детали при помощи последующего производственного процесса, включающего в качестве неограничивающего примера машинную обработку и уплотнение. Частично спеченные корпуса долота могут изготавливаться, к примеру, частичным спеканием неспеченных корпусов долота.

Термин “спекание”, используемый в данном документе, означает уплотнение составного элемента из твердых частиц, включающее избавление от по меньшей мере части пор между начальными частицами (что происходит при сжимании), сочетающееся с соединением и сцеплением соседних частиц.

Как это используется в данном документе, термин “сплав на основе [металла]” (где [метал] означает любой металл) означает технически чистый [металл] в добавление к металлам сплава, где весовой процент [металла] в сплаве больше, чем весовой процент любого иного составляющего элемента сплава.

Как это используется в данном документе, термин “состав материала” означает химический состав и микроструктуру материала. Другими словами материалы, имеющие одинаковый химический состав, но разную микроструктуру, считаются материалами с разными составами материала.

Как это используется в данном документе, термин “карбид вольфрама” означает любой состав материала, который содержит химические соединения вольфрама и углерода, такие как, к примеру, WC, W2C, а также комбинации WC и W2C. Карбид вольфрама включает, к примеру, литой карбид вольфрама, спеченный карбид вольфрама, а также крупнокристаллический карбид вольфрама.

Буровое долото 50 для роторного бурения, которое представляет один из возможных вариантов выполнения настоящего изобретения, изображено на фиг.2. Буровое долото 50 содержит корпус 52 долота, по существу изготовленный и состоящий из композита из связующего материала с другими частицами. Буровое долото 50 может также содержать хвостовик 70 (бура), прикрепленный к корпусу 52 долота. Корпус 52 долота не содержит короночное кольцо, которое могло бы в противном случае представлять собой интегральную часть корпуса и использовалось бы для присоединения корпуса 52 долота к хвостовику 70.

Корпус 52 долота содержит лезвия (лопасти) 30, которые отделены друг от друга при помощи отверстий 32 в долоте для выноса бурового шлама. Внутренние проходы 42 для жидкости отходят от торцевой поверхности 58 корпуса 52 долота до продольного канала 40 долота, который проходит через хвостовик 70 и частично через корпус 52 долота. Внутренние проходы 42 для жидкости могут иметь, по существу, прямолинейную, линейно-ломанную или искривленную конфигурацию. Вкладыши промывочной насадки (не показаны) или каналы для прохода жидкости могут присутствовать на торцевой (лицевой) поверхности 58 корпуса 52 долота внутри внутренних проходов 42 для жидкости. Эти вкладыши промывочной насадки могут представлять собой интегральную часть корпуса 52 долота и могут иметь круглые или некруглые поперечные сечения в отверстиях на торцевой поверхности 58 корпуса 52 долота.

Буровое долото 50 может иметь множество АПСА резцов 34, размещенных на торцевой поверхности 58 корпуса 52 долота. АПСА резцы 34 могут располагаться вдоль лезвий 30 внутри карманов (углублений) 36 на торцевой поверхности 58 корпуса 52 долота, а также могут поддерживаться сзади при помощи подпорок 38, которые могут представлять собой интегральную часть корпуса 52 долота. Альтернативным образом буровое долото 50 может иметь множество резцов, изготовленных из абразивного, износостойкого материала, такого как, к примеру, зацементированный карбид вольфрама. Помимо этого, эти резцы могут представлять собой интегральную часть корпуса 52 долота, как это будет детально описано далее.

Композитный материал (из связующего материала с другими частицами) корпуса 52 долота может включать множество твердых частиц, беспорядочно рассеянных внутри связующего материала. Такие твердые частицы могут представлять собой алмаз или керамические материалы, такие как карбиды, нитриды, оксиды и бориды (включая карбид бора (В4С)). Говоря более точно, такие твердые частицы могут представлять собой карбиды и бориды, полученные из таких элементов, как W, Ti, Mo, Nb, V, Hf, Та, Cr, Zr, Аl и Si. В виде неограничивающего примера материалы, которые могут использоваться для изготовления твердых частиц, включают карбид вольфрама, карбид титана (TiC), карбид тантала (ТаС), диборид титана (TiB2), карбид хрома, нитрид титана (TiN), оксид алюминия (Аl2O3), нитрид алюминия (AlN), а также карбид кремния (SiC). Помимо этого комбинации различных твердых частиц могут быть использованы для подгонки физических свойств и характеристик композитного материала. Такие твердые частицы могут быть изготовлены путем использования стандартных технологий, известных сведущим в данной области техники специалистам. Наиболее подходящими материалами для твердых частиц являются доступные для приобретения материалы, и изготовление таких материалов находится в пределах возможностей специалистов данной области техники.

Связующий материал композита может включать, к примеру, сплавы на основе кобальта, железа, никеля, железа и никеля, кобальта и никеля, железа и кобальта, алюминия, меди, магния и титана. Связующий материал может также подбираться из технически чистых элементов, таких как кобальт, алюминий, медь, магний, титан, железо и никель. В виде неограничивающего примера связующий материал может включать углеродистую сталь, легированную сталь, нержавеющую сталь, инструментальную сталь, марганцовистую сталь Гадфильда, материал из супер-сплава никеля или кобальта, смеси на никелевой или железной основе с малым температурным коэффициентом линейного расширения, такие как INVAR®. Как это используется в данном документе, термин “супер-сплав” относится к сплавам на основе железа, никеля, а также кобальта, весовой состав которых, по крайней мере, на 12% представлен хромом. Дополнительные примеры сплавов, которые могут быть использованы в качестве связующего материала, включают аустенитную сталь, супер-сплавы на основе никеля, такие как INCONEL®625M или Rene 9, а также сплавы типа INVAR®, имеющие температурный коэффициент линейного расширения, который близко совпадает с температурным коэффициентом линейного расширения для твердых частиц, используемых в составе композитного связующего материала. Чем более точно температурный коэффициент линейного расширения связующего материала будет соответствовать температурному коэффициенту линейного расширения данных твердых частиц, тем будет преимущественно больше возможностей для уменьшения проблем, связанных с остаточным напряжением и термической усталостью. Другим примером связующего материала является аустенитная марганцовистая сталь Гадфильда (Fe содержанием Мn, равным 12%, а С 1,1% в весовом отношении).

В случае одного предпочтительного варианта осуществления настоящего изобретения композит из связующего материала с другими частицами может содержать множество частиц карбида вольфрама -400 меш по ASTM (стандарт Американского общества по испытанию материалов). К примеру, частицы карбида вольфрама могут по существу состоять из WC. Как это используется в данном документе, “частицы -400 меш по ASTM” означает частицы, которые проходят через сито №400 согласно стандарту ASTM, как это указано в спецификации ASTM Е-11-04 под названием “Стандартная спецификация для проволочной ткани и сеток для целей тестирования”. Такие частицы карбида вольфрама могут иметь диаметр приблизительно менее 38 микрон. Связующий материал может содержать сплав на основе металла, около 50% весового состава которого будет представлено кобальтом, а около 50% - никелем. Такие частицы карбида вольфрама могут составлять приблизительно от 60% до приблизительно 95% от веса композита из связующего материала с другими частицами, а сам связующий материал может составлять приблизительно от 5% до приблизительно 40% веса композита. Говоря более точно, данные частицы карбида вольфрама могут составлять приблизительно от 70% до приблизительно 80% от веса композита, а связующий материал может составлять приблизительно от 20% до приблизительно 30%.

В случае другого предпочтительного варианта осуществления настоящего изобретения композит из связующего материала с другими частицами может содержать множество частиц карбида вольфрама -635 меш по ASTM. Как это используется в данном документе, “частицы -635 меш по ASTM” означает частицы, которые проходят через сито №635 согласно