Передача данных и управление мощностью в системе связи с ретрансляцией и многими переприемами

Иллюстрации

Показать все

Настоящее изобретение относится к области передачи данных с распределенным и централизованным планированием в системе беспроводной связи с ретрансляцией с многими переприемами. Технический результат изобретения заключается в распределенном планировании, когда ретрансляционная станция может формировать и отправлять первую информацию о качестве канала (CQI) на базовую станцию и принимать вторую CQI с абонентской станции. Ретрансляционная станция может принимать данные, отправленные базовой станцией, на основании первой CQI и может переотправлять данные на абонентскую станцию на основании второй CQI. Для централизованного планирования ретрансляционная станция может формировать первую CQI для базовой станции, принимать вторую CQI с абонентской станции и отправлять обе CQI на базовую станцию. Ретрансляционная станция может принимать данные, отправленные базовой станцией, на основании первой CQI и может переотправлять данные на абонентскую станцию на основании решения планирования, определенного на основании второй CQI. Также описаны технологии для распределенного и централизованного управления мощностью. 14 н. и 26 з.п. ф-лы, 18 ил., 3 табл.

Реферат

Настоящая заявка испрашивает приоритет по предварительной заявке на выдачу патента США под порядковым номером 60/895,388, озаглавленной «CHANNEL INFORMATION MEASUREMENT AND REPORTING IN A WIRELESS MULTIHOP RELAY SYSTEM», поданной 16 марта 2005 года, переуступленной правопреемнику по настоящей заявке и включенной в ее материалы посредством ссылки во всей своей полноте.

I. Область техники

Настоящее раскрытие в целом относится к связи, а более точно к технологиям для передачи данных в системе беспроводной связи.

II. Предшествующий уровень техники

Системы беспроводной связи широко применяются для предоставления различных услуг связи, таких как речь, видео, пакетные данные, обмен сообщениями, широковещание и т.д. Эти системы связи могут быть системами множественного доступа, допускающими поддержку многочисленных пользователей посредством совместного использования имеющихся в распоряжении системных ресурсов. Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA), системы множественного доступа с ортогональным частотным разделением (OFDMA) и системы FDMA с одиночной несущей (SC-FDMA). Беспроводные системы упрочили себя в качестве растущей области в сфере дальней связи. Современные тенденции и потребности состоят в том, чтобы доставлять мультимедийные услуги, такие как речь, видео, интерактивные игры и т.д., с гарантированным качеством обслуживания (QoS). Высокая производительность передачи данных желательна для того, чтобы поддерживать мультимедийные услуги высокого качества.

Система беспроводной связи может поддерживать ретрансляцию с многими переприемами, для того чтобы улучшать покрытие и/или качество функционирования. При ретрансляции с многими переприемами базовая станция может передавать данные на абонентскую станцию через одну или более ретрансляционных станций. Каждая ретрансляционная станция может принимать данные с вышерасположенной (на нисходящей линии связи) станции (например, базовой станции или другой ретрансляционной станции) и может ретранслировать данные на нижерасположенную станцию (например, абонентскую станцию или другую ретрансляционную станцию). Передача с одной станции на другую станцию рассматривается в качестве переприема. Может быть желательным, чтобы каждая ретрансляционная станция ретранслировала данные эффективным образом.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В материалах настоящей заявки описаны технологии для передачи данных и выполнения управления мощностью в системе связи с ретрансляцией и многими переприемами. В одном из аспектов распределенное планирование и/или централизованное планирование может поддерживаться для передачи данных. В одном из аспектов распределенное управление мощностью и/или централизованное управление мощностью может поддерживаться на восходящей линии связи.

В одной из конструкций распределенного планирования ретрансляционная станция может принимать первый пилот-сигнал с базовой станции, оценивать качество линии связи для базовой станции на основании первого пилот-сигнала, формировать первую информацию о качестве канала (CQI) на основании оцененного качества линии связи и отправлять первую CQI на базовую станцию. Ретрансляционная станция, к тому же, может отправлять второй пилот-сигнал на абонентскую станцию и принимать вторую CQI, сформированную абонентской станцией на основании второго пилот-сигнала. Ретрансляционная станция может принимать данные, отправленные базовой станцией, на основании первой CQI и может переотправлять данные на абонентскую станцию на основании второй CQI.

В одной из конструкций централизованного планирования ретрансляционная станция может принимать первый пилот-сигнал с базовой станции, оценивать качество линии связи для базовой станции на основании первого пилот-сигнала и формировать первую CQI на основании оцененного качества линии связи. Ретрансляционная станция может отправлять второй пилот-сигнал на абонентскую станцию и принимать вторую CQI, сформированную абонентской станцией на основании второго пилот-сигнала. Ретрансляционная станция может отправлять первую CQI и вторую CQI на базовую станцию. Ретрансляционная станция может принимать данные, отправленные базовой станцией на основании первой CQI. Ретрансляционная станция также может принимать решение планирования, определенное базовой станцией на основании второй CQI. Ретрансляционная станция может переотправлять данные на абонентскую станцию на основании решения планирования.

В одной из конструкций распределенного управления мощностью ретрансляционная станция может принимать первую передачу (например, по каналу CQI) с абонентской станции, оценивать качество линии связи для абонентской станции на основании первой передачи, формировать первую корректировку мощности на основании оцененного качества линии связи и отправлять первую корректировку мощности на абонентскую станцию. Ретрансляционная станция может отправлять вторую передачу (например, по другому каналу CQI) на базовую станцию и принимать вторую корректировку мощности, сформированную базовой станцией на основании второй передачи. Ретрансляционная станция может принимать данные, отправленные абонентской станцией на мощности передачи, определенной на основании первой корректировки мощности. Ретрансляционная станция может переотправлять данные на базовую станцию на мощности передачи, определенной на основании второй корректировки мощности.

В одной из конструкций централизованного управления мощностью ретрансляционная станция может принимать первую передачу с абонентской станции, оценивать качество линии связи для абонентской станции на основании первой передачи и отправлять оцененное качество линии связи для абонентской станции и вторую передачу на базовую станцию. Ретрансляционная станция может принимать первую и вторую корректировки мощности с базовой станции. Первая корректировка мощности может формироваться на основании оцененного качества линии связи для абонентской станции, а вторая корректировка мощности может формироваться на основании второй передачи с ретрансляционной станции. Ретрансляционная станция может отправлять первую корректировку мощности на абонентскую станцию. Ретрансляционная станция может принимать данные, отправленные абонентской станцией на мощности передачи, определенной на основании первой корректировки мощности. Ретрансляционная станция может переотправлять данные на базовую станцию на мощности передачи, определенной на основании второй корректировки мощности.

Различные аспекты и признаки раскрытия ниже описаны более подробно.

ПЕРЕЧЕНЬ ФИГУР ЧЕРТЕЖЕЙ

Фиг.1 показывает систему беспроводной связи, поддерживающую ретрансляцию с многими переприемами.

Фиг.2 показывает структуру кадра без ретрансляции с многими переприемами.

Фиг.3 показывает структуру кадра для ретрансляции с многими переприемами в прозрачном режиме.

Фиг.4 показывает структуру кадра для ретрансляции с многими переприемами в непрозрачном режиме.

Фиг.5 показывает структуру кадра для трех переприемов в непрозрачном режиме.

Фиг.6 показывает схему для распределенного планирования при ретрансляции с 2-мя переприемами.

Фиг.7 показывает схему для централизованного планирования при ретрансляции с 2-мя переприемами.

Фиг.8 показывает последовательность операций для поддержки распределенного планирования.

Фиг.9 показывает устройство, поддерживающее распределенное планирование.

Фиг.10 показывает последовательность операций для поддержки централизованного планирования.

Фиг.11 показывает устройство, поддерживающее централизованное планирование.

Фиг.12 показывает схему для распределенного управления мощностью при ретрансляции с 2-мя переприемами.

Фиг.13 показывает схему для централизованного управления мощностью при ретрансляции с 2-мя переприемами.

Фиг.14 показывает последовательность операций для поддержки распределенного управления мощностью.

Фиг.15 показывает устройство, поддерживающее распределенное управление мощностью.

Фиг.16 показывает последовательность операций для поддержки централизованного управления мощностью.

Фиг.17 показывает устройство, поддерживающее централизованное управление мощностью.

Фиг.18 показывает структурную схему базовой станции, ретрансляционной станции и абонентской станции.

ПОДРОБНОЕ ОПИСАНИЕ

Технологии, описанные в материалах настоящей заявки, могут использоваться для различных систем беспроводной связи, таких как системы CDMA, TDMA, FDMA, OFDMA, SC-FDMA. Термины «система» и «сеть» часто используются взаимозаменяемо. Система CDMA может реализовывать технологию радиосвязи, такую как cdma2000, наземный радиодоступ универсальной системы мобильной связи (UTRA) и т.д. Система OFDMA может реализовывать технологию радиосвязи, такую как сверхширокополосная мобильная связь (UMB), развитый UTRA (E-UTRA), стандарт IEEE 802.11 (который также указывается ссылкой как Wi-Fi), стандарт IEEE 802.16 (который также указывается ссылкой как WiMAX), стандарт IEEE 802.20, Flash-OFDM® и т.д. Эти различные технологии и стандарты радиосвязи известны в данной области техники. Термины «технология и радиосвязи», «технология радиодоступа» и «эфирный интерфейс» частот используются взаимозаменяемо.

Для ясности, некоторые аспекты технологий описаны ниже для WiMAX, который покрывается в стандарте IEEE 802.16, озаглавленном «Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems», датированном 1 октября 2004 года, в стандарте IEEE 802.16e, озаглавленном «Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands», датированном 28 февраля 2006 года, и в стандарте IEEE 802.16j, озаглавленном «Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multihop Relay Specification», датированном 24 декабря 2007 года. Эти документы являются находящимися в свободном доступе. Технологии также могут использоваться для стандарта IEEE 802.16m, который является новым эфирным интерфейсом, являющимся развитием для WiMAX. IEEE 802.16j охватывает ретрансляцию с многими переприемами и предназначен для улучшения качества функционирования стандартов IEEE 802.16 посредством вовлечения ретрансляционных станций. Некоторые цели IEEE 802.16j включают в себя расширение зоны обслуживания, увеличение пропускной способности и емкости системы, экономию времени работы от батарей абонентских станций и минимизацию сложности ретрансляционных станций.

Фиг.1 показывает систему 100 беспроводной связи, которая поддерживает ретрансляцию с многими переприемами. Для простоты, фиг.1 показывает только одну базовую станцию 110 (BS), три ретрансляционных станции 120, 122 и 124 (RS) и две абонентских станции 130 и 132 (SS). Вообще, система может включать в себя любое количество базовых станций и любое количество ретрансляционных станций, которые поддерживают связь для любого количества абонентских станций. Базовая станция является станцией, которая поддерживает связь для абонентских станций. Базовая станция может выполнять функции, такие как возможность соединения, управление и контроль над ретрансляционными станциями и абонентскими станциями. Базовая станция также может упоминаться как Узел Б, усовершенствованный узел Б, точка доступа и т.д. Ретрансляционная станция является станцией, которая дает возможность соединения другим ретрансляционным станциям и/или абонентским станциям. Ретрансляционная станция также обеспечивает управление и контроль над подчиненными ретрансляционными станциями и/или абонентскими станциями. Эфирный интерфейс между ретрансляционной станцией и абонентской станцией может быть идентичным эфирному интерфейсу между базовой станцией и абонентской станцией. Базовая станция может быть связана с базовой сетью через транзитное соединение (не показанное на фиг.1), для того чтобы поддерживать различные услуги. Ретрансляционная станция может быть или может не быть непосредственно присоединена к транзитному соединению и может иметь ограниченные функциональные возможности для поддержки связи с многими переприемами через такую ретрансляционную станцию.

Абонентские станции могут быть рассредоточены по всей системе, и каждая абонентская станция может быть стационарной или мобильной. Абонентская станция также может упоминаться как мобильная станция, терминал, терминал доступа, пользовательское оборудование, абонентский узел, станция и т.д. Абонентская станция может быть сотовым телефоном, персональным цифровым секретарем (PDA), беспроводным устройством, беспроводным модемом, карманным устройством, дорожным компьютером, бесшнуровым телефоном и т.д. Абонентская станция может осуществлять связь с базовой станцией и/или ретрансляционной станцией через нисходящую линию связи (DL) и восходящую линию связи (UL). Нисходящая линия связи (или прямая линия связи) соответствует линии связи от базовой станции или ретрансляционной станции на абонентскую станцию. Восходящая линия связи (или обратная линия связи) соответствует линии связи от абонентской станции на базовую станцию или ретрансляционную станцию.

В примере, показанном на фиг.1, базовая станция 110 может осуществлять связь с абонентской станцией 130 через ретрансляционную станцию 120. По нисходящей линии связи, базовая станция 110 может передавать данные для абонентской станции 130 на ретрансляционную станцию 120, которая может ретранслировать данные на абонентскую станцию 130. По восходящей линии связи, абонентская станция 130 может передавать данные на ретрансляционную станцию 120, которая может ретранслировать данные на базовую станцию 110. Базовая станция 110 и абонентская станция 130 также могут быть способны поддерживать связь непосредственно друг с другом.

Базовая станция 110 также может осуществлять связь с абонентской станцией 132 через ретрансляционные станции 122 и 124. По нисходящей линии связи, базовая станция 110 может передавать данные для абонентской станции 132 на ретрансляционную станцию 122, которая может ретранслировать данные на ретрансляционную станцию 124, которая может ретранслировать данные дальше, на абонентскую станцию 132. По восходящей линии связи, абонентская станция 132 может передавать данные на ретрансляционную станцию 124, которая может ретранслировать данные на ретрансляционную станцию 122, которая может ретранслировать данные дальше, на базовую станцию 110. Базовая станция 110 может не быть способной осуществлять связь непосредственно с абонентской станцией 132 и может полагаться на одну или более ретрансляционных станций для осуществления связи с абонентской станцией 132.

Фиг.1 показывает пример связи с двумя переприемами между базовой станцией 110 и абонентской станцией 130. Фиг.1 также показывает пример связи с тремя переприемами между базовой станцией 110 и абонентской станцией 132. Вообще, базовая станция и абонентская станция могут поддерживать связь посредством любого количества переприемов. В последующем описании, с ракурса заданной станции, вышерасположенная станция является станцией в вышерасположенном тракте на базовую станцию, а нижерасположенная станция является станцией в нижерасположенном тракте на абонентскую станцию.

Фиг.2 показывает примерную структуру 200 кадра без ретрансляции с многими переприемами для режима дуплекса с временным разделением каналов (TDD) в стандарте IEEE 802.16. Временная последовательность передачи может быть разделена на блоки кадров. Каждый кадр может охватывать предопределенную временную длительность, например 5 миллисекунд (мс), и может быть разделен на подкадр нисходящей линии связи и подкадр восходящей линии связи. Подкадры нисходящей линии связи и восходящей линии связи могут быть разделены интервалом прохождения передачи (TTG) и интервалом прохождения приема (RTG).

Может быть определено некоторое количество физических подканалов. Каждый физический подканал может включать в себя набор поднесущих, которые могут быть смежными или разбросанными по полосе пропускания системы. Некоторое количество логических каналов также может быть определено и может отображаться в физические каналы на основании известного отображения. Логические каналы могут упрощать распределение ресурсов.

Как показано на фиг.2, подкадр нисходящей линии связи может включать в себя преамбулу, заголовок управления кадром (FCH), карту нисходящей линии связи (DL-MAP), карту восходящей линии связи (UL-MAP) и пачки нисходящей линии связи (DL). Преамбула может нести известную передачу, которая может использоваться абонентскими станциями для обнаружения и синхронизации кадра. FCH может нести параметры, используемые для приема DL-MAP, UL-MAP и пачек нисходящей линии связи. DL-MAP может нести сообщение DL-MAP, которое может включать в себя элементы информации (IE) для различных типов управляющей информации (например, распределения ресурсов) для доступа по нисходящей линии связи. UL-MAP может нести сообщение UL-MAP, которое может включать в себя IE для различных типов управляющей информации для доступа по восходящей линии связи. Пачки нисходящей линии связи могут нести данные для абонентских станций, являющихся обслуживаемыми. Подкадр восходящей линии связи может включать в себя пачки нисходящей линии связи, которые могут нести данные из абонентских станций, планируемых для передачи по восходящей линии связи.

Вообще, подкадры нисходящей линии связи и восходящей линии связи могут покрывать любой фрагмент кадра. В примере, показанном на фиг.2, кадр включает в себя 43 символа мультиплексирования с ортогональным частотным разделением каналов (OFDM), подкадр нисходящей линии связи включает в себя 27 символов OFDM, а подкадр восходящей линии связи включает в себя 16 символов OFDM. Кадр, подкадр нисходящей линии связи и подкадр восходящей линии связи также могут иметь другие длительности.

Как показано на фиг.1, базовая станция может передавать данные на абонентскую станцию через одну или более ретрансляционных станций. Система может поддерживать прозрачный режим работы и непрозрачный режим работы для ретрансляции с многими переприемами. Таблица 1 перечисляет некоторые характеристики прозрачного режима и непрозрачного режима, которые подробно описаны в вышеупомянутом документе стандарта IEEE 802.16j.

Таблица 1
Режим Описание
Прозрачный режим - Базовая станция планирует передачу по нисходящей линии связи, формирует сообщения назначений и координирует передачу ретрансляционными станциями.- Ретрансляционная станция ретранслирует данные, принятые с базовой станции, но не передает преамбулу, FCH и MAP.- Абонентская станция принимает сообщения назначений с базовой станции и принимает данные с ретрансляционной станции.
Непрозрачный режим - Базовая станция планирует передачу для первого переприема на ретрансляционную станцию.- Ретрансляционная станция может планировать передачу для последующего переприема и формировать сообщения назначений. Ретрансляционная станция ретранслирует данные, принятые с базовой станции, и также передает преамбулу, FCH и MAP.- Абонентская станция принимает сообщения назначений и данные с ретрансляционной станции.

Фиг.3 показывает структуру кадра для ретрансляции с многими переприемами в прозрачном режиме. Верхняя половина фиг.3 показывает кадр 310 для базовой станции, а нижняя половина фиг.3 показывает кадр 350 для ретрансляционной станции.

Кадр 310 включает в себя подкадр 320 нисходящей линии связи и подкадр 330 восходящей линии связи. Подкадр 320 нисходящей линии связи может быть разделен на зону 322 доступа нисходящей линии связи и необязательную прозрачную зону 324. Каждая зона может включать в себя любое количество символов OFDM. Базовая станция может передавать преамбулу, FCH, DL-MAP, UL-MAP, карту ретрансляции (R-MAP) и пачки нисходящей линии связи на ретрансляционную станцию и/или абонентские станции в зоне 322 доступа нисходящей линии связи. R-MAP может нести сообщение R-MAP, которое может транспортировать подробное распределение для ретрансляционной станции в необязательной прозрачной зоне 324. Базовая станция может передавать или может не передавать во время зоны 324. Подкадр 330 восходящей линии связи может быть разделен на зону 332 доступа восходящей линии связи и зону 334 ретрансляции восходящей линии связи. Зона 332 доступа восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые абонентскими станциями на базовую станцию и/или ретрансляционную станцию. Зона 334 ретрансляции восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые ретрансляционной станцией на базовую станцию.

Кадр 350 включает в себя подкадр 360 нисходящей линии связи и подкадр 370 восходящей линии связи. Подкадр 360 нисходящей линии связи может быть разделен на зону 362 доступа нисходящей линии связи и необязательную прозрачную зону 364, которые могут быть выровнены по времени с зонами 322 и 324 кадра 310. Зоны 362 и 364 разделены интервалом переключения с приема на ретрансляцию (R-RTG). Ретрансляционная станция может принимать преамбулу, FCH, DL-MAP, UL-MAP, R-MAP и пачки нисходящей линии связи с базовой станции в зоне 362 доступа нисходящей линии связи. Ретрансляционная станция может ретранслировать некоторые или все из данных, принятых с базовой станции в необязательной прозрачной зоне 364, как указано сообщением R-MAP. Подкадр 370 восходящей линии связи может быть разделен на зону 372 доступа восходящей линии связи и зону 374 ретрансляции восходящей линии связи, которые могут быть выровнены по времени с зонами 332 и 334 кадра 310. Зона 372 доступа восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые абонентскими станциями на базовую станцию и/или ретрансляционную станцию. Зона 374 ретрансляции восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые ретрансляционной станцией на базовую станцию.

В прозрачном режиме, базовая станция может отправлять сообщение DL-MAP, которое транспортирует пачки нисходящей линии связи, назначенные каждой абонентской станции, являющейся обслуживаемой. Абонентская станция может принимать преамбулу, FCH и сообщение DL-MAP с базовой станции и может определять свою назначенную пачку нисходящей линии связи в сообщении DL-MAP. Абонентская станция затем может обрабатывать назначенную пачку нисходящей линии связи, которая может передаваться либо базовой станцией, либо ретрансляционной станцией. Ретрансляционная станция может принимать данные с базовой станции и ретранслировать данные, как указано базовой станцией.

Фиг.4 показывает структуру кадра для ретрансляции с многими переприемами в непрозрачном режиме. Верхняя половина фиг.4 показывает кадр 410 для базовой станции, а нижняя половина фиг.4 показывает кадр 450 для ретрансляционной станции.

Кадр 410 включает в себя подкадр 420 нисходящей линии связи и подкадр 430 восходящей линии связи. Подкадр 420 нисходящей линии связи может быть разделен на зону 422 доступа нисходящей линии связи и зону 424 ретрансляции нисходящей линии связи. Базовая станция может передавать преамбулу, FCH, DL-MAP, UL-MAP и пачки нисходящей линии связи о зоне 422 доступа нисходящей линии связи на абонентские станции. Базовая станция может передавать FCH ретрансляции (R-FCH), R-MAP и пачки нисходящей линии связи в зоне 424 ретрансляции нисходящей линии связи на ретрансляционную станцию. Подкадр 430 восходящей линии связи может быть разделен на зону 432 доступа восходящей линии связи и зону 434 ретрансляции восходящей линии связи. Зона 432 доступа восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые абонентскими станциями на базовую станцию и/или ретрансляционную станцию. Зона 434 ретрансляции восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые ретрансляционной станцией на базовую станцию.

Кадр 450 включает в себя подкадр 460 нисходящей линии связи и подкадр 470 восходящей линии связи. Подкадр 460 нисходящей линии связи может быть разделен на зону 462 доступа нисходящей линии связи и зону 464 ретрансляции нисходящей линии связи, которые могут быть выровнены по времени с зонами 422 и 424 кадра 410. Ретрансляционная станция может принимать R-FCH, R-MAP и пачки нисходящей линии связи с базовой станции в зоне 464 ретрансляции нисходящей линии связи. Ретрансляционная станция может передавать преамбулу, FCH, DL-MAP, UL-MAP и пачки нисходящей линии связи для некоторых или всех из данных, принятых с базовой станции в зоне 462 доступа нисходящей линии связи следующего кадра. Есть задержка в один кадр для данных, ретранслируемых ретрансляционной станцией. Подкадр 470 восходящей линии связи может быть разделен на зону 472 доступа восходящей линии связи и зону 474 ретрансляции восходящей линии связи, которые могут быть выровнены по времени с зонами 432 и 434 кадра 410. Зона 472 доступа восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые абонентскими станциями на базовую станцию и/или ретрансляционную станцию. Зона 474 ретрансляции восходящей линии связи может включать в себя пачки восходящей линии связи, отправляемые ретрансляционной станцией на базовую станцию.

В непрозрачном режиме, базовая станция может отправлять сообщение R-MAP, которое может транспортировать пачки нисходящей линии связи для каждой ретрансляционной станции в зоне 424 ретрансляции нисходящей линии связи. Ретрансляционная станция может принимать данные с базовой станции, как указано сообщением R-MAP. Ретрансляционная станция может передавать преамбулу, FCH, DL-MAP, UL-MAP и пачки нисходящей линии связи, содержащие данные, принятые с базовой станции в зоне 462 доступа нисходящей линии связи, на абонентские станции. Сообщение DL-MAP может транспортировать пачку нисходящей линии связи, назначенную ретрансляционной станцией на каждую абонентскую станцию. Каждая абонентская станция может принимать преамбулу, FCH, сообщение DL-MAP и данные с ретрансляционной станции и может не нуждаться в приеме чего бы то ни было с базовой станции.

Фиг.5 показывает структуру кадра для трех переприемов в непрозрачном режиме. Верхняя часть фиг.5 показывает кадр 510 для базовой станции, средняя часть фиг.5 показывает кадр 530 для первой ретрансляционной станции (RS1), а нижняя часть фиг.5 показывает кадр 550 для второй ретрансляционной станции (RS2).

Что касается кадра 510, подкадр нисходящей линии связи может быть разделен на зону 512 доступа нисходящей линии связи и зону 516 ретрансляции нисходящей линии связи. Подкадр восходящей линии связи может быть разделен на зону 522 доступа восходящей линии связи и зону 526 ретрансляции восходящей линии связи. Базовая станция может передавать на абонентские станции в зоне 512 доступа нисходящей линии связи, передавать на первую ретрансляционную станцию в зоне 516 ретрансляции нисходящей линии связи, принимать с абонентских станций в зоне 522 доступа восходящей линии связи и принимать с первой ретрансляционной станции в зоне 526 ретрансляции восходящей линии связи.

Что касается кадра 530, подкадр нисходящей линии связи может быть разделен на зону 532 доступа нисходящей линии связи и зоны 534 и 536 ретрансляции нисходящей линии связи. Подкадр восходящей линии связи может быть разделен на зону 542 доступа восходящей линии связи и зоны 544 и 546 ретрансляции восходящей линии связи. Первая ретрансляционная станция может принимать с базовой станции в зоне 536 ретрансляции нисходящей линии связи, передавать на абонентские станции в зоне 352 доступа нисходящей линии связи и передавать на вторую ретрансляционную станцию в зоне 534 ретрансляции нисходящей линии связи. Первая ретрансляционная станция может принимать с абонентских станций в зоне 542 доступа восходящей линии связи, принимать со второй ретрансляционной станции в зоне 544 ретрансляции восходящей линии связи и передавать на базовую станцию в зоне 546 ретрансляции восходящей линии связи.

Что касается кадра 550, подкадр нисходящей линии связи может быть разделен на зону 552 доступа нисходящей линии связи и зоны 554 и 556 ретрансляции нисходящей линии связи. Подкадр восходящей линии связи может быть разделен на зону 562 доступа восходящей линии связи и зоны 564 и 566 ретрансляции восходящей линии связи. Вторая ретрансляционная станция может принимать с первой ретрансляционной станции в зоне 554 ретрансляции нисходящей линии связи и передавать на абонентские станции в зоне 552 доступа нисходящей линии связи и зоне 556 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может принимать с абонентских станций в зоне 562 доступа восходящей линии связи и зоне 566 ретрансляции восходящей линии связи и передавать на первую ретрансляционную станцию в зоне 564 ретрансляции восходящей линии связи. Зоны 556 и 566 ретрансляции также могут быть опущены.

Фиг.3 и 4 показывают две структуры кадра, которые поддерживают два переприема через одну ретрансляционную станцию. Фиг.5 показывает структуру кадра, которая поддерживает три переприема через две ретрансляционных станции. Что касается структур кадра на фиг.4 и 5, есть задержка одного кадра для данных, ретранслируемых каждой ретрансляционной станцией. Другие структуры кадра также могут использоваться для ретрансляции с многими переприемами. Вообще, кадр может включать в себя любое количество зон для связи базовая станция - абонентская станция (BS-SS), связи ретрансляционная станция - ретрансляционная станция (RS-RS) и связи ретрансляционная станция - абонентская станция (RS-SS).

В аспекте, система может поддерживать распределенное планирование и/или централизованное планирование для передачи данных по нисходящей линии связи при ретрансляции с многими переприемами. В одной из конструкций как распределенное, так и централизованное планирование может использоваться для непрозрачного режима, и только централизованное планирование используется для прозрачного режима. Таблица 2 перечисляет некоторые характеристики распределенного и централизованного планирования.

Таблица 2
Планирование Описание
Распределенное планирование - Базовая станция передает данные на ретрансляционную станцию на основании CQI, принятой с ретрансляционной станции.- Ретрансляционная станция ретранслирует данные на абонентскую станцию на основании CQI, принятой с абонентской станции.
Централизованное планирование - Базовая станция принимает CQI с ретрансляционной станции и CQI с абонентской станции и планирует передачу по обеим, линии связи BS-RS и линии связи RS-SS.- Ретрансляционная станция ретранслирует данные на абонентскую станцию на основании решения планирования с базовой станции для линии связи RS-SS.

Фиг.6 показывает схему для передачи данных с распределенным планированием для ретрансляции с 2-мя переприемами. Первым переприемом является с базовой станции 110 на ретрансляционную станцию 120, а вторым переприемом является с ретрансляционной станции 120 на абонентскую станцию 130.

Для первого переприема базовая станция 110 может передавать пилот-сигнал на ретрансляционную станцию 120. Ретрансляционная станция 120 может оценивать качество линии связи BS-RS на основании пилот-сигнала с базовой станции 110, формировать CQI, указывающую качество линии связи BS-RS (которая обозначена как CQI #1), и отправлять CQI #1 на базовую станцию 110. CQI может быть предусмотрена в виде отчета об отношении мощности несущей к мощности помех и шума (CINR) или некотором другом формате. Базовая станция 110 может планировать передачу BS-RS для ретрансляционной станции 120 на основании CQI #1. Например, базовая станция 110 может выделять ресурсы радиосвязи ретрансляционной станции 120 и/или выбирать схему модуляции и кодирования для передачи BS-RS на основании CQI #1. Базовая станция 110 может отправлять данные для абонентской станции 130 на ретрансляционную станцию 120, как запланировано на основании CQI #1.

Для второго переприема ретрансляционная станция 120 может передавать пилот-сигнал на абонентскую станцию 130. Абонентская станция 130 может оценивать качество линии связи RS-SS на основании пилот-сигнала с ретрансляционной станции 120, формировать CQI, указывающую качество линии связи RS-SS (которая обозначена как CQI #2), и отправлять CQI #2 на ретрансляционную станцию 120. Ретрансляционная станция 120 может планировать передачу RS-SS для абонентской станции 130 на основании CQI #2 и может переотправлять данные, принятые с базовой станции 110 на абонентскую станцию 130, как запланировано на основании CQI #2.

Ретрансляционная станция 120 может периодически отправлять CQI #1 по каналу CQI (CQICH) на базовую станцию 110, а абонентская станция 130 может периодически отправлять CQI #2 по другому CQICH на ретрансляционную станцию 120. Базовая станция 110 может выделять CQICH для ретрансляционной станции 120, а ретрансляционная станция 120 может выделять CQICH для абонентской станции 130. Выделение CQICH для каждой линии связи может обеспечиваться посредством (i) IE выделения быстрой обратной связи (FAST-FEEDBACK), который указывает область, используемую для CQI, которая может быть разделена на сегменты, и (ii) IE выделения CQICH, который указывает, какой сегмент выделен каждой станции, а также, как часто и/или когда каждая станция должна отправлять CQI.

Фиг.7 показывает схему для передачи данных с централизованным планированием для ретрансляции с 2-мя переприемами. Базовая станция 110 может передавать пилот-сигнал на ретрансляционную станцию 120, и ретрансляционная станция 120 может передавать пилот-сигнал на абонентскую станцию 130. Ретрансляционная станция 120 может оценивать качество линии связи BS-RS на основании пилот-сигнала с базовой станции 110 и формировать CQI #1, указывающую качество линии связи BS-RS. Подобным образом, абонентская станция 130 может оценивать качество линии связи RS-SS на основании пилот-сигнала с ретрансляционной станции 120, формировать CQI #2, указывающую качество линии связи RS-SS, и отправлять CQI #2 на ретрансляционную станцию 120. Ретрансляционная станция 120 может отправлять CQI #1, сформированную ретрансляционной станцией, а также CQI #2, принятую с абонентской станции 130, на базовую станцию 110.

Базовая станция 110 может планировать передачу BS-RS для ретрансляционной станции 120 на основании CQI #1 и также может планировать передачу RS-SS для абонентской станции 130 на основании CQI #2. Базовая станция 110 может отправлять данные для абонентской станции 130 на ретрансляционную станцию 120, как запланировано на основании CQI #1. Базовая станция 110 также может отправлять решение планирования для передачи RS-SS на ретрансляционную станцию 120. Ретрансляционная станция 120 может принимать данные и решение планирования с базовой станции 110 и может переотправлять данные на абонентскую станцию 130, как указано решением планирования.

Фиг.6 и 7 показывают распределенное и централизованное планирование, соответственно, для ретрансляции с 2-мя переприемами. Распределенное и централизованное планирование для более чем двух переприемов может выполняться подобным образом.

Что касается распределенного планирования с N переприемами, где N может быть любым целым значением, ретрансляционная станция может принимать пилот-сигнал со следующей вышерасположенной станции, которая может быть базовой станцией или другой ретрансляционной станцией. Ретрансляционная станция может формировать CQI для следующей вышерасположенной станции на основании принятого пилот-сигнала и может отправлять CQI на эту вышерасположенную станцию. Ретрансляционная станция может принимать данные, отправленные следующей вышерасположенной станцией на основании CQI, отправленной ретрансляционной станцией. Ретрансляционная станция также может отправлять пилот-сигнал на следующую нижерасположенную станцию, которая может быть абонентской станцией или другой ретрансляционной станцией. Ретрансляционная станция может принимать CQI, сформированную следующей нижерасположенной станцией на основании пилот-сигнала с ретрансляционной станции. Ретрансляционная станция может переотправлять данные, принятые со следующей вышерасположенной станции, на следующую нижерасположенную станцию на основании CQI, принятой с этой нижерасположенной станции.

Что касается централизованного планировани