Способ получения акриловой кислоты из пропана

Изобретение относится к усовершенствованному способу получения акриловой кислоты из пропана, в соответствии с которым А) в первую реакционную зону А вводят по меньшей мере два образующих реакционный газ А, содержащих пропан газообразных исходных потока, по меньшей мере один из которых содержит свежий пропан, реакционный газ А пропускают по меньшей мере через один слой катализатора реакционной зоны А, в котором вследствие частичного гетерогенно-катализируемого дегидрирования пропана образуются молекулярный водород и пропилен, в реакционную зону А вводят молекулярный кислород, который окисляет содержащийся в реакционном газе А молекулярный водород до водяного пара, и из реакционной зоны А отбирают газообразный продукт А, содержащий молекулярный водород, водяной пар, пропилен и пропан, В) отбираемый из реакционной зоны А газообразный продукт А при подаче молекулярного кислорода используют в реакционной зоне В для питания по меньшей мере одного реактора окисления реакционным газом В, содержащим молекулярный водород, водяной пар, пропан, пропилен и молекулярный кислород, и содержащийся в реакционном газе В пропилен подвергают в реакционной зоне В двухстадийному гетерогенно-катализируемому частичному газофазному окислению, получая газообразный продукт В, содержащий акриловую кислоту в качестве целевого продукта, непревращенный пропан, молекулярный водород, водяной пар и диоксид углерода в качестве побочных продуктов, а также другие побочные компоненты с температурой кипения ниже и выше точки кипения воды, С) газообразный продукт В выводят из реакционной зоны В и в первой зоне разделения I посредством фракционной конденсации или посредством абсорбции выделяют содержащиеся в нем акриловую кислоту, воду и побочные компоненты с температурой кипения выше точки кипения воды, причем остающийся после их выделения остаточный газ I содержит непревращенный пропан, диоксид углерода, молекулярный водород, побочные компоненты с температурой кипения ниже точки кипения воды, а также, при необходимости, непревращенные в реакционной зоне В пропилен и молекулярный кислород, D) остаточный газ I подвергают дополнительным обработкам: отмывание содержащегося в остаточном газе I диоксида углерода, выведение частичного количества остаточного газа I, а также, при необходимости, выделение содержащегося в остаточном газе I молекулярного водорода посредством разделительной мембраны, Е) содержащий непревращенный пропан остаточный газ I после дополнительной обработки возвращают в реакционную зону А в качестве по меньшей мере одного из по меньшей мере двух содержащих пропан исходных потоков, в котором в реакционной зоне А осуществляют окисление определенного количества (М) молекулярного водорода до водяного пара, которое составляет по меньшей мере 35 мол.%, но не более 65 мол.% от суммарного количества производимого в реакционной зоне А и, при необходимости, вводимого в нее молекулярного водорода. 21 з.п. ф-лы.

Реферат

Настоящее изобретение относится к способу получения акролеина, акриловой кислоты или их смеси из пропана, в соответствии с которым:

А) - в первую реакционную зону А вводят, по меньшей мере, два образующих реакционный газ А, содержащих пропан газообразных исходных потока, по меньшей мере, один из которых содержит свежий пропан,

- реакционный газ А пропускают, по меньшей мере, через один слой катализатора реакционной зоны А, в котором вследствие частичного гетерогенно-катализируемого дегидрирования пропана образуются молекулярный водород и пропилен,

- в реакционную зону А вводят молекулярный кислород, который окисляет содержащийся в реакционном газе А молекулярный водород до водяного пара, и

- из реакционной зоны А отбирают газообразный продукт А, содержащий молекулярный водород, водяной пар, пропилен и пропан,

B) отбираемый из реакционной зоны А газообразный продукт А при подаче молекулярного кислорода используют в реакционной зоне В для питания, по меньшей мере, одного реактора окисления реакционным газом В, содержащим молекулярный водород, водяной пар, пропан, пропилен и молекулярный кислород, и содержащийся в реакционном газе В пропилен подвергают в реакционной зоне В гетерогенно-катализируемому частичному газофазному окислению, получая газообразный продукт В, содержащий акролеин, акриловую кислоту или их смесь в качестве целевого продукта, непревращенный пропан, молекулярный водород, водяной пар и диоксид углерода в качестве побочных продуктов, а также другие побочные компоненты с температурой кипения ниже и выше точки кипения воды,

C) газообразный продукт В выводят из реакционной зоны В и в первой зоне разделения I выделяют содержащиеся в нем целевой продукт, воду и побочные компоненты с температурой кипения выше точки кипения воды, причем остающийся после их выделения остаточный газ I содержит непревращенный пропан, диоксид углерода, молекулярный водород, побочные компоненты с температурой кипения ниже точки кипения воды, а также, при необходимости, непревращенные в реакционной зоне В пропилен и молекулярный кислород,

D) - остаточный газ I подвергают во второй зоне разделения II дополнительной обработке 1, состоящей в отмывке содержащегося в нем диоксида углерода и, при необходимости, конденсации, при необходимости, оставшейся в нем воды,

- в качестве операции дополнительной обработки 2 из производственного процесса выводят частичное количество остаточного газа I,

- остаточный газ I подвергают, при необходимости, выполняемой в третьей зоне разделения III дополнительной обработке 3, состоящей в выделении содержащегося в нем молекулярного водорода посредством разделительной мембраны, и

- в качестве, при необходимости, выполняемой операции дополнительной обработки 4 химически восстанавливают, при необходимости, содержащийся в остаточном газе I молекулярный кислород,

причем операции дополнительной обработки 1-4 выполняют в произвольной последовательности, и

Е) содержащий непревращенный пропан остаточный газ I после выполнения операций дополнительной обработки 1 и 2, а также, при необходимости, 3 и/или 4 (циркуляционный газ I) возвращают в реакционную зону А в качестве, по меньшей мере, одного из, по меньшей мере, двух содержащих пропан исходных потоков.

Акриловая кислота является важным химикатом, используемым, в частности, в качестве мономера для синтеза полимеров, которые, например, в виде дисперсий в водной среде, находят применение в качестве связующих. Кроме того, полимеры акриловой кислоты используют в качестве суперпоглотителей влаги в сфере гигиены и других сферах.

Акролеин является важным промежуточным продукт, используемым, например, для получения глутарового альдегида, метионина, 1,3-пропандиола, 3-пиколина, фолиевой кислоты и акриловой кислоты.

Способ получения акролеина, акриловой кислоты или их смеси из пропана, аналогичный способу указанного в начале описания, известен, например из немецкой заявки на патент DE-A 3313573 и европейской заявки на патент ЕР-А 117146.

Предлагаемый в изобретении способ отличается от подобных ему способов, приведенных в немецкой заявке на патент DE-A 102004032129, европейской заявке на патент ЕР-А 731077, немецких заявках на патент DE-A 102005049699, DE-A 102005052923, международных заявках WO 01/96271, WO 03/011804, WO 03/076370, WO 01/96270, немецких заявках на патент DE-А 102005009891, DE-A 102005013039, DE-A 102005022798, DE-A 102005009885, DE-A 102005010111, DE-A 10245585, DE-A 10316039 и международной заявке WO 03/011804, прежде всего отсутствием промежуточного разделения отбираемого из реакционной зоны А газообразного продукта А перед его подачей в реакционную зону В. Преимущество отсутствия подобного промежуточного разделения (прежде всего при его осуществлении термическими методами) состоит в исключении обычно сопровождающих его потерь ценных продуктов и энергии, а также затрат на оборудование. Однако полностью отказаться от подобного промежуточного разделения не удается и в случае использования способа, указанного в начале описания. Напротив, как и любая другая технология, предусматривающая циркуляцию газовых потоков, способ, указанный в начале описания, требует выведения из производственного процесса не только, по меньшей мере, одного целевого продукта, но и, по меньшей мере, одного побочного компонента. Тем не менее способ, указанный в начале описания, оказывается предпочтительным в случае перемещения места выделения побочных компонентов ближе к месту выделения целевого продукта, то есть в ту зону осуществления производственного процесса, в которой для достижения конечной цели так или иначе приходится использовать материальные и тепловые градиенты, требующие соответствующих энергетических и капитальных затрат. Подобное перемещение обусловливает снижение общих издержек, необходимых для проведения рассматриваемого производственного процесса в целом.

Особым побочным компонентом рассматриваемой технологии с циркуляцией газовых потоков является образующийся в реакционной зоне А молекулярный водород.

В отличие от экзотермического гетерогенно-катализируемого окислительного дегидрирования углеводородов в присутствии кислорода, при осуществлении которого отсутствует промежуточное образование свободного водорода (водород, отщепляемый от подвергаемого дегидрированию углеводорода, непосредственно образует воду), соответственно свободный водород не поддается аналитическому обнаружению, под осуществляемым в реакционной зоне А гетерогенно-катализируемым дегидрированием подразумевается «традиционное» дегидрирование, которое в противоположность окислительному дегидрированию протекает с эндотермическим тепловым эффектом (следующей стадией гетерогенно-катализируемого дегидрирования может являться экзотермическое сгорание водорода в реакционной зоне А) и, по меньшей мере, промежуточным образованием свободного молекулярного водорода. Осуществление подобного процесса, как правило, требует использования иных реакционных условий и иных катализаторов, нежели проведение указанного выше окислительного дегидрирования.

Таким образом, в соответствии с рассматриваемой технологией в реакционной зоне А протекает реакция, которая сопровождается неизбежным выделением водорода. Поскольку выделяющийся в реакционной зоне А молекулярный водород не является реагентом, участвующим в осуществляемой в реакционной зоне В целевой реакции естественное потребление водорода согласно рассматриваемой технологии с циркуляцией газовых потоков отсутствует. Следовательно, решение, где и в какой форме следует выводить из производственного процесса с циркуляцией газовых потоков молекулярный водород, образующийся в реакционной зоне А (а также, при необходимости, добавляемый в реакционную зону А), полностью находится в компетенции производственников (в идеальном случае на моль образующегося в реакционной зоне А пропилена приходится моль выделяющегося при этом водорода).

Согласно публикациям рассматриваемого ниже уровня техники (см., например, патент США US 3161670, европейскую заявку на патент ЕР-А 117146, немецкую заявку на патент DE-A 3313573) в реакционной зоне А осуществляют рабочий режим, предполагающий отбор молекулярного кислорода, совместную подачу всего количества образующегося молекулярного водорода в качестве инертного газа в точку после зоны разделения I с последующим полным гетерогенно-катализируемым сгоранием водорода совместно с непревращенным в реакционной зоне В молекулярным кислородом, сопровождаемым образованием воды, и возвращение всей образовавшейся воды в реакционную зону А, а следовательно, выделение образовавшегося в реакционной зоне А молекулярного водорода, проводимое только при его втором пропускании через петлю контура и только в зоне разделения I в соответствующей окисленной форме, то есть в виде воды. Подобная технология страдает многочисленными недостатками. Во-первых, невыделенный молекулярный водород осложняет переработку реакционного газа В, поскольку он является взрывоопасным компонентом этого газа, характеризующимся как особой способностью к диффузии (некоторые конструкционные материалы способны пропускать молекулярный водород), так и выраженным потенциалом восстановления (собственные исследования показали, что присутствие повышенных количеств молекулярного водорода в реакционном газе В оказывает негативное влияние на срок службы катализаторов гетерогенно-катализируемого частичного газофазного окисления), а во-вторых, целевой продукт должен быть отделен в зоне разделения 1 от незначительного количества воды, что требует значительного расхода энергии, поскольку целевые продукты обладает повышенным сродством к воде (повышенные количества воды в реакционном газе В, как правило, уменьшают также срок службы катализаторов частичного окисления, как правило, содержащих окисленную форму молибдена (Мо), поскольку вода способствует возгонке оксидов молибдена). Кроме того, указанное сгорание водорода после зоны разделения 1 сопровождается локальным выделением весьма значительного количества тепла, которое трудно поддается оптимальной локальной утилизации. От рассмотренных выше проблем неотделимы проблемы, связанные с предпочтительным использованием избытка молекулярного кислорода по сравнению со стехиометрией целевой реакции, который необходим для пролонгирования срока службы используемых в реакционной зоне В катализаторов частичного окисления, однако, очевидно, влечет за собой повышенную взрывоопасность протекающего в этой реакционной зоне процесса (если целевым продуктом является акриловая кислота и к реакционному газу В предварительно добавляют все необходимое количество молекулярного кислорода, то молярное отношение содержащегося в реакционном газе В молекулярного кислорода к содержащемуся в нем пропилену должно составлять, по меньшей мере, более 1,5:1 с учетом полного сгорания незначительной части пропилена).

Согласно известному уровню техники в качестве альтернативы предлагаются также варианты осуществления способа, в соответствии с которыми совокупное количество образующегося в реакционной зоне А молекулярного водорода как такового также совместно направляют в точку после зоны разделения I. В этом случае рекомендуется весь содержащийся в остаточном газе I пропан и пропилен отделять от всех прочих компонентов этого газа, включая молекулярный водород, и возвращать в реакционную зону А только поток, образовавшийся в результате подобного выделения С3-углеводородов. Однако недостатком данного варианта является необходимость сначала в полном объеме перевести все количество С3-углеводородов в конденсированную фазу, а затем вновь рециркулировать из конденсированной фазы в газовую.

Другая возможность решения указанной выше проблемы согласно немецкой заявке на патент DE-A 3313573 заключается в полном окислении образующегося в реакционной зоне А молекулярного водорода, проводимом в этой реакционной зоне благодаря подаче в нее молекулярного кислорода, а затем либо конденсации, по меньшей мере, части образующейся воды до реакционной зоны В и, следовательно, выделения этой части воды, либо совместной подачи всего количества образующейся воды в реакционную зону В. Обоим указанным вариантам присущи недостатки. Во-первых, выделение воды методом конденсации требует охлаждения газообразного продукта А до температур, гораздо более низких по сравнению с необходимой в реакционной зоне В температурой.

Во-вторых, снижению подлежит чрезвычайно высокая температура, поскольку сгорание молекулярного водорода сопровождается выделением количество тепла, которое почти в два раза превышает количество тепла, потребляемого для его образования в процессе дегидрирования.

Кроме того, присутствие всего количества образующейся воды в реакционном газе, как указано выше, обусловливает повышение затрат на ее выделение в зоне разделения I и, как правило, сокращение срока службы используемого в реакционной зоне В катализатора.

С учетом недостатков рассмотренного выше уровня техники в основу настоящего изобретения была положена задача предложить способ, указанный в начале описания, позволяющий, по крайней мере, частично устранить эти недостатки.

Указанная задача может быть сравнительно просто решена, благодаря выведению образующегося в реакционной зоне А молекулярного водорода и генерированию формы его выведения на более длинном участке технологической цепочки. При выведении молекулярного водорода с соблюдением заданных параметров, проводимом исключительно после реакционной зоны В, и предпочтительном выведении (только) части молекулярного водорода в зоне разделения I в виде воды, образующейся в реакционной зоне А при сгорании водорода, в зоне разделения I выполняют совместное выделение воды, так или иначе образующейся при частичном окислении в реакционной зоне В, используя для этого известные методы выделения целевого продукта и соответствующее уже имеющееся в этой зоне эффективное оборудование.

Указанная задача согласно изобретению решается благодаря способу получения акролеина, акриловой кислоты или их смеси из пропана, в соответствии с которым

А) - в первую реакционную зону А вводят, по меньшей мере, два образующих реакционный газ А, содержащих пропан газообразных исходных потока, по меньшей мере, один из которых содержит свежий пропан,

- реакционный газ А пропускают, по меньшей мере, через один слой катализатора реакционной зоны А, в котором вследствие частичного гетерогенно-катализируемого дегидрирования пропана образуются молекулярный водород и пропилен,

- в реакционную зону А вводят молекулярный кислород, который окисляет содержащийся в реакционном газе А молекулярный водород до водяного пара, и

- из реакционной зоны А отбирают газообразный продукт А, содержащий молекулярный водород, водяной пар, пропилен и пропан,

B) отбираемый из реакционной зоны А газообразный продукт А при подаче молекулярного кислорода используют в реакционной зоне В для питания, по меньшей мере, одного реактора окисления реакционным газом В, содержащим молекулярный водород, водяной пар, пропан, пропилен и молекулярный кислород, и содержащийся в реакционном газе В пропилен подвергают в реакционной зоне В гетерогенно-катализируемому частичному газофазному окислению, получая газообразный продукт В, содержащий акролеин, акриловую кислоту или их смесь в качестве целевого продукта, непревращенный пропан, молекулярный водород, водяной пар и диоксид углерода в качестве побочных продуктов, а также другие побочные компоненты с температурой кипения ниже и выше точки кипения воды,

C) газообразный продукт В выводят из реакционной зоны Вив первой зоне разделения I выделяют содержащиеся в нем целевой продукт, воду и побочные компоненты с температурой кипения выше точки кипения воды, причем остающийся после их выделения остаточный газ I содержит непревращенный пропан, диоксид углерода, молекулярный водород, побочные компоненты с температурой кипения ниже точки кипения воды, а также, при необходимости, непревращенные в реакционной зоне В пропилен и молекулярный кислород,

D) - остаточный газ I подвергают во второй зоне разделения II дополнительной обработке 1, состоящей в отмывке содержащегося в нем диоксида углерода и, при необходимости, конденсации, при необходимости, оставшейся в нем воды,

- в качестве операции дополнительной обработки 2 из производственного процесса выводят частичное количество остаточного газа I,

- остаточный газ I подвергают, при необходимости, выполняемой в третьей зоне разделения III дополнительной обработке 3, состоящей в выделении содержащегося в нем молекулярного водорода посредством разделительной мембраны, и

- в качестве, при необходимости, выполняемой операции дополнительной обработки 4 химически восстанавливают, при необходимости, содержащийся в остаточном газе I молекулярный кислород,

причем операции дополнительной обработки 1-4 выполняют в произвольной последовательности, и

Е) содержащий непревращенный пропан остаточный газ I после выполнения операций дополнительной обработки 1 и 2, а также, при необходимости, 3 и/или 4 (циркуляционный газ I) возвращают в реакционную зону А в качестве, по меньшей мере, одного из, по меньшей мере, двух содержащих пропан исходных потоков,

отличающемуся тем, что

в реакционной зоне А осуществляют окисление определенного количества (М) молекулярного водорода до водяного пара, которое составляет, по меньшей мере, 5 мол.%, но не более 95 мол.% от суммарного количества производимого в реакционной зоне А и, при необходимости, вводимого в нее молекулярного водорода.

Согласно изобретению количество М (во всех случаях рассчитываемое указанным выше образом) предпочтительно составляет, по меньшей мере, 10 мол.%, но не более 90 мол.%. Количество М особенно предпочтительно составляет, по меньшей мере, 15 мол.%, но не более 85 мол.%. Еще лучше, если количество М составляет, по меньшей мере, 20 мол.%, но не более 80 мол.%. Количество М еще более предпочтительно составляет, по меньшей мере, 25 мол.%, но не более 75 мол.%. Еще лучше, если количество М составляет, по меньшей мере, 30 мол.%, но не более 70 мол.%. Количество М предпочтительно составляет также, по меньшей мере, 35 мол.%, но не более 65 мол.%. Еще лучше, если количество М составляет, по меньшей мере, 40 мол.%, но не более 60 мол.%. Лучше всего, если количество М составляет, по меньшей мере, 45 мол.%, но не более 55 мол.%. Количество М согласно изобретению еще более предпочтительно составляет 50 мол.%.

Существенное преимущество предлагаемого в изобретении способа состоит в том, что пропан в пределах общего контура его циркуляции остается в преимущественно газообразном агрегатном состоянии, то есть отсутствует необходимость его переведения в конденсированную жидкую фазу. Подобное преимущество обладает особой ценностью с учетом сравнительно высокой затратоемкости процесса конденсации пропана, обусловленной сравнительно полным отсутствием полярности этого углеводорода.

Другое преимущество предлагаемого в изобретении способа состоит в том, что реакционный газ В согласно изобретению обязательно содержит ограниченное количество молекулярного водорода. Хотя присутствие молекулярного водорода и может привести к упомянутым выше негативным явлениям (см. немецкую заявку DE-A 3313573 и европейскую заявку на патент ЕР-А 117146), однако молекулярный водород обладает положительной особенностью, которой является его химическая инертность в реакционной зоне В. То есть, по меньшей мере, 95 мол.%, чаще всего даже, по меньшей мере, 97 мол.% или, по меньшей мере, 99 мол.% пропущенного через реакционную зону В молекулярного водорода остается химически неизменным.

Другой положительной особенностью молекулярного водорода является его максимальная теплопроводность в ряду газов. Согласно Walter J. Moore, Physikalische Chemie, издательство WDEG, Берлин (1973), с.171, измеренная в нормальных условиях теплопроводность молекулярного водорода, например, более чем в десять раз превышает теплопроводность диоксида углерода и почти в восемь раз теплопроводность молекулярного азота, соответственно молекулярного кислорода.

Согласно данным, приведенным в таблице I немецкой заявки на патент DE-А 3313573, повышенная теплопроводность молекулярного водорода обусловливает гораздо более низкую селективность образования СОх в реакционной зоне В в присутствии молекулярного водорода, нежели в его отсутствие. Повышенная теплопроводность молекулярного водорода обусловливает ускоренное отведение тепла от места протекания реакции в реакционной зоне В, а следовательно, более низкие температуры поверхности катализатора, соответственно сгорание лишь незначительной части пропилена. Прежде всего это относится к случаю, если в соответствии с предлагаемым в изобретении способом обладающий наибольшей теплопроводностью молекулярный водород и обладающий наибольшей теплоемкостью пропан одновременно участвуют в теплопередаче, обеспечивая соответствующий синергический эффект.

Согласно изобретению под свежим пропаном подразумевают пропан, не принимавший участия в осуществляемом в реакционной зоне А дегидрировании. Как правило, его вводят в виде компонента сырого пропана, который предпочтительно отвечает требованиям спецификации, приведенной в немецких заявках на патент DE-A 10246119 и DE-A 10245585, и содержит также незначительные количества отличающихся от пропана компонентов. Подобный сырой пропан может быть получен методом, описанным, например, в немецкой заявке на патент DE-A 102005022798. Кроме свежего пропана в реакционную зону А в качестве питающего потока, содержащего другой пропан, как правило, вводят лишь дополнительно обработанный согласно изобретению остаточный газ I.

В соответствии с предлагаемым в изобретении способом подачу свежего пропана предпочтительно осуществляют только в реакционную зону А, используя его в качестве компонента исходной газовой смеси для этой реакционной зоны. Однако частичное количество свежего пропана с целью обеспечения взрывобезопасности в принципе можно вводить также в исходные газовые смеси для первой и/или второй стадий окисления реакционной зоны В.

В целесообразном варианте осуществления предлагаемого в изобретении способа направляемый в реакционную зону В реакционный газ В удовлетворяет также требованиям спецификации, приведенной в немецких заявках на патент DE-A 10246119 и DE-A 10245585. Кроме того, согласно изобретению между реакционными зонами А и В целесообразно осуществлять операцию механического разделения, описанную в немецкой заявке на патент DE-A 10316039.

Согласно изобретению под расходом реакционного газа на той или иной реакционной стадии подразумевают выраженный в нормальных литрах (нл) объем пропускаемого через литр слоя катализатора (например, неподвижного слоя катализатора) газа в час, причем объемом, выраженным в нормальных литрах, является объем, который реакционный газ занимал бы в нормальных условиях (при температуре 0°С и давлении 1 бар).

Расход реакционного газа может относиться также только к одному из его компонентов. В подобном случае речь идет о выраженном в нормальных литрах объеме этого компонента, пропускаемом через литр слоя катализатора в час (нл/л·ч) (при этом присутствие инертного материала в неподвижном слое катализатора не учитывают). В случае использования слоя катализатора, являющегося смесью чистого катализатора с инертными разбавляющими формованными телами, расход реакционного газа может относиться также только к объему содержащегося в подобной смеси чистого катализатора, причем расход реакционного газа в этом случае сопровождают соответствующим примечанием.

Согласно изобретению под инертным газом в общем случае подразумевают компонент реакционного газа, который в условиях осуществления соответствующей реакции обладает преимущественно инертным поведением, причем химически неизменным остается более 95 мол.%, предпочтительно более 97 мол.%, соответственно более 99 мол.% подобного компонента реакционного газа, что относится к каждому из этих компонентов.

Типичные реакционные газы В, которые в соответствии с предлагаемым в изобретении способом можно использовать для подачи в реакционную зону В, обладают следующим составом:

пропилен от 4 до 25 об.%,
пропан от 6 до 70 об.%,
вода от 5 до 60 об.%,
кислород от 5 до 65 об.%,
водород от 3 до 20 об.%

Согласно изобретению предпочтительные реакционные газы В обладают следующим составом:

пропилен от 6 до 15 об.%,
пропан от 6 до 60 об.%,
вода от 5 до 30 об.%,
кислород от 8 до 35 об.%,
водород от 2 до 18 об.%

Согласно изобретению еще более предпочтительные реакционные газы, используемые для подачи в реакционную зону В, обладают следующим составом:

пропилен от 8 до 14 об.%,
пропан от 20 до 55 об.%, предпочтительно от 20 до 45 об.%,
вода от 10 до 25 об.%,
кислород от 10 до 25 об.%, предпочтительно от 15 до 20 об.%,
водород от 6 до 15 об.%

Указанные выше предпочтительные средние содержания пропана в реакционном газе В приведены, например, в немецкой заявке на патент DE-A 10245585.

Оптимальное молярное отношение V1 содержания пропана к содержанию пропилена в реакционном газе В для указанных выше диапазонов содержаний этих компонентов находится в интервале от 1:1 до 9:1 (то есть разделение смеси пропан/пропилен согласно настоящему изобретению предпочтительно можно осуществлять в соответствии с международной заявкой WO 04/094041). Предпочтительное молярное отношение V2 содержания молекулярного кислорода к содержанию пропилена в реакционном газе В для указанных выше диапазонов содержаний этих компонентов находится в интервале от 1:1 до 2,5:1. Согласно изобретению предпочтительное молярное отношение V3 содержания пропилена к содержанию молекулярного водорода в реакционном газе В для указанных выше диапазонов содержаний этих компонентов находится в интервале от 0,5:1 до 20:1. Предпочтительное молярное отношение V4 содержания водяного пара в реакционном газе В к общему молярному количеству содержащихся в нем пропана и пропилена составляет от 0,005:1 до 10:1.

Особенно предпочтительное молярное отношение V1 в реакционном газе В для реакционной зоны В (исходной реакционной газовой смеси В) составляет от 1:1 до 7:1 или до 4:1, соответственно от 2:1 до 6:1, особенно благоприятно от 2:1 до 5:1, соответственно от 3,5:1 до 4,5:1. Предпочтительное молярное отношение V2 в исходной реакционной газовой смеси В составляет от 1,2:1 до 2,0:1, соответственно от 1,4:1 до 1,8:1. Предпочтительное молярное отношение V3 в исходной реакционной газовой смеси В составляет от 0,5:1 до 15:1, соответственно от 0,5:1 до 10:1, соответственно от 0,5:1 до 1,5:1. Предпочтительное молярное отношение V4 в исходной реакционной газовой смеси В составляет от 0,01:1 до 5:1, лучше от 0,05:1 до 3:1, предпочтительно от 0,1:1 до 1:1 и особенно предпочтительно от 0,1:1 до 0,5:1 или до 0,3:1.

Согласно изобретению предпочтительными являются невзрывоопасные исходные реакционные газовые смеси В.

Решающее значение для ответа на вопрос, взрывоопасной или невзрывоопасной следует считать исходную реакционную газовую смесь В, имеет то обстоятельство, способна или не способна подобная находящаяся в определенных условиях (при определенных давлении и температуре) смесь распространять горение (воспламенение, взрыв), инициированное локальным источником воспламенения (например, раскаленной платиновой проволокой) (см. стандарт DIN 51649 и приведенные в международной заявке WO 04/007405 результаты исследований). В соответствии с настоящим изобретением в случае распространения горения смесь следует считать взрывоопасной. При отсутствии распространения горения соответствующую смесь считают невзрывоопасной. Согласно изобретению отсутствие взрывоопасности исходной реакционной газовой смеси означает отсутствие взрывоопасности и соответствующих реакционных газовых смесей, образующихся в процессе частичного окисления подобной исходной реакционной газовой смеси (см. международную заявку WO 04/007405).

В качестве источника необходимого для введения в реакционную зону В молекулярного кислорода, не содержащегося в газообразном продукте А, можно использовать молекулярный кислород как таковой или смесь молекулярного кислорода с газом, ведущим себя химически инертно в реакционной зоне В (или смесью подобных инертных газов), например, благородным газом, таким как аргон, молекулярным азотом, водяным паром, диоксидом углерода и так далее (например, воздух). Согласно изобретению молекулярный кислород предпочтительно вводят в виде газа, который содержит не более 30 об.%, предпочтительно не более 25 об.%, предпочтительно не более 20 об.%, особенно предпочтительно не более 15 об.%, лучше не более 10 об.% и особенно предпочтительно не более 5 об.% других (отличающихся от молекулярного кислорода) газов. Особенно благоприятным является введение в реакционную зону В чистого молекулярного кислорода.

Вышесказанное в принципе равным образом справедливо для молекулярного кислорода, который в соответствии с предлагаемым в изобретении способом подлежит введению в реакционную зону А через подвергнутый дополнительной обработке, возвращаемый в реакционную зону А, при необходимости, содержащий молекулярный кислород остаточный газ I. Однако поскольку потребность реакционной зоны А в кислороде сравнительно невелика, то в соответствии с предлагаемым в изобретении способом прежде всего по причинам экономичности она может быть оптимальным образом удовлетворена, благодаря использованию воздуха в качестве источника кислорода.

В соответствии с предлагаемым в изобретении способом возвращаемый в реакционную зону А дополнительно обработанный остаточный газ I, как правило, еще содержит неиспользованный в реакционной зоне В молекулярный кислород, причем его содержание в возвращаемом в реакционную зону А дополнительно обработанном остаточном газе I в принципе может быть рассчитано также таким образом, чтобы в соответствии с предлагаемым в изобретении способом отсутствовала необходимость дополнительной подачи молекулярного кислорода в реакционную зону А. Однако возвращаемый в реакционную зону А дополнительно обработанный остаточный газ I согласно изобретению в принципе не должен обязательно содержать кислород и в большинстве случаев согласно изобретению необходима дополнительная подача кислорода в эту реакционную зону. Для этого можно использовать чистый молекулярный кислород или смесь молекулярного кислорода с одним или несколькими ведущими себя в реакционных зонах А и В химически инертно газами, например молекулярным азотом, водяным паром, благородными газами и/или диоксидом углерода (например, воздух). Согласно изобретению предпочтительно используют газ, который содержит не более 30 об.%, предпочтительно не более 25 об.%, предпочтительно не более 20 об.%, особенно предпочтительно не более 15 об.%, лучше не более 10 об.% и особенно предпочтительно не более 5 об.%, соответственно не более 2 об.%, отличающихся от молекулярного кислорода других газов. В этом случае особенно предпочтительной также является подача чистого кислорода.

Описанная выше подача чистого кислорода как в реакционную зону А, так и в реакционную зону В согласно изобретению предпочтительна прежде всего в связи с тем, что она не приводит к накапливанию чрезмерного количества инертного газа в системе осуществляемой согласно изобретению циркуляции, что потребовало бы его последующего выведения из производственного процесса.

Согласно изобретению в наиболее общем случае типичное общее содержание компонентов, отличающихся от пропилена, молекулярного водорода, водяного пара, пропана и молекулярного кислорода, в исходной реакционной газовой смеси В чаще всего составляет ≤40 об.%, ≤35 об.%, ≤30 об.%, ≤25 об.% или ≤20 об.%, часто ≤15 об.%, нередко ≤10 об.%. Согласно изобретению общее содержание подобных компонентов, составляющее ≤5 об.%, является трудно осуществляемым. До 80 об.% от общего количества подобных компонентов исходной реакционной газовой смеси В может приходиться на этан и/или метан. Остальное прежде всего составляют оксиды углерода (диоксид углерода, монооксид углерода) и благородный газ, а также кислородсодержащие побочные компоненты, такие как формальдегид, бензальдегид, метакролеин, уксусная кислота, пропионовая кислота, метакриловая кислота и так далее. Подобными прочими компонентами исходной реакционной газовой смеси В, очевидно, могут являться также этилен, изобутилен, н-бутан, н-бутилены и молекулярный азот. Однако принципиальное преимущество предлагаемого в изобретении способа по сравнению со способом, приведенным в европейской заявке на патент ЕР-А 293224, состоит в том, что исходная реакционная газовая смесь В может содержать от 0,1 до 30 об.%, соответственно от 1 до 25 или 20 об.%, часто от 5 до 15 об.% диоксида углерода. Содержание монооксида углерода в исходной реакционной газовой смеси В обычно составляет ≤5 об.%, ≤4 об.%, ≤3 об.% или ≤2 об.%, в большинстве случаев ≤1 об.%. Однако исходная реакционная газовая смесь В обычно содержит ≤20 об.%, предпочтительно ≤15 об.%, особенно предпочтительно ≤10 об.% и еще более предпочтительно ≤5 об.% азота.

Для использования в реакционной зоне А в принципе пригодны любые катализаторы гетерогенно-катализируемого частичного дегидрирования пропана, например катализаторы, известные из международных заявок WO 03/076370, WO 01/96271, европейской заявки на патент ЕР-А117146, международной заявки WO 03/011804, европейской заявки на патент ЕР-А 731077, заявки на патент США US-A3161670, международной заявки WO 01/96270, а также немецких заявок на патент DE-A3313573, DE-А 10245585, DE-A 10316039, DE-A 102005009891, DE-A 102005013039, DE-A 102005022798, DE-A 102005009885, DE-A 102005010111, DE-A 102005049699 и DE-A 102004032129.

Реакционная зона А применительно к однократному пропусканию пропана может обладать изотермической конструкцией, характеризующейся целенаправленным теплообменом с пропускаемыми снаружи текучими (то есть жидкими или газообразными) теплоносителями. При аналогичной базе сравнения реакционная зона А может являться также адиабатической, то есть преимущественным отсутствием указанного целенаправленного теплообмена с пропускаемым снаружи теплоносителем. В этом случае благодаря осуществлению рекомендуемых в рассмотренном выше уровне техники и описанных ниже технических мероприятий тепловой брутто-эффект (применительно к однократному пропусканию исходной реакционной газовой смеси через реакционную зону А) может быть эндотермическим (отрицательным), автотермическим (преимущественно нулевым) или экзотермическим (положительным). Для осуществления предлагаемого в изобретении способа также можно использовать катализаторы, рекомендуемые в указанных выше публикациях. Гетерогенно-катализируемое дегидрирование пропана независимо от того, в каком режиме его осуществляют, адиабатическом или изотермическом, в принципе можно выполнять как в реакторе с неподвижным слоем катализатора, так и в реакторе с движущимся или псевдоожиженным (кипящим) слоем катализатора (последний вариант в связи с возможностью обратного перемешивания, прежде всего пригоден для нагревания исходной реакционной газовой смеси А в реакционной зоне А до температуры реакции, обусловленного сгоранием присутствующего в реакционном газе А водорода в присутствии содержащегося в циркуляционном газе I молекулярного кислорода).

Частичное гетерогенно-катализируемое дегидрирование пропана в пропилен в типичном случае требует использования сравнительно высоких реакционных температур. Степень превращения пропана обычно ограничена термодинамическим равновесием реакции дегидрирования. Типичная температура реакции дегидрирования составляет от 300 до 800°С, соответственно от 400 до 700°С. При этом дегидрирование моля пропана сопровождается образованием моля водорода. Типичное рабочее давление в реакционной зоне А составляет от 0,3 до 5 или 3 бар. Согласно изобретению предпочтительное рабочее давление в реакционной зоне А составл