Динамические пороговые величины обнаружения несущей
Иллюстрации
Показать всеИзобретение относится к технике связи и может использоваться для осуществление связи в среде беспроводной сети. Технический результат состоит в повышении пропускной способности и снижении потерь данных. Для этого точки доступа могут динамически регулировать мощность передачи и/или пороговые величины обнаружения несущей, чтобы разрешить многочисленным точкам доступа осуществлять связь параллельно. В аспектах точки доступа обмениваются информацией об узле, включая сюда RSSI и адреса узлов, близлежащих узлов. Информация об узле может использоваться для обнаружения скрытых узлов и оценки уровней помех. Мощность передачи и/или пороговые величины обнаружения несущей могут быть модифицированы как функция расстояния между точками доступа источника и пункта назначения помех от скрытых узлов, скоростей передач и/или потерь на трассе. 4 н. и 21 з.п. ф-лы, 22 ил., 2 табл.
Реферат
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
ПЕРЕКРЕСТНАЯ ССЫЛКА
Эта заявка испрашивает преимущество предварительной патентной заявки (США) под порядковым номером № 60/792,141, озаглавленной "METHOD AND SYSTEM TO SET THE CARRIER SENSING THRESHOLDS IN WLAN SYSTEMS", поданной 13 апреля 2006 г., и предварительной патентной заявки (США) под порядковым номером № 60/827,908, озаглавленной "HIERARCHICAL MESH NETWORK ARCHITECTURE FOR PROVIDING 802.11-BASED SERVICES", поданной 3 октября 2006 г. Полные содержания вышеуказанных заявок включены в материалы настоящей заявки посредством ссылки.
I. Область техники изобретения
Последующее описание относится в общем к беспроводной связи, и, среди прочего, к пространственному повторному использованию в беспроводных сетях.
II. Уровень техники изобретения
Системы беспроводной сети стали преобладающим средством, с помощью которого большинство людей по всему миру общаются друг с другом и передают, осуществляют доступ, управляют и обрабатывают данные. Потребители стали зависимыми от беспроводных устройств, например сотовые телефоны, персональные цифровые помощники (PDA), портативные компьютеры и тому подобные, нуждаясь в надежной службе и расширенных зонах покрытия для беспроводных сетей.
Многие индивидуумы и/или организации заменили или дополнили традиционные проводные сети системами беспроводной сети. Типично терминалы или конечные устройства соединяются с сетью через набор точек доступа. Эти точки доступа могут быть связаны с сетевой инфраструктурой. Однако в беспроводных сетях, например, сеточных беспроводных локальных сетях (WLAN), подмножество точек доступа может соединяться беспроводным образом с сетевой инфраструктурой. Одним преимуществом сеточных или беспроводных сетей является легкость развертывания или установки. Если проводная инфраструктура установлена, точки беспроводного доступа могут быть распределены по всей необходимой зоне обслуживания для оптимизации зоны обслуживания. В отличие от проводных точке доступа, беспроводные точки доступа могут быть легко переставлены, не требуя дополнительной укладки кабелей или проводов. Кроме того, пользователи пользуются улучшенной гибкостью.
Беспроводные точки доступа ретранслируют данные в беспроводные точки доступа для облегчения осуществления связи с сетью. Данные могут передаваться через многочисленные беспроводные точки доступа. Однако доступные ресурсы системы могут быть ограничены и передачи с помощью многочисленных беспроводных точек доступа могут привести к помехам, снижая производительность системы и вызывая потерю данных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Последующее представляет упрощенную сущность изобретения одного или более аспектов, для того чтобы обеспечить базовое понимание подобных аспектов. Это краткое изложение не является исчерпывающим обзором всех предполагаемых аспектов и оно не имеет намерением ни идентифицировать его ключевые или критические элементы всех его аспектов, ни установить границы объема каких-либо или всех его аспектов. Его единственная цель - представить некоторые понятия одного или более аспектов в упрощенной форме в качестве вступления в более подробном описании, которое представлено далее.
Согласно одному или более аспектам и их соответствующему раскрытию, различные аспекты описаны в связи с облегчением осуществления связи в беспроводной сети. Более конкретно, один или более аспектов максимизируют или увеличивают производительность беспроводной сети (например, сеточной сети), во время минимизации помех. Типично точки доступа мониторят текущий уровень шума или уровни несущей и сравнивают наблюдаемые уровни с фиксированной пороговой величиной, упоминаемой как пороговая величина обнаружения несущей (CST). Если обнаруженный уровень ниже заранее определенной пороговой величины, точка доступа может запросить разрешения на передачу, используя запрос на отправку (RTS); иначе точка доступа воздержится от передачи до тех пор, пока уровень не упадет ниже пороговой величины обнаружения несущей. Следовательно, число точек доступа, которые могут осуществлять связь в любой один момент времени, ограничено на основе пороговой величины обнаружения несущей и конфигурацией точек доступа.
Сеть может увеличивать пространственное повторное использование, разрешая точкам доступа динамично устанавливать пороговую величину обнаружения несущей и мощность передачи. В частности, пороговая величина обнаружения несущей может быть определена на основе расстояний между источником и точками доступа назначения. Точки доступа могут обмениваться информацией индикатора интенсивности принятого сигнала (RSSI), который может использоваться для вычисления расстояний между точками доступа или узлами на основе обмениваемой информации RSSI. Кроме того, RSSI может использоваться для вычисления помех от скрытых узлов, а также мощности передачи. Динамические пороговые величины обнаружения несущей могут быть вычислены как функция расстояний между узлами и мощностью передачи.
В аспекте настоящее раскрытие предоставляет способ, облегчает осуществление связи в среде беспроводной сети, которое содержит получение информации об узле, относящейся к соседствующим узлам. Способ также содержит определение соответствующей пороговой величины обнаружения несущей для оптимизации сетевой пропускной способности как функции информации об узле. Кроме того, способ содержит управление передачей данных на основе, по меньшей мере, частично, пороговой величины обнаружения несущей.
В другом аспекте настоящее раскрытие предоставляет устройство, которое облегчает сетевое осуществление связи. Устройство содержит процессор, который выполняет команды для приема информации, ассоциированной с, по меньшей мере, одним сетевым узлом, выбора пороговой величины обнаружения несущей как функции принятой информации, и управления сетевой связью на основе, по меньшей мере, пороговой величины обнаружения несущей. Устройство также содержит память, соединенную с процессором.
Согласно еще одному аспекту настоящее раскрытие предоставляет устройство, которое облегчает оптимизацию сетевой пропускной способности, которое содержит средство для получения данных узла, относящихся к сетевому узлу. Устройство также содержит средство для установки пороговой величины обнаружения несущей как функции узловых данных, при этом пороговая величина обнаружения несущей используется для направления передач данных между точкой доступа источника и точкой доступа назначения.
Согласно дополнительному аспекту настоящее раскрытие предоставляет машиночитаемый носитель, который имеет команды для приема информации об узле от, по меньшей мере, одной точки доступа, информация об узле включает в себя информацию об интенсивности сигнала, относящуюся к, по меньшей мере, одному соседствующему узлу точки доступа. Машиночитаемый носитель включает в себя команды для определения пороговой величины обнаружения несущей, используемой для управления передачами данных как функции принятой информации об узле.
Согласно другому аспекту настоящее раскрытие предоставляет процессор, который выполняет машиночитаемые команды, которые облегчают сетевое осуществление связи. Команды содержат прием периодического сигнала, который включает в себя информацию об узле, которая перечисляет, по меньшей мере, один сетевой узел и ассоциированную интенсивность сигнала. Команды могут также содержать установку пороговой величины обнаружения несущей как функции информации об узле. Кроме того, команды могут содержать управление передачей данных на основе, по меньшей мере, частично, пороговой величины обнаружения несущей.
Для достижения вышеизложенных и связанных целей один или более аспектов содержат признаки, описанные полностью в дальнейшем в данном документе и конкретно выделенные в формуле изобретения. Последующее описание и прилагаемые чертежи подробно излагают определенные иллюстративные аспекты. Эти аспекты, тем не менее, указывают только на некоторые из различных способов, в которых могут быть использованы принципы, описанные в данном документе, и описанные аспекты предназначены, чтобы включить в себя их эквиваленты.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 является блок-схемой системы, которая динамично регулирует пороговую величину обнаружения несущей согласно одному или более аспектам, представленным в данном документе.
Фиг.2 является блок-схемой примерной сеточной беспроводной сети согласно одному или более аспектам, представленным в данном документе.
Фиг.3 иллюстрирует значимые интервалы для связи в беспроводной сети.
Фиг.4 иллюстрирует примерный сценарий помех для беспроводной сети.
Фиг.5 является графом, который отображает примерную модель потери на трассе.
Фиг.6 является графом, который отображает пропускную способность зоны на основе значений контрольной точки потерь на трассе.
Фиг.7 является графом, который отображает интервал помех как функцию необходимого SINR и интервал контрольной точки потерь на трассе.
Фиг.8 является графом, который отображает эффекты мощности передачи по пропускной способности зоны.
Фиг.9 является графом, который иллюстрирует пропускную способность зоны как функцию пороговой величины обнаружения несущей.
Фиг.10 иллюстрирует примерную методологию для установки пороговых величин обнаружения несущей для оптимизации осуществления связи в беспроводной сети согласно одному или более аспектам, представленным в данном документе.
Фиг.11 является блок-схемой системы, которая получает и предоставляет информацию о соседях согласно одному или более аспектам, представленным в данном документе.
Фиг.12 иллюстрирует методологию для получения и управления информацией об узле согласно одному или более аспектам, представленным в данном документе.
Фиг.13 иллюстрирует методологию для формирования широковещательного сообщения, содержащего информацию об узле согласно одному или более аспектам, представленным в данном документе.
Фиг.14 является блок-схемой системы, которая динамично определяет пороговую величину обнаружения несущей согласно одному или более аспектам, представленным в данном документе.
Фиг.15 иллюстрирует методологию для определения соответствующей мощности передачи согласно одному или более аспектам, представленным в данном документе.
Фиг.16 является блок-схемой системы, которая использует динамично определяемую пороговую величину для управления передачей данных согласно одному или более аспектам, представленным в данном документе.
Фиг.17 иллюстрирует методологию для инициирования связи с соседней точкой доступа согласно одному или более аспектам, представленным в данном документе.
Фиг.18 иллюстрирует методологию для ответа на коммуникационный запрос согласно одному или более аспектам, представленным в данном документе.
Фиг.19 иллюстрируют примерные кадры для передачи информации об узле и/или динамические пороговые величины обнаружения несущей согласно одному или более аспектам, представленным в данном документе.
Фиг.20 является иллюстрацией системы беспроводной связи согласно одному или более аспектам, представленным в данном документе.
Фиг.21 является иллюстрацией среды беспроводной связи, которая может использоваться в связи с различными системами и способами, описанными в данном документе.
Фиг.22 является иллюстрацией системы, которая облегчает беспроводную связь, используя динамические пороговые величины несущей согласно одному или более аспектам, представленным в данном документе.
ПОДРОБНОЕ ОПИСАНИЕ
Сейчас описываются различные аспекты со ссылкой на чертежи, на всем протяжении которых одинаковые ссылочные номера использованы, чтобы указывать ссылкой на одинаковые элементы. В последующем описании, для целей пояснения многие конкретные детали изложены, чтобы обеспечить полное понимание одного или более аспектов. Тем не менее, может быть очевидно, что подобный аспект(ы) может быть применен на практике без этих конкретных деталей. В иных случаях, в форме блок-схемы показаны распространенные структуры и устройства, чтобы облегчить описание одного или более аспектов.
В качестве используемых в этой заявке, термины "компонент", "система" и тому подобные имеют намерением указывать ссылкой на имеющую отношение к компьютеру сущность либо из аппаратных средств, сочетания аппаратных средств и программного обеспечения, программного обеспечения, или программного обеспечения при выполнении. Например, компонент может быть, но не ограничен, процессом, запущенным на процессоре, процессором, объектом, исполняемым файлом, потоком выполнения, программой и/или компьютером. С помощью иллюстрации как приложение, выполняющееся на устройстве связи, так и устройстве, может быть компонентом. Один или более компонентов могут находиться в пределах процесса и/или потока выполнения, а компонент может быть локализован на одном компьютере и/или распределен между двумя или более компьютерами. Также эти компоненты могут исполняться с различных компьютерных считываемых носителей, имеющих различные структуры данных, сохраненные на них. Компоненты могут обмениваться данными посредством локальных и/или удаленных процессов, например, в соответствии с сигналом, имеющим один или более пакетов данных (к примеру, данных из одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе и/или по сети, например по Интернету, с другими системами посредством сигнала).
Кроме того, различные аспекты описаны в данном документе в связи с терминалом или клиентом. Терминал может также называться системой, пользовательским устройством, абонентским узлом, абонентской станцией, мобильной станцией, удаленной станцией, точкой доступа, базовой станцией, удаленным терминалом, терминалом доступа, пользовательским терминалом, терминалом, агентом пользователя, пользовательским оборудованием (UE) и или клиентом. Терминал может быть сотовым телефоном, беспроводным телефоном, телефоном протокола инициации сеанса (SIP), станцией беспроводной абонентской линии (WLL), персональным цифровым помощником (PDA), карманным устройством, которое имеет возможность беспроводного соединения или другое обрабатывающее устройство, соединенное с беспроводным модемом.
Более того, различные аспекты или признаки, описанные в данном документе, могут быть реализованы как способ, устройство или изделие, использующее методики стандартного программирования и/или конструирования. Термин "изделие" в качестве используемого в материалах настоящей заявки имеет намерением охватывать компьютерную программу, доступную с любого машиночитаемого устройства, несущей или носителей. Например, машиночитаемая среда может включать в себя, но не в качестве ограничения, магнитные запоминающие устройства (например, жесткий диск, дискету, магнитные полосы...), оптические диски (например, компакт диск (CD), цифровой универсальный диск (DVD)...), интеллектуальные карты и устройства флэш-памяти (например, карточку, карту памяти, основной накопитель...).
Многие беспроводные сетевые протоколы избегают помех посредством обнаружения передач посредством соседних узлов и воздержания от передачи, когда такие передачи обнаружены. В частности, системы IEEE 802.11 a/b/e/g/n и системы UWB (ультраширокополосной радиосвязи) основаны на основе множественного доступа с прослушиванием несущей и избежанием коллизий (CSMA/CA) и соответственно многостанционном доступе с контролем преамбулы и избежанием коллизий (PSMA/CA). В алгоритме CSMA/CA обнаружение передач других узлов основано на обнаружении мощности, несущей и/или комбинации обеих. В алгоритме PSMA/CA обнаружение передач других узлов основано на обнаружении несущей или преамбулы передачи. В обоих протоколах все узлы, которые желают передавать или осуществлять доступ к среде, сначала квантуют мощность в среде и определяют, передает ли уже другой узел в среде. Подобное квантование помогает этим системам определять не только присутствие мощности, но и обрабатывать эту мощность. Узлы могут синхронизироваться с преамбулой и контрольным сигналом (если была передача кадра по воздуху). Если узел может синхронизироваться с преамбулой и контрольным сигналом, узел может затем декодировать заголовок MAC (управление доступом к среде), чтобы определить, была ли передача кадра по воздуху.
В частности, обнаружение других передач с помощью других узлов может быть выполнено с помощью использования двух схем обнаружения несущей: (1) физическое обнаружение несущей (PCS) и (2) виртуальное обнаружение несущей (VCS). В схеме PCS точки доступа задерживают передачи, если мощность в среде выше определенной заранее заданной пороговой величины. Используя алгоритм VCS, обмены сигналами или кадром, например запрос на передачу (RTS) и готовность к отправке (CTS), сообщают всем соседним узлам о запрете передачи. Схема VCS может решить скрытые проблемы узлов, так как любой узел, который принимает CTS, воздерживается от отправки, осведомлена ли передающая точка доступа об узле или нет. Как используется в данном документе, скрытый узел является любым узлом, который является неизвестным для передающего узла. Следовательно, передачи скрытыми узлами могут вызвать помехи. Хотя VCS может решить проблемы, вызываемые скрытыми узлами, VCS может вызвать проблемы для открытых узлов. В целом, скрытые узлы вызывают наибольшие помехи для предназначенного приемника и им запрещена передача вектором назначения сети (NAV), заданным в схемах VCS. Тем не менее, открытым узлам, которые могут передавать, не вызывая помехи в приемнике, запрещается передавать из-за VCS, таким образом снижая пространственную пропускную способность.
В сетях MESH (например, сетях MESH IEEE 802.11s) является выгодным максимизировать число узлов, которые могут осуществлять работу одновременно, чтобы поддерживать более высокую пропускную способность зоны. Динамическая пороговая величины обнаружения несущей/мощности и/или мощности передачи может использоваться для максимизации числа узлов, которые осуществляют связь одновременно, оптимизируя пропускную способность зоны.
Обращаясь теперь к фиг., фиг. 1 отображает аспект системы 100, которая облегчает осуществление связи среди набора беспроводных точек доступа. Типично подобные системы используют фиксированные пороговые величины мощности передачи и обнаружения несущей. Однако это приводит к удержанию некоторых узлов от передачи, когда они могут ее выполнить, не вызывая помех, упоминаемое в данном документе как проблема открытых узлов. Динамически регулируя мощность передачи, а также пороговые величины, используемые узлами, чтобы обнаруживать передачу от других узлов, большее число передачи может происходить одновременно, не вызывая помех. Это увеличение приводит к увеличению общей пропускной способности для сети.
Система 100 может включать в себя узловой компонент 102, который может принимать и передавать сообщения, содержащие данные, относящиеся к соседним узлам, упоминаемые в данном документе как узловая информация. Узловая информация может включать в себя адрес узла, RSSI и любую другую информацию, относящуюся к конкретному узлу. Как используется в данном документе, узел является любым клиентом, точкой доступа, терминалом или иным устройством. Сообщения могут широковещательно транслироваться периодически и могут приниматься любыми ближайшими узлами.
В аспектах сигнальный кадр, определенный протоколом IEEE 802.11 a/b/g/n MAC, может модифицироваться, чтобы включать в себя подобную узловую информацию. В частности, сообщение или сигнальный кадр могут включать в себя информацию RSSI для соседних узлов точки доступа, передающей сигнал. Эта модификация сигнального кадра для протокола может использоваться только для сигнальных кадров для точек доступа в сеточной сети, также упоминаемой как сеточные точки доступа (MAP) и сеточные порталы (MP).
Клиенты и беспроводные станции (WSTA) могут соединяться с MAP, используя первый канал, и MAP могут соединяться друг с другом, используя второй, отличный канал, из условия, что направление трафика среди точек доступа и входящий трафик от клиентов не нужно перекрывать. Типично каждая MAP периодически отсылает широковещательное сообщение или сигнальный кадр для своих клиентов. Широковещательное сообщение может включать в себя управляющую информацию и информацию о временной синхронизации и может также передаваться в канале эстафетной передачи другим MAP. Альтернативно управление доступом к среде (MAC) MAP может передавать сообщение или сигнал в канале эстафетной передачи. Сообщение может приниматься и декодироваться всеми близлежащими MAP или узлами. Узловой компонент 102 принимающего узла может записывать информацию об узле (например, RSSI), содержащейся в передаваемом сообщении и вычислять потери на трассе между соседними узлами и передающей MAP. RSSI для узда может быть усреднен по числу принятых сообщений или сигналов, используя простой фильтр нижних частот. Кроме того, этот сигнальный кадр MAP MAC может содержать информацию об узле, относящуюся к его соседям и их RSSI.
Система 100 может включать в себя компонент 104 пороговой величины, который динамически определяет пороговую величину обнаружения несущей. Компонент 104 пороговой величины может использовать информацию о соседях, получаемую узловым компонентом 102 для определения соответствующей пороговой величины обнаружения несущей для оптимизации пропускной способности зоны, наряду с тем, что избегают чрезмерных помех. В частности, компонент 104 пороговой величины может прогнозировать помехи от скрытых узлов как функцию информации о соседях и регулировать пороговую величину обнаружения несущей соответственно.
Компонент 106 передачи данных может использовать вычисляемую пороговую величину обнаружения несущей для облегчения передачи и приема данных от соседних узлов. Типично сетевые протоколы (например, IEEE 802.11, протокол WLAN) проектируются для гарантии, что предназначенный приемник имеет минимальные помехи от соседних узлов или точек доступа. Компонент 106 передачи данных может смягчать проблемы открытых узлов, используя динамическую пороговую величину обнаружения несущей (CST) и регулируя мощность передачи. Кроме того, компонент 106 передачи данных может включать в себя вычисляемую величину обнаружения несущей в передачах для соседних узлов. Компонент 106 передачи данных может включать в себя пороговую величину обнаружения несущей в передачах CTS и/или RTS.
Ссылаясь на фиг.2, проиллюстрирована примерная беспроводная сеточная сеть 200. Сеть 200 может включать в себя множество точек доступа, также упоминаемых как сеточные точки доступа (MAP) или сеточные точки (MP), которые могут работать согласно 802.11 или на основе иного типа протокола. Точки доступа могут использоваться по зоне (например, территория университета, городской центр, торговый центр или другая горячая зона, обычно характеризуемая более высокой плотностью заселенности). Для того чтобы снизить затраты на развертывание и эксплуатацию, только подмножество точек 220 доступа соединяются непосредственно с проводной инфраструктурой 210 (например, магистраль). Как следствие, сеточная связь между точками доступа используется для соединения непроводных точек доступа с магистралью сети).
В сеточной сети сеточные точки 230 доступа (MAP) направляют данные в проводные точки 220 доступа. Кадры (или пакеты) передаются от источника в пункт назначения в маршрутах, которые состоят из MAP 230. Алгоритмы маршрутизации могут использоваться для определения точной последовательности MAP 230 для кадра, которую необходимо пройти до достижения пункта назначения. Если направление MAP 230 перегружено, она может запросить другие MAP 230, которые направляют свой трафик, чтобы снизить для устранения перегрузки сети 200.
В сети 200 MAP 230 и 220 могут проектироваться для работы одновременно в двух диапазонах (например, в том же кадре или последовательных кадрах), используя дуплексную связь с временным разделением (TDD) в каждом диапазоне. В примерной схеме для одновременного осуществления связи может использоваться два отдельных диапазона. Рабочий диапазон клиентского доступа может использоваться для осуществления связи к или от клиентов. Клиентский диапазон может быть предоставлен, используя существующие 2.4 и/или 5.х нелицензируемые диапазоны, которые, в общем, используются для поддержки устройств 802.11 b,g,n и 802.11 a,n. Точка 220 или 230 доступа, работающая на единственной несущей 20 МГц, может создавать основной набор служб (BSS) с клиентами, которые зарегистрированы в нем. Различные BSS могут работать некоординируемым образом и могут использоваться в той же самой несущей или по определенным РЧ (радиочастотным) несущим. Клиентский доступ может быть стандартным на основе 802.11.
Отдельный беспроводный рабочий диапазон межсоединения AP может использоваться для осуществления связи среди MAP. Так, как только часть точек MAP соединена с проводной инфраструктурой, межсоединение между непроводными и проводными MAP облегчается работой на отдельной несущей из диапазона, используемого для клиентского доступа. Кроме того, является возможным осуществление работы сети межсоединения точек доступа в лицензируемом диапазоне, который допускает более высокую мощность передачи, чем разрешено в нелицензируемых диапазонах. Межсоединение AP-AP может быть основано на аналогичной технологии, которая используется в 802.11n. Примерная система допускает использование одного диапазона, по существу, для связи MAP с клиентом или терминалом, тогда как другой используется, по существу, для осуществления связи между MAP.
В общем, все AP могут предоставлять службу на основе 802.11 в нелицензируемом диапазоне. AP может предоставлять доступ по единственной несущей 20 МГц или многочисленным несущим в 20 МГц. Для сети межсоединения AP существуют два основных типа AP в сетевой иерархии: маршрутизаторы и шлюзы. Маршрутизатором является MAP, которая может использоваться без проводного магистрального соединения. Маршрутизаторы могут работать на отдельной предназначенной несущей (возможно, лицензируемой), которая используется исключительно для осуществления связи со шлюзом AP. Шлюз является проводной AP, работающей на отдельной предназначенной несущей (снова, возможно, лицензируемой), используемой исключительно для осуществления связи с маршрутизаторами, которые ассоциированы с ней.
Институт инженеров по электротехнике и электронике (IEEE) разрабатывает стандарт беспроводной локальной сети (WLAN), которая обещает масштабируемую и легко разворачиваемую инфраструктуру сеточной сети на основе технологий 802.11. Цели включают в себя адаптивные и самоконфигурируемые системы, которые поддерживают широковещательную передачу, групповую передачу и одноадресную передачу по многоскачковым сеточным топологиям. Основной проблемой в разработке эффективной IEEE 802.11s MESH WLAN является оптимизация спектрального повторного использования и поэтому максимизация ее пропускной способности зоны.
Обращаясь теперь к фиг.3, проиллюстрированы несколько важных диапазонов для осуществления связи по беспроводной сети. Узел 302 источника и узел 304 назначения разделены расстоянием 306, упоминаемым как расстояние источника/назначения. Диапазон 308 передачи определяется как диапазон, где мощность сигнала в приемнике находится выше определенной пороговой величины для соответствующего декодирования кадра размера L. Диапазон 310 помех представляет собой диапазон, в пределах которого узлы могут интерферировать с приемником и повреждать принятые кадры. Установленный диапазон NAV (не показано) является диапазоном, в пределах которого беспроводные станции могут правильно устанавливать NAV на основе информации о длительности/ID (идентификаторе), передаваемой в кадрах RTS/CTS, и не будет интерферировать с последующим обменом кадрами данных/подтверждения приема между узлом 302 источника и узлом 304 назначения.
Диапазон занятости (не показано) оценки готовности канала (CCA) представляет собой диапазон, в пределах которого узлы могут физически обнаружить, что канал занят во время передачи данных и задержать свои собственные попытки передач. Существует два способа для узла, чтобы сообщить о занятости CCA в IEEE 802.11n. Один основан на обнаружении несущей (-82 дБм), а другой основан на обнаружении энергии (-62 дБм), по которой узел сообщит о занятом носителе при обнаружении какой-либо мощности сигнала выше пороговой величины обнаружения энергии (ED). В зависимости от установленной пороговой величины радиусы этих диапазонов различаются. В IEEE 802.11n PHY максимальный диапазон передачи равен расстоянию, в котором декодер приемника сможет принимать сигнал с мощностью выше -91,44 дБм, таким образом достигая SINR больше, чем 0,6 дБ. Для того чтобы определить диапазон помех, рассмотрим сценарий наихудшего случая.
В зависимости от различной установленной пороговой величины радиусы этих диапазонов различаются. В IEEE 802.11n PHY максимальный диапазон передачи равен расстоянию, в котором декодер приемника сможет принимать сигнал с мощностью выше -91,4 дБм, таким образом достигая SINR больше, чем 0.6 дБ. Для того чтобы определить диапазон помех, может быть проанализирован сценарий наихудшего случая.
Фиг.4 иллюстрирует сценарий наихудшего случая, где существуют шесть источников помех или потенциальных источников 402 помех, окружающих приемник 404 в осуществлении связи с другим узлом 406. Термины источник помех и потенциальный источник помех используются в данном документе взаимозаменяемо. Источники 402 помех могут передавать одновременно и иметь ту же самую фиксированную мощность передачи. Для простоты можно предположить, что расстояние между всеми источниками 402 помех и приемником 404 то же самое и мощностью шума можно пренебречь. Сценарий может упоминаться как режим ограниченных помех, так как мощность помех преобладает над мощностью шума.
Обращаясь теперь к фиг. 5, проиллюстрирован граф 500, отображающий примерную модель потери на трассе. Потери на трассе имеют значительное воздействие на анализ помех. Потери на трассе на расстоянии d (или принятая мощность на расстоянии d) могут моделироваться с помощью модели двух углов наклона с контрольной точкой следующим образом:
Модель может представлять реалистичную внутреннюю среду WLAN. Здесь является частотой несущей, с является скоростью света, (n1, n2) являются двумя коэффициентами потери на трассе и R B является расстоянием до контрольной точки.
Если как расстояние между предназначенным приемником и передатчиком, d, так и минимальное расстояние между источником помех и расстоянием предназначенного приемника, Dmin находится вне контрольной точки модели потери на трассе, тогда может использоваться одно или более известных вычислений. Например, использование вычислений как в сотовых сетях:
Более высокие скорости физической передачи требуют очень высокого SINR в приемнике. Следовательно, большая зона вокруг приемника может быть запрещена для передач или быть вне вектора назначения сети. Если требование SINR является небольшим, тогда потенциальные источники помех могут находиться близко к приемнику. Кроме того, D min зависимо от расстояния между передатчиком и приемником.
Если предназначенное расстояние между приемником и передатчиком, d, меньше, чем расстояние до контрольной точки, и предназначенное расстояние до приемника/источника помех больше, чем контрольная точка, тогда может использоваться другая формула для вычисления расстояния помех, D min:
Это формула указывает, что расстояние помех является также функцией от расстояния R B до контрольной точки.
Таблица I включает в себя примерные вычисления расстояний помех на основе скоростей PHY. Значения, включенные в таблицу, являются репрезентативными и могут изменяться для различных сред распространения. В частности, таблица включает в себя наихудший и наилучший случай расстояний помех, D min, используя таблицу скорости IEEE 802.11n для работы на конкретной скорости PHY. В таблице столбец 5 показывает, что максимальный радиус передачи R max для функционирования линии связи при конкретной скорости PHY, используя мощность передачи 23 дБм. Столбец 6 содержит отношение минимального расстояния помех к расстоянию от передатчика до приемника для каждой скорости PHY, используя уравнение (2). Отношение является разным для разных скоростей PHY из-за различных требований SINR. Столбец 7 указывает сценарий наилучшего случая, используя уравнение (5). Эти отношения остаются фиксированными и являются функцией расстояние от источника до пункта назначения, но являются независимыми от мощности передачи. Таблица скоростей существует для единственного потока. Некоторые из скоростей аналогичны IEEE 802.11 a/g для поддержания обратной совместимости. Дополнительные скорости кодирования приведены для предоставления улучшенной спектральной эффективности, включая сюда использование 256 QAM. Поддерживается максимум из четырех пространственных потоков.
Таблица IОпределение максимального радиуса передачи (Rmax) и минимальное расстояние помех (Dmin) для различных скоростей PHY в IEEE 802.11n. | ||||||
SNR | Скорость(Мб/с) | Модуляция | Скорость кодирования | Контрольная точка Rmax w/=30м и мощность передачи=23 дБ | X=Dmin/R уравнение (2) | X=Dmin/R уравнение (5) |
27.0 | 84 | 256-QUAM | 7/8 | 42 | 8.71 | 5.37 |
24.9 | 72 | 256-QUAM | 3/4 | 49 | 7.64 | 4.71 |
20.3 | 60 | 256-QUAM | 5/8 | 60 | 5.74 | 3.56 |
19.0 | 54 | 64-QUAM | 3/4 | 65 | 5.29 | 3.26 |
17.6 | 48 | 64-QUAM | 2/3 | 70 | 4.85 | 3.00 |
16.5 | 42 | 64-QUAM | 7/12 | 76 | 4.53 | 2.79 |
13.0 | 36 | 16-QUAM | 1/2 | 87 | 3.64 | 2.25 |
11.5 | 30 | 16-QUAM | 5/8 | 100 | 3.32 | 2.05 |
10.0 | 24 | 16-QUAM | 3/4 | 112 | 3.02 | 1.86 |
6.3 | 18 | QPSK | 1/2 | 137 | 2.41 | 1.49 |
3.6 | 12 | QPSK | 3/4 | 163 | 2.03 | 1.25 |
2.1 | 9 | BPSK | 3/4 | 180 | 1.85 | 1.14 |
0.6 | 6 | BPSK | 1/2 | 193 | 1.68 | 1.04 |
Ссылаясь теперь на фиг. 6, проиллюстрирован граф 600, отображающий различную пропускную способность зон для различных значений контрольных точек. Для площади зоны A=L метров максимальное число успешных одновременных передач или передачи из условия, что все линии связи имеют ту же самую скорость физической передачи, может быть вычислено как функция расстояния помех. Для того чтобы осуществить этот анализ, может определяться расстояние D min между источниками помех и передатчиком. Расстояние между источниками помех может быть получено из уравнения (2) или уравнения (3) выше. Горизонтальное расстояние между двумя источниками помех обозначается с помощью D min и вертикальное расстояние между источниками помех равно
Максимальное число одновременных передач в зоне А может быть вычислено следующим образом:
Здесь N max было извлечено на основе предположения о помехах в наихудшем случае, где шесть источников помех окружают узел приема. Сценарий наилучшего случая происходит, когда существует только один источник помех. В сценарии наилучшего случая уравнения со (2) по (4) выше могут быть модифицированы следующим образом:
Обращаясь теперь к фиг.7, проиллюстрирован граф 700, который отображает интервал помех как функцию необходимого SINR и контрольную точку потерь на трассе. Для того чтобы понять влияние контрольной точки на пропускную способность, уравнение производительности Шеннона на основе теоремы Шеннона-Хартли, мож